
A Customer’s Journey

Conquering Software
Development Testing

Challenges in the
Face of Change

Conquering Software Development Testing Challenges in the Face of Change
A Customer’s Journey

2

A STRATEGY CHECKLIST TO HELP OVERCOME YOUR
SOFTWARE DEVELOPMENT TESTING CHALLENGES
The motivation to write about data orchestration and service virtualization in the
first place came as a reflection of the challenges we had to overcome when deciding
what to test and when for ING Mortgages Netherlands. This is especially relevant
when immersed in a complex and heavily integrated enterprise environment.

With change and releases accelerating, it was necessary to revisit our approach
to testing and come up with ideas about how to prevent defects sneaking into
production.

Financial services are dynamic. Multiple channels and a broad span of technologies
— both old and new — must work together under highly prescriptive regulations.
Delivering high-quality applications to the lines of business requires testing
software early and often. All while managing a complex array of dependencies and
integrations of data and interfaces.

Herminio Vazquez is an IOVIO consultant in the ING Netherlands Mortgages Tribe
in a specialized squad named Data Rangers. In this follow-up piece to Testing Alone is
Losing the Battle Against Change, he offers a strategy checklist to help you overcome
your software development testing challenges. It's inspired by how ING Mortagages
took full control of their test environments with service virtualization.

https://www.linkedin.com/in/herminio-vazquez-701bb0/
https://iovio.com/contact-us/index.html
https://blog.parasoft.com/testing-alone-is-losing-the-battle
https://blog.parasoft.com/testing-alone-is-losing-the-battle

Conquering Software Development Testing Challenges in the Face of Change
A Customer’s Journey

3

We recognized the problem and asked a question, perhaps you can
ask the same question to prepare for the checklist.

CAN YOU TEST YOUR BUSINESS APPLICATIONS
AT ANY GIVEN POINT IN TIME?

And for us, the answer was clear: NO.

Some of the reasons were due to:

 » Restrictions on external applications or environments.

 » The inability to consume certain data sets being concurrently used
by other teams.

 » Waiting times on the release traffic control to allow our testing
window landing in an environment.

There was no chance to launch a full cycle of testing on-demand at the press
of a button, or even just at the call of “Let's Go, Team!”

This event triggered me to think of those many times I have visited IKEA to
purchase that extra thing needed at home — walking through its corridors and
finding those comfortable chairs displayed in crystal cubicles with a robotic arm
pushing them down and stressing their wooden structure. I also remembered
a gentler mechanic setup for continuously opening and closing drawers from a
cabinet. What I was thinking is that IKEA produces home furniture, nevertheless,
they have robots to test.

At this point, I know what you’re thinking: "Welcome to the 21st century, son. This
is called test automation and even your neighbor's son knows at least three test
automation tools to get the job done nowadays.” Indeed, I agree that the testing
industry has brought automation so much forward that it’s unthinkable for software
delivery teams to operate without it.

But automation is not the catch here. It’s the idea that for every chair produced,
a sample population of them will have to get the robot set up, mounted, running,
and available for testing at any given point in time so that testing will never be
compromised. They were virtualizing people sitting continuously in their chairs!

Back to the real world. If software is not chairs, what are the common denominators
of software delivery teams that prevent them from accelerating delivery? And how
does recognizing those common denominators help you determine whether your
testing strategy is ready for the word continuous?

Conquering Software Development Testing Challenges in the Face of Change
A Customer’s Journey

4

Well, no worries. This article presents a curated list of symptoms and their
associated (suggested) solutions, as mentioned in the previous article, to change
the shape of testing as we know it.

THE UNTOUCHABLES VS. THE MINIONS

When your environments become disposable and not indispensable, then you will
be ready for running tests at any given time.

If something is holding you back from destroying an environment, that means that
you don't have enough control, and therefore the conditions for your entire testing
strategy could be compromised.

The motivation to lose the fear of your environments — as if they were gangsters
or members of another league that nobody could touch — is the main challenge
here. We encourage you to visualize them as small little toys that can be brought
in or out of the picture with no drama.

