X
0
Q

i1 PARASOFT

Static Code Analysis for
Embedded Development

AR

OVERVIEW

All static analysis tools tend to look the same from 50,000 feet. When planning
to deploy static analysis, it is important to select a solution that fits the needs of
the organization and can grow with future requirements.

The features and capabilities that a tool should have can be broken into two
groups.

The first group is the common, expected technical features around items
like supported languages, IDEs, CI/CD pipelines, industry safety and security
standards, reporting, and the like.

The second group is the often-overlooked intangibles that can make or break a
static analysis initiative and begs answers to the following questions.

» Does the tool come with support?
» s it “static” itself or continually growing and evolving?
» Does the vendor work with customers and seem to care about their success?

» WIill the tool fit into an organization’s software development lifecycle (SDLC)
and development culture?

» When and where is it best to use free and open source software (FOSS)?
» When are commercial tools needed?

This paper provides a framework to use when evaluating static analysis tools for
embedded software development that moves beyond simple proofs of concept,
bakeoffs, and evaluations.

Buyer's Guide
Static Code Analysis for Embedded Development

BACKGROUND

Software continues to increase in complexity while delivery timeframes
continue to shrink. It's not uncommon today to have software that is released
multiple times per day in support of complex, multi-platform, distributed
systems that need to be safe, reliable, secure, and meet government and
industry safety and security standards.

The Internet-of-things (loT), for example, is made up of a surprisingly large
amount of code in edge devices reliant on cloud-enabled services. loT offers
consumers and businesses useful technology and provides the building blocks
for better factory automation, infrastructure and utility control, and the basis for
autonomous driving.

The common strategy to meet this demand of better quality, in less time,

with more security, leads organizations to static analysis tools to ensure that
code meets uniform expectations around security, reliability, performance,
and maintainability. When trying to determine which static analysis tool will
work best, many evaluators take a common approach to selecting a tool for
their group or organization: they run each tool on the same code, compare the
results, then choose the tool that reports the most violations out-of-the-box.

This isn’t really a product evaluation. It's a
bakeoff. And the winner is not necessarily the
best tool for establishing a sustainable, scalable
static analysis process within the team or
organization. In fact, many of the key factors that
make the difference between successful static
analysis adoption and yet another failed initiative
are commonly overlooked during these bakeoffs.

This paper recommends the steps for selecting

a static analysis tool that a software team will
actually use. One that suits the team’s current
situation, can be deployed, and maintained
across the organization, will assist in and survive
safety and security certification, and will grow as
needs evolve.

ASSESS YOUR NEEDS

Before searching for a tool that meets an organization’s needs, your team needs
to make a brutally honest assessment of where the organization stands today
and where it hopes static analysis will take it.

»

»

»

»

»

»

»

»

»

»

Buyer's Guide
Static Code Analysis for Embedded Development

What specific pain points are being addressed with static analysis? For
example, is the improvement of code quality and reliability needed? Or, for
example, is the goal to reduce the number of defects uncovered during QA
and prevent release delays?

Does the organization have regulatory compliance requirements such as
functional safety standards or industry coding standards (FDA, MISRA,
AUTOSAR, JSF, SEI CERT, CWE)?

What initiatives are underway, such as security improvement, DevOps,
DevSecOps, loT, and so on. Does static analysis have a direct or indirect
effect on these initiatives?

Does the team need visibility into static analysis results and reports as it
relates to risk management and/or compliance to industry standards?

Is the development process stable, repeatable, and streamlined enough to
provide a strong foundation for static analysis? Are there weaknesses to
address first such as lack of a fully automated build process?

What does the existing pipeline look like? What is the build frequency—daily,
hourly, continuous? Do tools in the pipeline need to run in the integrated
development environment (IDE) on local servers and virtual machines (VMs)
or in the cloud?

Has static analysis been tried before? Was it successful? What was learned
and what can be done to prevent the same obstacles to success this time?

How is the development organization structured? Will there be a fixed
set of quality policies organization wide and/or more specific checker
configurations to suit the needs of specific projects and teams?

How will static analysis efforts vary across current projects? What new
projects are anticipated in the foreseeable future and how will static
analysis apply?

Where is the organization to be in terms of static analysis in two to three
years from now? What about 10 years from now?

Gathering this information helps create a list of requirements which drive

the evaluations of tools and vendors that best meet an organization’s needs.
Whether a formal request for proposal (RFP) is created or just an internal
comparison, it's a good practice to establish these requirements ahead of time.

Figure 1:

An example of integrating
static analysis into a
developer's IDE:

1) Warning delivered directly
into error windows.

2) Code highlighting and
tracingwhich quik to line

of code based on warning
selected.

3) Support for project view and
code check in.

£ " Check-in
3 | files browser

 Aurmaingans
- @ com patsnatt baskitors

ook jave
G BookStoreDn jren

(1 CartTinses jave
B 408 java

» £ DvspleyOnder java

» RiCartService Jave

B & e jave

P [RemNotFoundEaceptaan Java
B L KeystorePanswor SCaIback jive
» (L Order Java

B (1 Scbmitted Order jave

P UK TempBook jeva

21 fndingn.

Description Project

§ JOBC retultuet rot closed: stm parabank

& Wt may ponsiblybenll parabenk
5 Wt maypossiblybendl parabank
& I TODr derMap getlcartid] paabank

JOBC revuityet not osed: stm parabant
A JOBC ieiultuet Aot cdosed: stm parabank

@ Findings 5 et Test Assistant © Consele 1 Proddems

G A0 eyt S8 (oetel 1im Garsbasd

Buyer's Guide
Static Code Analysis for Embedded Development

STATIC ANALYSIS OVERVIEW

In simple terms, static analysis is the process of examining source and binary
code without execution, usually for the purposes of finding bugs or evaluating
quality. Unlike dynamic analysis/unit testing (Parasoft's C/C++test & Insure++),
which requires a running program to work, static analysis can be run on source
without the need for an executable.

