i PARASOFT

ISO 26262 Software
Compliance in the
Automotive Industry

Table of Contents

3

Overview
3 Automotive Industry Outlook
7 What Is ISO 262627

14 Requirements for Compliance in Testing

59

71

14 Static Analysis

18 MISRA C 2023

20 AUTOSAR C++14

24 SEI CERT

28 CWE - Common Weakness Enumeration
32 Unit Testing

38 Regression Testing

41 Software Integration Testing

48 Software System Testing

51 Structural Code Coverage

54 Requirements and the Traceability Matrix

A Unified, Fully Integated Testing Solution for C/C++
Software Development

59 Tool Qualification for Safety-Critical Automotive Systems

65 Reporting and Analytics for Automotive Software

More Resources

71 Safety-Critical Automotive Software Development Assets
for Download

1SO 26262 Software Compliance in the Automotive Industry

Overview

Automotive Industry Outlook

The automotive industry continues to rapidly evolve and grow into technical areas where
other industries have operated for many years. For example, NASA'’s Jet Propulsion
Laboratory releases code fixes and new functionality currently in development for

a spacecraft millions of miles away, en route to its destination. Similarly, we find the
automotive industry providing software updates on cars that have been sold and are
being driven by their consumers all around the world.

The future of self-driving cars also looks promising, with potential for widespread
adoption in the next few decades. Several companies, including Waymo, Tesla, Uber,
and traditional car manufacturers like GM and Ford, are at the forefront of developing
self-driving technology. Many are conducting extensive testing, and some have deployed
pilot programs in select cities. As the technology matures, it is expected to revolutionize
transportation, making it safer, more efficient, and accessible.

Safety & Security Challenges

This type of evolution—particularly that of advanced driver-assistance systems (ADAS)—
comes with a new set of challenges in safety and security. Standards like ISO 26262
address functional safety of the development of electric and electronic systems (E/E),
which include propulsion, dynamic control systems, and driver assistance.

Additionally, platforms like AUTOSAR provide an open standardized software layer
architecture that further improves safety. They include guidelines for the use of the
C++14 language in development of critical and safety-related systems. However,
manufacturers have realized that due to the increased complexity and unknowns of
modern technologies working together, along with changes in the internal and external
environment, safety and security concerns have arisen that these standards don’t address.

When addressing ISO 21434, it’s important to understand that the recommended
security consideration for cybersecurity should be integrated into your existing
development processes. ISO 21434 references ISO 26262 in consideration of having
these two disciplines take an interdisciplinary exchange of strategies, coordination and
even tools used. This means that your organization should have your system engineers
work with your security engineers through the requirements analysis phase for safety
and security.

Security
Safety

Figure 1-1:

V process model
for software safety
and security

Requirements
Analysis
(System Design)

1SO 26262 Software Compliance in the Automotive Industry

System
Testing

parallel, perform hazard analysis and

risk assessment (HARA) for safety, and
threat analysis and risk assessment
(TARA) for security. Nonetheless, a strong
collaborative environment is needed to
ensure a safe and secure result.

High-Level

Integration

Design Testing

Detailed = Unit
Dewd lesting Ensuring security at the software
implementation phase starts by applying
static code analysis. The MISRA coding
standard incorporates security guidelines,
but you can also augment and strengthen

code security by adopting CERT.

Implementation

Continuing up the right side of the V, perform unit testing of all your low-level
security requirements. In the next phase, create test cases that incorporate additional
functionality. These test cases ensure that your high-level requirements are satisfied.

Moving to system testing, create system tests to ensure that the system requirements
are verified. Confirm that all the test cases trace back to your requirements. This
guarantees that no requirement goes untested. However, to safeguard that each
requirement is fully tested, incorporate structural code coverage as recommended by

ISO 21434 and ISO 26262. Code coverage ensures that your security test cases fully cover
every possible path of execution through its security functionality remediation measures.