If you think about it, there is a current approach to dispose of entire technology
stacks, which is containers. Removing dependencies with other environments
require you to virtualize those interfaces and manage the data dependencies
inside them.

The list goes like this:

 » The Untouchables vs. The Minions | Environments

 » Connection Flight vs. Air Bridge | Scheduling

 » Playground vs. Laboratory | Scope

 » Frozen vs. Fresh | Process

 » Gates vs. Policy | Trust

 » Consume vs. Produce | Data

 » Talent vs. Tooling | People

Conquering Software Development Testing Challenges in the Face of Change
A Customer’s Journey

5

Virtualizing environments is a strategic decision that spans from testing to
hardware, software licenses, and maintenance. It was hard for us to convey that
message to our stakeholders, as they understood that no more conceivable
budget could be allocated to testing tools. However, when we made clear that
environments and configuration will be side benefits, our simplification approach
landed more gently.

Reducing the need for one more integration environment in a complex enterprise
could bring one zero less in the monthly bills.

Suggestion
» Virtualize services.
» Containerize when possible.
» Work with smaller data sets.
» Don't let complexity prevail.

How to Get Started?
» Identify data flows.
» Observability and tracing.
» Service catalog.
» Schema registry.
» Enterprise canonical model.

CONNECTION FLIGHT VS. AIR BRIDGE

Opportunities are commonly associated with doing the right things at the right time.
In software delivery, this is not an exception. Time is of the essence and bearing the
cost of waiting is something that all software delivery teams must deal with when
removing roadblocks in their delivery pipelines.

Readiness requires planning and scheduling to be on a continuum. No booking of
time or resources should be required. It means access to everything you need to go
from A to B in your testing, without disruptions.

Virtualizing
environments is a
strategic decision
that spans
from testing
to hardware,
software licenses,
and maintenance.

Readiness requires planning and scheduling
to be on a continuum. No booking of time
or resources should be required. It means
access to everything you need to go from
A to B in your testing, without disruptions.

https://blog.parasoft.com/environment-based-software-testing

Conquering Software Development Testing Challenges in the Face of Change
A Customer’s Journey

6

Working as a consultant requires a lot of traveling, and my commute to the
workplace in many occasions required me to wake up early on Mondays and take an
airplane to the destination city of my project. I remember when the concept of air
bridges was born — when commutes between certain cities became more frequent,
and no bookings or reservations were required, you could just show up and travel.

Air bridges are a great concept for continuous testing because as soon as you
think about connections or dependencies, then you automatically lock your strategy
to work on one thing at a time or establish hard dependencies that will end up in
waiting times.

Scheduling flexibility does not mean a lack of planning. What it means is the ability
to perform any activity without reservations. Boarding the plane still requires
a queue, even for those world travelers and families going first.

Frequently, a delivery team associates a time window for a certain activity,
like running regression suites unattended during the night, as we do in our team
(4 times to develop confidence and gather more data). This is just a preference,
but it shouldn't act as a mandate, otherwise, you lose your ability to test at any
given time.

I need to agree that this is not easy, and by no means will I attempt to provide a
trivial solution that can be bullet-pointed. We are still finding ways to time travel
certain business processes that need a lot of data preparation or dependencies
to be able to run them on the fly as opposed to orchestrating the entire data or
process dependencies every time. An example of this in the Mortgage application
ecosystem is to simulate signed offers moving to contracts without the data
collection ceremony.

Suggestion
» No timesheet for testing.
» Environment isolation.
» Self-provision of data.
» Business process time travel.

How to Get Started?
» Process facets.
» Identify master data sets.
» Canned process data set.

Scheduling flexibility does not mean a lack
of planning. What it means is the ability to
perform any activity without reservations.

Conquering Software Development Testing Challenges in the Face of Change
A Customer’s Journey

7

PLAYGROUND VS. LABORATORY

Embarking on the advantages of continuous testing may lead to a lot of exploration
that, if not prevented, could lead to reduced time for collecting the benefits of it.
Not knowing what success looks like, is what I refer to as a playground. However,
if success looks like removing a data dependency or simplifying one component of
the architecture then we are talking about the tangible benefits of your continuous
testing approach.