This means static analysis can be used on partially complete code, libraries,
and third-party source code. Static analysis is accessible to the developer, to
be used as code is being written or modified, or to be applied on any arbitrary
code base. In the application security domain, static analysis goes by the term
static application security testing (SAST). Many commercial tools support both
security vulnerability detection alongside bug detection, quality metrics and
coding standard conformance.

Static analysis tools are mandated or highly recommended by safety standards
such as ISO 26262, DO-178B/C, IEC 62304, IEC 61508, and EN 50128, for
their ability to detect hard-to-find defects and improve security of software.
Static analysis tools also help software teams conform to coding standards
such as MISRA, AUTOSAR, or SEI CERT.

Open file in editor

Bookjave Ui Cartmanagerjows iF BookSRoreOm va 12

= rh.petsiviag(m_Tsee);
geiitringiad_FIvLE);

Prepareditatenent sia1l « & prepareitatesent(genryl,
MesaltSet | TYPE_SORSLL INSINSITIVE,
ResultSer, CONCUR S TASLE)
W« titlefart, tobowerCasel) »)i
};

statd.setstring(d,

A H
basmare = ol et
VLTI <STrings Authors = Biw VECTOT<StrLagsl)]

shile (hawmere) {
Stetny sot Results

= 12, GRTSTF L (ND_AUTIOR RAMI)

Findieg Detaits 51 ™ rcommandations ™ variables ¥ Factory Methody
~ & [uine 141] JOBE revlinet not clonedt stmi2 resultieti). rsd

BookSLoreOm java (1GT) int b = rE.getintiNL. 10}

Beak o0 java (108)
¥ Bookitor et e (10%

rlative Path Category Type

TLatc Anatyin Emare revour 1 - Hghew

St Anshyiis Dniare evourt 1 - Highest 5 Book 00e v 1105 Cale yoat « 15 getDRte(M
Statsc Analysi Emers neveurs 1 - Mighest B Dok b0 e0n Java (111): Sring publinber « 13 getSiring(_PUBLIER NAMD:
UbooA 3to €/ Cartaanages eve Static Amalysis Avoid o 1 Hghest # BookStone0 f5va (117 S2ring Sescriphion « . getstringDin,_DESCRPTION)
[parabarkfure/m. M ochstor e/ Cartanason java Bt Anabyin Avosd NulPost 1- et ¥ BoakitoreD jave (1115 BgOrcimal price « ru getligDecimal{yl,_PRsCE)
[paenbark furc/main) 1 anolt sk tord/Cartianager ov byt Avosd Nuiihr | - Highint # BookS0re0 java (114 It s70ck = 11, getine () x

. juea (116
BookitoneD jeve (119 simtd setstringlt, "
BOOLSI0re0N java (1200 simi setSaringlr, de)

85 prepareistemanticuery?,

et ol o Larel) « "W,

irsis Dmare resourt 1 - Highest
At Aralyss Emare nesourt 1 - Mghest

Srakic Analyshi Envare eibars |« Highist

To learn more about how static analysis works, read our whitepaper
Getting Started With Static Analysis.

https://www.parasoft.com/products/parasoft-c-ctest/
https://www.parasoft.com/products/parasoft-insure/
https://blog.parasoft.com/getting-started-with-static-analysis-without-overwhelming-the-team

Configuration
[] centralized configuration
[custom checkers

[] support for inline and external suppressions

[[] Flxible configuration controls and
permissions

[] scan projects with millions of lines of code
[configuration supports legacy codelage
[] configurable checker severity levels

[] Flexible licensing models

[Parameterized checkers

Buyer's Guide
Static Code Analysis for Embedded Development

COMMON CAPABILITIES

Static analysis tools have matured in the last decade. Below is a list of
expected capabilities that advanced modern static analysis solutions have,
from configuration, customization and integration through compliance-
oriented reporting and analytics. It's important to understand what value
each of the below capabilities provides, decide which ones apply, and their
respective priority.

Integration Ease of Use Reporting & Analytics Standards & Compliance

[configurable dashboards & reports

D Built-in support for common security

[] pesktop & server scanning [] integrated clickable docs standards

[cico plugins [Right/wrong code examples for each checker | | Custom widgets (] Samaraapportfor commn safety
[Roundtrip resuits from CljCD to IDE [] online training links [] custom data sources] r:ﬁ:‘:: standards-centric configuration &
[] 10 plugins [On-the-fiy IDE analysis [support for security risk models M (S;rzsgr"‘é’r';‘“e'l‘l‘sf’fe;“ez;e's of checkers

0 Complete comprehensive line-item support

[] Avtomated violaton assignment for compliance & security standards

[web-based ut [code author information

[cuiforavtomation [uilt-in configuration for common standards | | Built-in history & analytics || common industry metrics with thresholds

[] 10 quick fix

Dead code detection

D Open APIs for integration D Custom analytics

[] source control integration [simple PDF report export Duplicate code detection

[Bugtracking integration [] open output AP

[supports dynamic Cifcloud

Figure 2:
Static analysis tool evaluation
criteria

integration

(] Requ

Configuration is an often overlooked aspect of static code analysis. It's
important that a tool can be set up to consider a project’s required standards,
risk model, and associated legacy code as well as fit into reasonable schedules
and workflow.

Getting the configuration right saves trouble down the road.
Getting it wrong almost always means long-term failure.

For example, if your team is complaining about false positives, they probably
already started off on the wrong foot with improper configuration.