To overcome safety and security challenges, teams can turn to solutions like Parasoft
C/C++test, which has been certified for use in safety-critical applications per ISO 26262
and is TUV SUD certified to satisfy 1ISO 21434. Both of these standards recommend
performing static analysis, dynamic analysis—which includes unit, integration, and system
testing—code coverage, and requirements traceability. Offering exactly what ISO 26262
and I1SO 21434 recommend for software verification in safety and security, Parasoft also
provides the documentation required to prove compliance with both standards.

UNECE WP.29 Regulatory Requirements

The United Nations Economic Commission for Europe (UNECE) released regulatory
requirements on June 23, 2020, where they outlined new processes and technologies
that automotive manufacturers must incorporate into both their organization and
vehicles. These regulations also apply to Tier 1 and Tier 2 suppliers of software and
hardware components, including mobile services.

1SO 26262 Software Compliance in the Automotive Industry

Vehicle manufacturers are required to put into the organizational structure a risk-based
management framework for discovering, analyzing, and protecting against relevant
threats, vulnerabilities, and cyberattacks.

The following categories require cybersecurity testing and passing inspections.
» Category M covers standard four wheel cars.
» Category N is for pickup trucks and vans.

» Categories L6 and L7 include electric cars and autonomous capabilities.

A passing grade on both organizational and vehicle WP.29 key requirements means

that the manufacturer receives a certificate of compliance. New vehicles without this
certificate cannot be sold in the EU after July 2024. Be aware that the United States does
not participate or have its own similar regulations. However, the writing is on the wall.

Automotive SPICE

Automotive Software Process Improvement and Capability Determination (ASPICE)
provides a measurement framework for independent assessors to evaluate an
organization’s capability for software development. Ensuring software safety and
cybersecurity does not only lie within the technical engineering aspects of the
development of the electronic system, but also requires the organization to incorporate
processes and checks.

These processes and checks must include ways to track and monitor progress within all
practices of the organization to ensure:

1. Safety and cybersecurity practices have been adopted.

2. Safety and cybersecurity requirements are being satisfied.

This is also one of the two key certification criteria for UNECE WP.29 on organizational
cybersecurity capability.

Unsafe Scenarios

It's brought to fruition other outgrowths from ISO 26262, like ISO/PAS 21448 more
commonly referred to as SOTIF (safety of the intended functionality). SOTIF helps you
analyze and prevent the misuse of the intended functionality where it creates an unsafe
scenario. For example, your vehicle inadvertently shuts down while you're driving it,
due to an initiated software update.

1SO 26262 Software Compliance in the Automotive Industry

Security vulnerabilities also pose unsafe scenarios. An attacker could use the car’s
Wi-Fi connection to remotely exploit an exposed port. They could somehow work
their way from the advanced in-vehicle infotainment (IVI1) into taking control of, or
influencing, safety-critical components like braking or steering due to sharing the
same communications infrastructure.

The Role of Standards

Standards like SAE J3061, superseded by ISO/SAE 21434, specify that an initial Threat
Analysis and Risk Assessment (TARA) be completed to assess potential threats related

to operation, privacy, and other factors where a road user/driver can be impacted. If the
risk for any threat is sufficiently high, then a cybersecurity process is necessary. There are
various approaches to flushing out security vulnerabilities and requirements that mitigate
the risks. Learn more about TARA and why your development team needs TARA.

Standards like UL 4600 now exist specifically for fully autonomous vehicle operation.
This means that there is no human supervision, and the autonomy assumes full
responsibility. This standard focuses on building a safety case for the deployment of
SAE Level 4/5 vehicles, not on how to test safety of autonomous vehicles on public
roads. That would involve a different standard.

These standards and others play a crucial role in safety and security for the automotive
industry. OEMs carry the liability costs for delivering unsafe and insecure vehicles

to the masses. To mitigate these risks, OEMs need to adopt and adhere to these
standards. However, OEMs should mandate the same quality and adherence by their
suppliers. A weakness in one component can undermine the safety and security of the
entire system.

Building Custom Coding Standards

Working with some of its automotive OEMs, Parasoft has built custom coding standards
that incorporate MISRA, AUTOSAR C++14, CERT, CWE, and other custom rules to be
used by their suppliers. This ensures that the same level of quality software exists across
the entire supply chain.