Don't let the fun of creation, derived by impersonating other systems, drive you
away from your main focus. Which is to enable continuous testing.

I remember when we containerized and deployed our first set of services. We
were only two people working full time in the authoring of the virtual assets and
their data requirements. However, we worried about other members being able
to support us and created requirements to a larger team at the time, without any
special need. In reality, the main objective was to expand the coverage of our
virtual assets and managing data requirements for each of them. Scaling up the
virtual solution proved to be the wrong decision at that time.

At a later stage, we found that keeping the solution simple, and expanding the
number of virtualized services paid better dividends than exploring auto-scaling,
authorization for certain services, notification on renewal of certificates, and many
others. All these things when looking from outside, were one-off activities that
were not necessary to keep our testing moving forward to change, instead, they
increased the technical testing debt.

Our learnings in this area, of playground against laboratory, is to allocate resources
and time with clear objectives. Set a number of services virtualized over time, and
data dependencies removed across the business process. If this is not feasible, or
difficult to estimate, then most likely the benefits of this entire approach will never
surface as enablers for faster delivery or facilitators of continuity.

If your team is new to the concept of virtualization, then spend some time setting a
minimum set of guidelines and conventions with a minimum bank of knowledge and
references, so that everyone on your team can understand the ultimate objective of
your continuous testing strategy.

Suggestion
» Create a virtualization matrix.
» Allocate time and resources to it.
» Set expected coverage in time.
» Baseline virtualization activities.

How to Get Started?
» List critical interfaces.
» Time-box virtualization activities.
» Break complex ones into smaller pieces.
» The job is finished when positive and negative cases are covered.

https://blog.parasoft.com/deploying-static-analysis-and-unit-testing-in-containerized-environments-part-1

Conquering Software Development Testing Challenges in the Face of Change
A Customer’s Journey

8

FROZEN VS. FRESH

Freezing releases will never contribute to a continuous testing approach.

Parallel streams of work are the new norm, and with it comes to the ability
for everyone and everything to work seamlessly, without disruptions. Time to
ax human semaphores.

If the term freeze is around your delivery pipelines, it is time to rethink about
enabling any type of activity associated with software delivery in concurrent
mode, which boils down to operating in smaller and less monolithic pieces.

Everyone should be able to access early releases or beta versions of software
without being stuck into the Dev-Test-Acceptance-Production highway. And that
fresh software produce is always at reach for teams conducting the activities
needed to validate if it meets its purpose.

Fresh releases mean configuring pieces of your environment
dynamically, or at speed. This modularity plays a key role
in not blocking the pace of fast releases. This also brings
new challenges, like the ability to deploy configurations or
maintain a service mesh to route traffic from one point
to another with no configuration or deployment changes.
This infrastructure level capability is fundamental to keep
your test assets in ready mode all the time.

An example will be thinking in endpoints, where version
1 and version 2 of that endpoint are accessible to an
environment or team, without having to target a full release
on an environment.

Suggestion
» Smaller environments.
» Service proxies.
» Zero-config routing.

How to Get Started?
» Automated deployments.
» Branch policies in repositories.
» Configuration-only builds.

Figure 1: Don't get stuck on the
Dev-Test-Acceptance-Production highway.

Everyone should be able to access early releases
or beta versions of software without being stuck
into the Dev-Test-Acceptance-Production highway.

Conquering Software Development Testing Challenges in the Face of Change
A Customer’s Journey

9

GATES VS. POLICY

For this idea, there is not much to say. The end of the Change Advisory Board as a
group of humans deciding on the risks associated with software delivery is certainly
becoming more inclined to an algorithmic risk policy instead.

Stages and preconditions are built-in features in modern continuous delivery
pipelines, which implement policies responsible for assessing risk, adhering to a
standard process, or for compliance. If your delivery is subject to audits or a set
of controls, then it is necessary to digitalize them all together with all the assets
mentioned so far in this checklist.

For us, semantic versioning and tagging were strategies that helped us to maintain
compliance and traceability across releases, and especially helped us triangulating
anomalies or simplifying the eventual root cause analysis when failures occur.