Integration is important so that the tool fits into the existing workflow,
pipeline, process, and toolchain. A tool that doesn’t play well with others is best
avoided. Integration is important both in the build toolchain as well as into the
developer’s desktop tools and IDEs.

Ease of use is more important than first realized. It's not only about how easy
it is to set up and learn a tool, but also what it takes to work with the output
of static analysis on a day-to-day basis. Ultimately, the sustainability of a static
analysis initiative is dependent on how well it can seamlessly work with the
people who actually write the code and the people who manage them.

Buyer's Guide
Static Code Analysis for Embedded Development

Reporting and analytics are a critical part of static analysis, helping to
understand where risk lies in the code, which warnings are most important, and
which warnings can be safely ignored. Reporting and analytics help the business
to understand trends (improvement over time) and status (will the project
deliver on time?) and even return on investment (is my static analysis tool saving
me time? Money? Bugs?)

Most tools have basic reports like histograms, a list of violation by severity
and category. It’s important to also have risk scores, prioritization models, and
flexible report output that fits your organization’s reporting needs.

Standards and compliance are often key drivers for static analysis. Many
standards require general use of static analysis. Other standards lay out general
principles and some spell out exactly what must be done. An effective solution
supports the standards required without the tedious mapping of tool checkers
to standard guidelines and provides reports that support audit requirements and
clearly illustrate exactly what was done and how.

Modern tools should support an entire standard, not some fraction of it. In
addition, automation of the documentation and reports needed to demonstrate
compliance is a critical feature.

Compliance Overview

- i [e

|

e

Compliance Report

© Not Compliant

FREERUPRPRTPECEL?

sogocagaws

L AT e

Figure 3:
Static analysis compliance
report

sayesoou

Buyer's Guide
Static Code Analysis for Embedded Development

MORE STATIC ANALYSIS TOOL FACTORS

There are other key aspects of static analysis tools that need to be considered
depending on the scale of usage and intended project environment. These
factors should also be considered during the evaluation depending on needs.

»

»

»

»

Scalability determines how well a tool scales to projects large and small.
Here are some questions to ask:

» Is the tool able to handle extremely large amounts of code?
» |s desktop and server-based usage supported?
» How will the tool impact a continuous integration/deployment pipeline?

» Does the tool work with our embedded operating system development
tools and platform?

Flexibility of tools is important for integrating any tool in day-to-day
workflows and pipelines. It's also a key factor in how the tool is being used. If
the focus is on security, for example, can the tool be configured easily across
the organization to focus on security vulnerabilities and standards? Or it may
mean customizing the tools to support in-house coding standards, guidelines,
and checkers.

Centralized and distributed sounds contradictory but it relates to the ability
to support remote operation on a developer’s desktop and simultaneously
supporting centralized analysis on the complete project. Centralized
collection of results, analysis and reporting is important for management and
project status evaluation. A modern static analysis tool needs to support both
of these key environments.

Managing tool output (findings, warnings, bugs, vulnerabilities). All static
analysis tools create lists of warnings. What separates them is how well
they manage these results. Once a static analysis tool has been installed
and configured in a project and all dependency issues sorted out, there is
usually a lengthy report of violations and warnings reported by the tool.
This can be overwhelming.

How these initial reports are managed influences the success of the tool
integration into the project. Not all warnings are critical and don’t need to
be dealt with immediately. The tool must support management of results,
workflows for bug tracking, integration with developer tasks, and automated
prioritization rather than manual triage. Tools must also be able to consider
issues with legacy code and varying policy.

»

»

4 g, s AL BT
foval i 47 0 e WITALL DOTYY © 00 e
Mool ot 43+ wee AL DOTY, &
ld i 41 ¢ mew ACALL, DOTS),
['

Buyer's Guide
Static Code Analysis for Embedded Development

Industry risk models. Support for risk profiles is a good way to
prioritize static analysis findings. Those that are in the high-risk
category should receive the highest priority and those that are
low risk get low priority. SEI CERT categorizes risks into three
levels based on anticipated severity and cost to repair: low,
medium, and high.

CWE has categories around the impact of the particular
vulnerability based on its context. Make sure that your tool
supports these risk scoring models without manual effort.

Artificial intelligence (Al) and machine learning (ML) tools leap
forward productivity and adoption of static analysis. Al solutions
available can review new static analysis findings in the context

of both historical interactions with the codebase and prior static
analysis findings to predict relevance and prioritize the new findings.

» Configuration and filtering modern static
analysis tools should provide the ability to
configure the set of checkers enabled for the
analysis and provide the ability to filter out
results within the respective reporting tool’s
warnings based on warning category, file
name, severity, and other attributes.

Both methods are available to help
developers focus on the types of warnings
that they are interested in and reduce the
amount of information provided at any one
time. Shockingly, some tools have little to no
capability in this area, requiring you to run
their predetermined set of checkers, which
likely don't align with your business needs
and risk.

Appendix A provides more details about each
evaluation criteria.

Learn more tips and training for a successful static analysis deployment in
the whitepaper, Getting Started With Static Analysis.

https://blog.parasoft.com/getting-started-with-static-analysis-without-overwhelming-the-team

Buyer's Guide
Static Code Analysis for Embedded Development

Succeeding with static analysis is more than just a feature checklist. There are
several intangibles that can make or break the initiative, including:

» |s the tool scalable?
» Does the vendor keep up with current standards as they evolve?

» Does the vendor provide support, training, documentation, and generally
work well with their customers?

The selection process below lays out how to incorporate these important
nonfunctional requirements into the evaluation effort.

TOOL SELECTION PROCESS

The first step is to explore the available options and compile a preliminary list of
tools that seem like strong contenders. What are the criteria to consider?

When word gets around that an organization or team is investigating new
tools, they are likely to hear some suggestions. For instance, someone may
recommend tool A because it was used on a previous project. Maybe a star
developer has been using tool B on his own code and thinks everyone else
should use it, too.

These endorsements are great leads on tools to investigate. However, don't
make the mistake of thinking that a strong recommendation—even from a
trusted source—is an excuse to skip the evaluation process.

The problem with these recommendations is that the person offering them
probably had a different set of requirements than exists now. They know

that the tool worked well in one context. However, the current need is to

select a tool that works well in the current environment and helps accomplish
departmental and organizational goals. To accomplish this, it's important to keep
the big picture in sight during a comprehensive evaluation.

When an organization acquires a tool, they are committing to a relationship with
the vendor of choice. Behind most successful tool deployments, there's a vendor
dedicated to helping the organization achieve business objectives, address the
challenges that surface, and drive adoption.

10

It's important to consider several layers of vendor qualification and assessment
across the span of the evaluation process. At this early stage, start a preliminary
investigation by getting a sense for what the vendor thinks of their own tool by
reading whitepapers, watching webinars, and more. Focus on the big picture, not
the fine granularity details.

Points to Consider

» Vision. If the vendor’s vision is not aligned with requirements and goals, or if
the vendor isn't poised to support anticipated growth, it’s best to learn this
early in the process. It's inadvisable to evaluate a vendor who is misaligned
with an organization’s goals unless options are extremely limited.

» Best practices. Learn about the vendor’s recommended best practices for
using their tool. Ask these questions:

» Do they have a coherent strategy for how to deploy the tool across
the organization?

» Wil they evolve the tool as the organization’s needs change?
» Does the strategy align with the team and organization's goals?

Remember that if developers don’t end up using the tool daily, it's not going to
deliver value to the organization—no matter the rich functionality the tool offers.
The lack of apparent best practice doesn’t mean a tool is ruled out (although a
possible red flag.) However, a usage model needs to be developed, which makes
the evaluation and actual deployment significantly more complicated.

» Reputation. Research the vendor and find out the following:
» What organizations are using the tool?

» What do the case studies reveal about its deployment, usage,
and benefits?

» What are industry experts saying in reviews, writeups, and awards?

11

Buyer's Guide
Static Code Analysis for Embedded Development

The next step is to contact the vendors. Full tool evaluations are potentially time
consuming and disruptive, so research is recommended before ever installing a
tool on a developer desktop. You can get answers to many key questions just
talking to the vendor. Consider the topics below during discussions with tool
vendors. See Appendix B for more details about evaluating vendors.

Free and Open Source Solutions (Foss)

An obvious question arises about the use of open source tools for a static
analysis solution. There are few issues with FOSS to keep in mind.

Open source software is often described as “free like a puppy, not free like
beer” meaning that costs are incurred regardless of the free license. Looking at
FOSS solutions is not discouraged, but an evaluation needs to include costs for
important features, services, and support that are lacking. Details about costs
and benefits of FOSS in general are available elsewhere, including issues like:

» Is support available? Will | need it?

» |s the project active? If not, do | want to effectively take it over?
» s it good enough to solve the problems | need it to solve?

» If I'm working with a standard, how much is covered by the tool?

» Will it scale well in an embedded environment? Often tools that work well for
small groups struggle in large organizations.

» |s tool qualification needed for safety or security certification? Using open
source tools in safety critical software development may incur the added
responsibility and cost of certifying the tools to be fit for purpose.

One thing to keep in mind about FOSS static analysis tools is that studies by
organizations such as NIST have shown them lacking. As of writing this paper,
FOSS static analysis tools, although generally easy to use with relatively good
performance, are not as thorough or as complete as the commercial solutions
in terms of precision, coverage of coding standards, and set of comprehensive
warning classes.

When working with standards such as CERT, AUTOSAR, CWE Top 25, and
MISRA C/C++, investigate specifically what items in the standard are covered
by the tool. Currently, FOSS tools have poor coverage for any of the well-known
industry safety and security standards.

12

Buyer's Guide
Static Code Analysis for Embedded Development

Evaluation Criteria

Below are criteria to consider during the technical evaluation of the candidate
tools. These are expanded upon in Appendix A.

»

»

»

»

»

»

»

»

»

Coverage of the necessary industry standards.

Quality of the built-in checkers for the necessary guidelines.

Depth and breadth of analysis.

Practical means to reduce “noise” (ignorable checker violations).
Reasonable number of and approach to false positives.

Acceptable number of false negatives.

Ease of adjusting built-in checkers to suit organization’s policies.

Ease of adding new custom checkers to check unique requirements.
Level of complexity supported for new custom checkers.
EVALUATING PILOT PROJECT RESULTS

When evaluating the results of each pilot
project, the evaluation and final decision making
should boil down to answering these three
important questions.

Will the team really adopt it and use it?

The best tool in the world won't deliver any value
if it's not deployable, developers won't use it,

or it’s too much of a disruption to the project
progress. Deciding how smoothly something can
be adopted requires a comprehensive evaluation
of the tools, integrations, and the vendor's

— o support, services, and training.

Some factors that affect adoption include:

»

»

»

»

»

A robust and flexible checker configuration.
Reducing “noise” in the results.

A workflow that’s practical and repeatable for both your highly skilled
engineers and junior developers.

Scalability beyond the current project and across the organization.

A vendor committed to working with your organization to achieve success.

13

Buyer's Guide
Static Code Analysis for Embedded Development

The combination of all these factors work together to make the difference
between a good tool and a great tool for an organization.

Often, developer adoption boils down to whether they recognize the time saved
in the long run. That includes the perception of extra work required, which, at
minimum, is reviewing and responding to reported violations. For instance, if the
tool identifies the root cause of issues that have been troubling them—or alerts
them to issues that they know will cause headaches later—they are much more
likely to embrace it as a help rather than reject it as a hindrance.