Your target for policymaking is to reverse engineer your decisions, and most of all,
to establish a computation of risk. If the risk is in the hands of individuals and their
gut feeling, most likely the outcome will be arbitrary, and its result will consume
more time, resources, and slow down change.

Testing at any given point in time requires making decisions consciously and
not arbitrarily.

Suggestion
» Semantic versions.
» Branch/release tagging.
» Digital risk policies.
» Reversible decision process.

How to Get Started?
» Create risk policies (risk = impact x probability).
» Compute risk.
» Back up decisions with data points.

CONSUME VS. PRODUCE

This is perhaps the most well-known artifact for continuous testing. There
are limited insight and low probabilities to execute testing activities without
the right data sets.

Typically, software delivery teams resource data extracts from production
environments. However, this approach leads to additional steps like depersonalizing
data sets due to acts on data protection or data governance. In any case, you
guessed it well, it takes time, and it can block your ability to test.

https://blog.parasoft.com/requirements-management-and-the-traceability-matrix
https://blog.parasoft.com/requirements-management-and-the-traceability-matrix

Conquering Software Development Testing Challenges in the Face of Change
A Customer’s Journey

10

One kind reminder is that your systems of record hold the so-called good data,
data that passed through the checks and validations (typically implemented in
middleware or various layers of your application).

What this means is that you still will have to work out on the generation of dirty
data or data that can help you trigger the not-so-happy flows, or those exercising
the error handling or exception handling of your applications.

In any case, we are talking about the ability to produce data at the lower cost, and in
a reasonable time, so that testing activities are not influenced by this dependency.

For regression test suites, a core set of data is a viable solution to reduce
preparation time, and move testing activities at a rapid pace. Consolidating such
a data set is the result of once more, minimizing and modularizing areas of your
application and limiting data requirements for specific business scenarios.

I guess you want to think about your team as a producer rather than as a
consumer of data.

I acknowledge that the production of large data sets might be time-consuming
or not feasible in the skill sets or toolsets available to your teams, hence the
idea of reducing the scope of the data requirements according to the minimum
requirements of your interfaces or systems of record.

A gentle word of caution to stress that the quality of your data sets influences
the quality of your test results. And it is through test results that you incentivize
confidence, knowledge, and trust.

Suggestions
» Test automation for data generation.
» Synthetic data sets.
» Don't forget about error handling data.
» Minimum data requirements.

How to Get Started?
» Complement extractions with small self-production.
» Services with smaller data sets.
» Fake data generators (people, numbers, and so on).

A gentle word of caution to stress that the quality
of your data sets influences the quality of your
test results. And it is through test results that you
incentivize confidence, knowledge, and trust.

Conquering Software Development Testing Challenges in the Face of Change
A Customer’s Journey

11

TALENT VS. TOOLING

At some point in your journey, your rockstars will start challenging you. Change will
always bring resistance and friction. Whilst some members will foster change, it will
also be an arguing catalyst for emerging experts and seasoned professionals.

Your approach may be challenged by members with crafty mindsets, arguing that
programmatically they can produce similar results in less time, without having to
resource the right toolsets. Of course, if all you have is a hammer, everything looks
like a nail.

As mentioned previously, creating a mock is not rocket science. Orchestrating
a set of virtual services, controlling and versioning data sets, and scaling the
solution at a press of a button is what is called operationalizing service
virtualization which is far from putting three lines of code, with a REST
endpoint that does one thing.

Figure 2: This data model is automatically generated by recording traffic for a virtual service. It shows a data object, item-2, with children elements like account ID,
amount, date, and so on. To fill the object with data, you can infer constraints to determine the kind of data in the data repository . A string? A number? What are the
minimum and maximum sizes of those values? Once understood, you can generate data within those constraints. A relationship between type and account ID is also set
up. Masking one of those values makes sure they’re consistent between the two elements.

Conquering Software Development Testing Challenges in the Face of Change
A Customer’s Journey

12

Get your teammates involved and use their expertise to boost your continuous
testing journey. Their inclusion is relevant for the success of your efforts. Collective
work will end up helping you to remove technical roadblocks in the implementation.