Will it address the problems the organization and team are trying to solve?

Deployment of new technologies requires a focus on what problems are trying
to be solved. Additionally, the expectations of the new technology to address
the problem should be realistic. If you simply assume that static analysis will
improve whatever software issues your team is experiencing, then you should
expect to be disappointed.

An example of how a trial or evaluation can fall apart is when an organization
rushes to solve a pervasive problem, turns on all the checkers (beyond typical
default settings) in the static analysis tool, gets overwhelmed with warnings, and
fails to solve the original problem.

This is either a mismatch between expectations of what static analysis tools
can do or lack of understanding about how these tools should be introduced
into a project.

It's also Important to quantify success and ROI. It’s important to determine
ahead of time how success is measured: lost time, missed releases, or field
support cases. The ROl you get should be measured by addressing the problems
for which you chose static analysis.

One common trap to avoid is the idea to assess value based on how many
violations static analysis finds. Any well-structured deployment of static analysis
will have more violations initially than later as the code comes into compliance.
This doesn’'t mean the tool is less valuable. In fact, the less findings against the
same checkers is indeed proof that the tool is doing its job. It's not just finding
bugs. It's changing developer behavior by getting them to write better code.

Is this a long-term solution?

Evaluations are time consuming and require team commitment. Full
deployments require more time and commitment. Settling for a tool that’s “good
enough for now” might save money in the short term but prove extremely costly
in the long term.

14

Buyer's Guide
Static Code Analysis for Embedded Development

Every software development organization needs to grow
and evolve to remain viable today. It's not a question of if,
but how. Whether the organization is trying to advance
quality by adopting additional software verification
methods, complying with evolving corporate governance
policies, or extending into new types of development
projects, tool requirements will change.

The ultimate question when evaluating tools is: Will this
tool and vendor in the long run help reach the project,
organization, and company goals, or hold them back?

Establishing a workable and sustainable quality process
takes time. Starting this path early prepares the organization
for the pressure of delivering software at a faster pace or
improving quality. Procrastination results in efforts being
too little, too late.

SUMMARY

Evaluating software tools for adoption and integration into a company’s
software development process is a time consuming yet important practice.
It’s critical that organizations have a clear understanding of their goal and
motivation behind it when adopting any new tool, process, or technology.
Without an end goal, success is indeterminable.

Static analysis tool evaluations often end up as a “bake off” where each tool is
tested on a common piece of code and evaluated on the results. Although this

is useful, it shouldn't be the only criteria used. Technical evaluation is important,
of course, but evaluators need to look beyond these results to the bigger picture
and longer timeline.

Evaluators need to consider how well tools manage results
including easy-to-use visualization and reporting.

Teams also need to clearly understand how each tool supports claims made in
areas like coding standards, for example.

The tools that vendors use themselves need to be part of the evaluation. A
vendor who becomes a partner in your success for the long haul is better than
one that can’t provide the support, customization, and training the team requires.

Most important of all is how each tool answers these three key questions:
» |s the team going to use the tool?
» Is the tool the solution that will help the organization reach its goals?

» |s the tool a long-term solution to problems that the team faces?

15

Buyer's Guide

Static Code Analysis for Embedded Development

TAKE THE NEXT STEP

Learn how static analysis solutions for embedded software development can
streamline your testing process. Contact one of our experts today to request
a demo.

Parasoft helps organizations continuously deliver high-quality software with its
Al-powered software testing platform and automated test solutions. Supporting
the embedded, enterprise, and loT markets, Parasoft's proven technologies
reduce the time, effort, and cost of delivering secure, reliable, and compliant
software by integrating everything from deep code analysis and unit testing to
web Ul and API testing, plus service virtualization and complete code coverage,
into the delivery pipeline. Bringing all this together, Parasoft’s award-winning
reporting and analytics dashboard provides a centralized view of quality,
enabling organizations to deliver with confidence and succeed in today’s most
strategic ecosystems and development initiatives—security, safety-critical, Agile,
DevOps, and continuous testing.

“MISRA”, “MISRA C” and the triangle logo are registered trademarks of The MISRA Consortium Limited. ©The MISRA
Consortium Limited, 2021. All rights reserved.

16

https://www.parasoft.com/
https://www.parasoft.com/request-a-demo/

Buyer's Guide
Appendix A: Tool Evaluation Capabilities & Criteria

Appendix A: Tool Evaluation Capabilities & Criteria

TECHNICAL EVALUATION CRITERIA

Coverage of the needed checkers. The evaluation should
focus on the checkers that the team and organization are
willing to enforce—both now and in the foreseeable future.
Enforcement may mean stopping the release or deployment
of an application that has violations of a particular checker.

Quality of the built-in checkers for necessary industry
standards and guidelines. Evaluate each tool’s checker
accuracy for the guidelines to be enforced. Although many
checkers initially appear useful, the tool under evaluation
may report so many false positives (incorrect warnings)
that this guideline and checker combination is not useful.
The lack of checker precision may be a result of poor
implementation, or it could be ill-suited for verification by
static analysis. Other verification techniques may work
better. In terms of the tool evaluation, the existence of a
checker to support the needed guidelines isn’t enough by
itself. Precision matters.

Coverage of the needed industry and corporate standards.
Evaluate each tool on the vendor's support for the common
industry standards like CERT, AUTOSAR, CWE Top 25, SEI
CERT C, and MISRA C/C++. Even if one of these standards
doesn’t apply now, it could in the future. Also consider
support for compliance to functional safety standards like
ISO 26262, 1SO 61508, ISO 62304, EN 50128, and others
like DO-178B/C. Be sure to investigate how deep the
support is for each standard. Evaluate each tool on how
well it supports audits required by these standards and the
vendor’s experience in each of these areas.

Depth and breadth of analysis. Evaluate each tool on
depth of analysis such as support for advanced control
and data flow analysis for improved results in finding
critical bugs and security vulnerabilities. Also evaluate
each tool on its breadth of analysis such as support for
so-called “code smells”, industry and de facto coding
standards and guidelines, and proactive checkers that
prevent bugs from occurring in the future. An equally
important criteria is the scope of the analysis. Ideally, it
should be the entire program.

Practical means to reduce noise (ignorable warnings). The
more noise is reported, the more likely team members are
to ignore all warnings, including important ones. Reducing
noisy reports can be accomplished by disabling checkers,
modifying checker parameters, suppressing checkers in

specific contexts. Tools that produce too much noise might
increase the burden of the tools on the development team.
It also impacts the CI/CD pipelines that rely on automation
to provide go/no-go build and deploy decisions with
minimal human review.

Reasonable number of false positives. There are broad
interpretations of false positives, which, by definition,
mean warnings reported are incorrect and don't violate the
guideline being checked. These also include the following:

» Correct warnings for checkers that developers don't like
or may disagree with.

» Misunderstood checkers.

» Areal error that has a mitigating circumstance missed by
the analysis.

» Checkers that are ignored in certain contexts such as in
legacy code.

Regardless, false positives, whether meeting the strict
definition or not, are the most likely reason for users to
dislike using static analysis tools.

To improve the perception of the tools, it’s important to
understand the root cause of false positives. Verifiable
incorrect warnings can often be traced to incomplete
analysis due to missing dependencies. Like a compiler, static
analysis tools require the full context of dependencies to
perform precise analysis.

Other issues such as checkers that the team doesn’t
agree with, should simply be turned off. Tools should

be evaluated on how they can handle both “real” false
positives and usability issues with the warnings produced.
Configuration options, for example, go a long way in
improving tool output.

Acceptable number of false negatives. False negatives

are instances where code violates a checker, but the

tool misses it, and no warning is reported. With all static
analysis tools there is a trade off between producing a low
number of false positives and missing real bugs and security
vulnerabilities, the false negatives. There is balance needed
between the number of false negatives and false positives
since missing real bugs is a concern. Each tool should be
evaluated on more than false positive rate alone. Missing
important warnings is of equal concern.

17

Ease of adjusting built-in checkers to suit team and
organization policies. Each tool should be evaluated
on how simple it is to adjust checkers to suit team

and organizational requirements. Also consider if the
checker modifications can be done without scripting or
complicated configuration.

Ease of adding new custom checkers. Evaluations should
include modifying checkers and creating completely new
checkers (or ones based on existing checkers) via scripting
or other provided techniques such as APIs. Evaluate

the complexity of creating new checkers and how well

it's supported by each tool. Does the tool provide a Ul

for creation and customization? If a complex process is
required or an API, how well suited is that to the team’s
needs? If consulting or professional services are required,
be sure to include the estimated cost.

TOOL SCALABILITY CRITERIA

Scalable usage model. Scaling to current and future
requirements is a key criterion for tool evaluation. Not

all static analysis tools are designed for large scale
deployment and analysis. Consider whether the vendor’s
proposed usage model (in terms of deployment, updating,
and training) scale to current requirements and the
future. Does the product licensing model work with the
organization’s goals?

Ease of updating the tool configuration across the entire
team or organization. Adopting static analysis organization-
wide requires the ability to deploy the tool equally to each
developer. Evaluate the tool and the vendor’s process for
deploying and updating the tool configuration across all
applicable tool installations.

» Is there a way to guarantee that everyone is using the
correct configuration?

» s there a role based access control to ensure that only
the appropriate people, like team leads, modify the
checkers and configurations?

» Can the deployment of the tool support an audit when
developing safety-critical software, for example?

Buyer's Guide
Appendix A: Tool Evaluation Capabilities & Criteria

Ability to support tiered configurations. Each tool

should be able to enforce a fixed set of quality policies
organization-wide, but still be able to support customization
to suit the needs of specific projects and teams.

Extensibility. Each tool should be evaluated on how well
it supports customizations.

» |Is there an API or scripting support? If so, is the API
well documented?

» Are there ways to automate and integrate through
programming APlIs, CLIs, and REST APIs?

Support for target operating systems, tools, and other
languages and verification methods.

» How well can each tool be extended to support other
best practices such as peer code review support, unit,
integration, and system testing?

» Does the tool support all the programming languages
that the organization requires?

» Does the tool work with the target tool chain such as
cross compilers, embedded operating systems, board
support packages, and system libraries?

Speed of analysis. For large code bases, the speed of
analysis becomes an important factor in tool evaluation.
Consider whether there is a significant discrepancy in the
desktop analysis speed between the different tools. Does
the tool support different modes of analysis such as fast
checkers on the desktop and more in-depth analysis in
batch mode?

Be sure to measure speed in terms of the end-to-end
process. Consider whether developers need to open
another tool, run it, then bring results back into their
original environment. For automated/build execution,
speed is mostly a factor that the analysis completes within
the allotted timeframe. Consider whether the analysis
requires additional servers and the cost therein.

Cloud deployable. If applicable to your development
ecosystem, does each tool integrate with cloud services like
AWS, Microsoft Azure, and others to run the analysis? Is it
possible to set up servers in a private cloud?

18

CONFIGURATION EVALUATION
CRITERIA

Centralized configuration. Tools under evaluation
should support configuration that can be set by team
leads and distributed to developers on the team to
support a common set of guidelines and standards to
follow. Local configurations can add to this but shouldn’t
contradict the project-wide settings. Tools should
support grouping and categorization of settings for
different purposes such as new code versus legacy
code. Warning severity should be customizable both

at configuration time and in warning reports.