Be aware that you want to reduce dependencies, if all your solutions rely on one
person, then it’s time to rethink about spreading knowledge and diversifying skills
so that the sum of all your capabilities leads to the speed and continuity you are
aiming for.

Suggestions
» Listen to your team, but don't overload them with new work.
» Process and people first, tooling after.
» Think big, not one service only.
» Produce synergies, a leader also needs followers.

How to Get Started?
» Quick turnaround with examples.
» Facilitate material and onboarding.
» Bring experts with experience to share their journeys.
» Use the entire checklist as a defense of your approach.

Conquering Software Development Testing Challenges in the Face of Change
A Customer’s Journey

13

1. The Untouchables
vs. The Minions
Environments

Suggestion
» Virtualize services.
» Containerize when possible.
» Work with smaller data sets.
» Don't let complexity prevail.

How to Get Started?
» Identify data flows.
» Observability and tracing.
» Service catalog.
» Schema registry.
» Enterprise canonical model.

2. Connection Flight
vs. Air Bridge
Scheduling

Suggestion
» No timesheet for testing.
» Environment isolation.
» Self-provision of data.
» Business process time travel.

How to Get Started?
» Process facets.
» Identify master data sets.
» Canned process data set.

3. Playground vs. Laboratory
Scope

Suggestion
» Create a virtualization matrix.
» Allocate time and resources to it.
» Set expected coverage in time.
» Baseline virtualization activities.

How to Get Started?
» List critical interfaces.
» Time-box virtualization activities.
» Break complex ones into smaller
 pieces.
» The job is finished when positive
 and negative cases are covered.

4. Frozen vs. Fresh
Process

Suggestion
» Smaller environments.
» Service proxies.
» Zero-config routing.

How to Get Started?
» Automated deployments.
» Branch policies in repositories.
» Configuration-only builds.

5. Gates vs. Policy
Trust

Suggestion
» Semantic versions.
» Branch/release tagging.
» Digital risk policies.
» Reversible decision process.

How to Get Started?
» Create risk policies (risk = impact
 x probability).
» Compute risk.
» Back up decisions with data points.

6. Consume vs. Produce
Data

Suggestions
» Test automation for data generation.
» Synthetic data sets.
» Don't forget about error
 handling data.
» Minimum data requirements.

How to Get Started?
» Complement extractions with
 small self-production.
» Services with smaller data sets.
» Fake data generators (people,
 numbers, and so on).

7. Talent vs. Tooling
People

Suggestions
» Listen to your team, but don't
 overload them with new work.
» Process and people first,
 tooling after.
» Think big, not one service only.
» Produce synergies, a leader
 also needs followers.

How to Get Started?
» Quick turnaround with examples.
» Facilitate material and onboarding.
» Bring experts with experience to
 share their journeys.
» Use the entire checklist as a
 defense of your approach.

CHECKLIST SUMMARY

Conquering Software Development Testing Challenges in the Face of Change
A Customer’s Journey

14

TAKE THE NEXT STEP
Ok, a lengthy list, but hopefully plenty to invite you to think about changing
the face of testing in the advent of change.

If you're interested to know more about Parasoft Virtualize and its benefits,
you can always reach out to Parasoft and IOVIO.

ABOUT PARASOFT

Parasoft helps organizations continuously deliver quality software with its
market-proven, integrated suite of automated software testing tools. Supporting
the embedded, enterprise, and IoT markets, Parasoft’s technologies reduce the
time, effort, and cost of delivering secure, reliable, and compliant software by
integrating everything from deep code analysis and unit testing to web UI and API
testing, plus service virtualization and complete code coverage, into the delivery
pipeline. Bringing all this together, Parasoft’s award winning reporting and analytics
dashboard delivers a centralized view of quality enabling organizations to deliver
with confidence and succeed in today’s most strategic ecosystems and development
initiatives—cybersecure, safety-critical, agile, DevOps, and continuous testing.

https://www.parasoft.com/products/virtualize
https://www.parasoft.com/company/contacts
https://iovio.com/contact-us/index.html