Custom checkers. Customizing checkers should be
supported as well as the ability to distribute these custom
checkers to the rest of the team easily and automatically.
Creating new checkers should be straightforward if based
on existing checkers. An API should be available for more
sophisticated customization.

Support for inline and external suppressions. Warnings
need to be suppressed in the right circumstances and
developers should have the flexibility to deal with this
directly in the code with an inline expression or via the tool
either in the IDE or via a web interface at the project level.

INTEGRATION EVALUATION
CRITERIA

IDE integrations. Evaluate how each tool supports the
team’s development environment.

» If not supported, what is the path to support?

» Does the integration meet the required usage for day to
day workflows?

Cross compilation, build mode, target operating systems
support.

» Does the candidate tool support command line
operation?

» Can the analysis be invoked in a batch mode?
» How are results from batch mode handled?

» Does the tool work with the target operating system
and tool chain?

» Can it easily be integrated into a complex embedded
system build environment?

Buyer's Guide
Appendix A: Tool Evaluation Capabilities & Criteria

Cl/CD pipelines.
» Does the tool work in your existing toolchain?

» Can it be used as a gate for making decisions to
promote or not promote your code in a true continuous
environment?

» Does it work well in a distributed execution
environment?

Warning reporting/review mechanisms. Evaluate each
tool on how easy it is to understand warnings and the
reports generated.

» Are they extensible/customizable, if needed?

» Do the reports show historical information and trends
on a time or build-by-build basis, or are they a snapshot
in time?

» Are there additional analytics like alerts for areas of
concern, coding standard compliance, and guidance on
next steps?

Connection to bug tracking. Evaluate the tools on their
integrations to other critical systems in the development
environment. Bug tracking is a common integration with
static analysis since warnings can be real bugs that need to
be tracked and fixed. For example, does the tool support
integration to JIRA?

Connection to requirement management tools. Certain
requirements may need tracking into static analysis, for
example, nonfunctional requirements for security or
adherence to standards.

Automated assignment of errors to responsible
developers. Candidate tools are evaluated on how warnings
are managed.

» Are issues detected by batch mode tests assignable to
the developer who wrote the related code?

» s it possible to distribute the information to their
desktop with direct links to the problematic code?

» Can violations be reassigned if needed?

» Can the violations assigned to one developer be mapped
to another when someone leaves the group?

19

Legacy code identification and support. Tools should be
able to deal with legacy code, using different configurations
for new, existing, and legacy code. Consider whether each
tool can apply a configuration unique to each category of
code. Can it identify and ignore all legacy code if needed?

Checker severity customization. Evaluate whether each
tool can change warning severity levels to help the team
focus on the most important error types.

Ability to suppress warnings. Evaluate how well each tool
supports suppression of warnings.

» Can a checker be enforced in general but be exempt in
certain instances?

» Are suppressions shared across the team?

» Can they be defined in the code so everyone working on
or reviewing the code can see them?

» If warnings are suppressed when developing with
standards such as MISRA and CERT C, is there a
mechanism to document them as deviations?

Automated violation correction. Can the tool refactor code
to fix any of the violations you care about? If 100 checkers
matter to you and tool A can fix 50 of them while tool B can
fix none of them, that’s a huge benefit for tool A.

On-the-fly analysis. Evaluate whether tools can analyze the
code on demand inside the IDE before it's even checked
into source control.

» How are these results handled?

» If a warning remains in the code after check-in, does this
result show up in the batch/ build analysis?

Risk models. Does the tool under evaluation help
prioritize warnings by risk profile? Does the tool support
common risk models such as CERT? Are these risk models
configurable?

Buyer's Guide
Appendix A: Tool Evaluation Capabilities & Criteria

EASE-OF-USE EVALUATION
CRITERIA

Integrated and navigable documentation. Evaluating each
product’s documentation is an important part of
the evaluation.

» Is the documentation easily accessible?

» s it easy to navigate? Is the documentation available
right in the IDE?

» Is each warning properly documented?

» When a warning is issued, is it easy to find the
documentation for it?

Documentation should contain code examples for each
error. For coding guidelines and checkers, examples that do
and do not violate the checker should be illustrated.

Online training. Training is important for adopting

any tool. Evaluating a vendor’s training capability is
important and so is the accessibility of training after initial
deployment. Onlineg, in person, and video based training
should be available.

Tool usability. Ease of use should encompass all aspects of
the tool’s usage.

» s it easy to use at the developer level in the IDE?

» s it easy to assess the warning reports? Is the web
interface easy to navigate?

» Does the tool integrate into daily workflows with little
impact on developer productivity?

» How easy is customization?

» Are developers picking up tool usage easily?

There are many aspects of usability, but in general, users
will provide feedback on their experience.

20

REPORTING AND ANALYTICS
EVALUATION CRITERIA

Configurable dashboards and reports. Reports and
dashboards are useful for condensing large amounts
of data into an easy-to-understand format. Tools
should be evaluated on the quality and configurability
of their reporting.

» Are dashboards provided?

» How does the tool support high-level management
of results?

» Are dashboard widgets configurable?
» Are data sources customizable?

» Are reports linkable to other activities such as unit
tests, API, and Ul tests?

Support for risk models. Are results reported in relation to
industry standard risk models? For example, SEI CERT coding
standards include a risk model and violations can be mapped
to this model, which helps with evaluation and prioritization.

Warning history and analytics. Tools should support
historical information for warnings and, preferably,
analytics that provide further insight into trends.

» Can warnings be traced to a particular build or file
modification?

» s it possible to see the life of a warning over time?
» Are trends visible in the dashboard?
» Are these analytics configurable?

Report output. Tools should support reports that can
be printed or used in an official manner as a record
for milestones.

» Does the tool support PDF report export?

» Is there an open API for custom output options?

Buyer's Guide
Appendix A: Tool Evaluation Capabilities & Criteria

STANDARDS AND COMPLIANCE
EVALUATION CRITERIA

Built-in support for common security standards. If one of
the goals for static analysis adoption is improving security
or adopting a secure coding standard, then it's reasonable
to expect that the tool is being evaluated to support
common standards. For example, does the tool support
CWE/SANS Top 25, CERT secure coding standards?

It's also important to determine how much coverage each
tool has of each standard for which support is claimed. For
example, sometimes vendors have MISRA C configuration
that only covers a subset of the guidelines.

Built-in support for common safety standards. Similarly, if
the intended use of the static analysis tool is on a safety-
critical project, it’s reasonable to expect support for
common standards.

» Does the tool under evaluation support MISRA C and
MISRA C++, if required?

» Does the tool support AUTOSAR C++14, if necessary?
» What coverage of these standards does each support?

» How is compliance, reporting, and checker violation
handled?

Mapless violation reporting and configuration. A common
way to “support” common standards in static analysis
tools is to map existing checkers into each standard.
Developers must refer to this mapping to determine
which checker is being violated by each warning.

This extra mapping layer increased the tedium of
enforcing and compliance with standards. During tool
evaluation, it's important that the evaluation considers
how easy it is to relate warnings with the standards
needed and how easy each tool is to configure.

21

Supports multiple modes of checkers. During the
evaluation, some vendors may tout the error detection
capability but it’s important to consider preventative
methods as well.

»

»

»

Does each tool under evaluation do “code smell”
detection?

Are their checkers designed to detect poor software
coding techniques ahead of time?

How well is the defect and security vulnerability
detection complimented by preventative checkers and
coding standard support?

Common industry metrics with thresholds. Static analysis
tools are ideal for collecting software metrics during their
analysis. In fact, common metrics such as cyclomatic
complexity may be collected by default. If metrics are
important to the organization, then the evaluation should
consider how well each tool supports metrics.

»

»

»

»

»

Are the metrics included in reports and dashboards?
Can thresholds be set for each metric?

Does exceeding metrics threshold raise a warning?
How easy is it to create new metrics?

Are metrics configurable?

Buyer's Guide
Appendix A: Tool Evaluation Capabilities & Criteria

22

Buyer's Guide

Appendix B: Vendor Evaluation Criteria

Appendix B: Vendor Evaluation Criteria

VENDOR CRITERIA

Product stability.
» Was the product stable?

» Some issues are inevitable such as memory management,
a checker not firing correctly, and so on, but does the big
picture demonstrate a commitment to quality?

Defect reports.
» Were reported bugs resolved in a reasonable time?
» Were showstoppers fixed promptly?

» Were less significant issues addressed or at least
scheduled for a future release?

Feature requests.

» How were your feature requests handled? Try to push
at least a handful through as a test.

» How does the vendor proceed if you provide a list of
feature requests that make business sense and would
benefit the entire user base?

If the vendor works systematically at the feature requests
and implements them quickly, it’s a sign that they have
robust development resources and are willing to invest
R&D into improving the product.

Overall support. How promptly are your questions
answered by support? As with feature requests, don't

be shy. This is another important test. If you can't get
reasonable response times for just a few users in the initial
evaluation period, chances are you won't have adequate
support for a global deployment.

Vendor viability. An investment in tools is also an
investment in the vendor. Having confidence in their
longevity and prosperity is important. Embedded systems
have long lifespans and it's critical that vendors are available
for support and maintenance for these long lifecycles.

» How long has the vendor been in business?
» If they're new to the market, are they well funded?

» Do they have a good track record of customer support
and success?

IS YOUR VISION IN SYNC WITH THE
VENDOR'S?

Initiate the conversation to understand the vendor's
vision for how the tool would be deployed and used in an
organization’s environment.

Follow these steps to get the conversation started.

1. Explain the problems that static analysis is required to
address. Ask the following questions:

» Does the vendor agree that static analysis is the
best path to solving these problems?

» Are other strategies suggested?

» Can the vendor help set objective criteria for
assessing whether their static analysis tool
addresses the required problems?

Set goals that can be objectively measured from the start.
It helps later when assessing whether the tool is helping to
achieve the expected results.

2. Describe the target environment (project size, policies,
infrastructure, and so on). Ask how the vendor has
helped other organizations in similar situations.

3. Explain the team’s vision for tool deployment, adoption,
and usage over the next two to three years. Ask the
vendor:

» Does this seem feasible?
» How are mismatches handled?

» If there are significant mismatches apparent at this
point, what kind of resolution is proposed?

It's reasonable to expect the vendor to accommodate new
feature request that could benefit their other customers.
There's widespread value in integrating the tool into a
development environment that many other development
organizations happen to use, like a problem reporting
system or a requirements management system. Such
integrations can lead to a significant advantage to them.
Be aware that some vendors purposely expose their APl so
that users can extend the product for their own needs.

23

Below are some signs and checkers.

»

»

If the vendor has issues with what you're trying to
accomplish, do they offer a convincing explanation

of why it may not be a wise strategy and offer an
alternative that makes sense? If a vendor is willing to
provide valuable feedback—especially before you have
committed to a contract—it’s a positive sign of a good
working relationship.

If the vendor seems to bend over backwards to
accommodate any request, like agreeing to implement
functionality that isn’'t central to their capabilities and
won't appeal to other customers, then this diminishes
their credibility. How will the tool evolve if they are willing
to accommodate anything and everything? And what gets
left behind in the rush to add every feature request?

Buyer's Guide

Appendix B: Vendor Evaluation Criteria

24