Parasoft C/C++test is a unified testing solution that includes unit testing and structural
code coverage as part of its functionality. This solution for C/C++ software development
supports a comprehensive set of hardware targets and development ecosystems that
suppliers and OEMs can use with varying development infrastructures. Parasoft C/
C++test has been certified by TUV SUD for use on safety- and security-critical systems.
For ADAS and secure connected cards, C/C++test’s seamless integration with Parasoft
SOAtest and Parasoft Virtualize combines API testing with runtime application coverage
and simulated virtual test beds.

https://www.parasoft.com/blog/why-your-development-team-needs-tara/

1SO 26262 Software Compliance in the Automotive Industry

What Is ISO 26262?

ISO 26262 is a functional safety standard that covers the entire automotive product
development process. It includes activities such as requirements specification, design,
implementation, integration, verification, validation, and configuration.

The standard provides guidance on automotive safety lifecycle activities by specifying
the following requirements:

» Functional safety management for automotive applications
» The concept phase for automotive applications

» Product development at the system level for automotive applications software
architectural design

» Product development at the hardware level for automotive applications software
unit testing

» Product development at the software level for automotive applications
» Production, operation, service, and decommissioning

» Supporting processes: interfaces within distributed developments, safety
management requirements, change and configuration management, verification,
documentation, use of software tools, qualification of software components,
qualification of hardware components, and proven-in-use argument

» Automotive Safety Integrity Level (ASIL) oriented and safety-oriented analyses

ISO 26262 is an adaptation of IEC 61508 for the automotive industry. I[EC 61508 is a

basic functional industrial safety standard for electrical, electronic, and programmable
electronic devices, and applicable to all kinds of industries. Other sectors like Medical
IEC 62304 and Railway EN 50128/EN 50716 have also been derived from IEC 61508.

Since ISO 26262 has been extracted and expanded from IEC 61508 for the automotive
industry, by inheritance it is a functional safety standard that provides guidance for
regulating the entire product lifecycle process, at the software and hardware level
from conceptual development through to decommissioning. It covers electrical and
electronic automotive systems and their development process, including requirements
specification, design, implementation, integration, verification, validation, and
configuration.

The latest release, ISO 26262:2018 is subdivided into 12 parts. The standard has been
evolving since its first edition, released back in 2011.

1SO 26262 Software Compliance in the Automotive Industry

What Are the Parts of ISO 26262

I 1. Vocabulary I
2. Management of functional safety
215 Ovversil safety management 2-6 Safety management during the concept phase 2-7 Safety management after the item’s release
and the product development for production
3. Concept phase 4. Product development at the system level ‘ Production and operation
3.5 Item definition i) #-11 Relsandiiar ridictigg Production ‘
— - 4-10 Functional safe Operation, service
3-6 Initiation of the safety lifecycle (maintenance and repair), and
decommissioning

3-7 Hazard analysis and risk
assessment
3-8 Functional safety
concept

5-6 Specification

safety reguireme

5-8 Evaluation of the

architectural metrics

5-9 Evaluation of the safety g B " A

violations due to random hty & oftware unit testing

failures ; —

5-10 Hardware integration and™, Software integration and

testing ng

11 Verification of software safety
requirements
8. Supporting processes
8-5 Interfaces within distributed developments 8-10 Documentation
8-6 Specification and management of safety requirements 8-11 Confidence in the use of software tools
8-7 Configuration management 8-12 Qualification of software components
8-8 Change management 8-13 Qualification of hardware components
8-9 Verification 8-14 Proven in use argument
9. ASIL-oriented and safety-oriented analyses

\9-5 Requirements decomposition with respect to ASIL tailoring | |9-7 Analysis of dependent failures \
|9-6 Criteria for coexistence of elements ‘ [9-8 Safety analyses |

I 10. Guideline on 1SO 26262 I

Figure 2-1: Part 1 is the vocabulary section for the standard. Terms, definitions, and abbreviations
Overview of

1SO 26262

are found here.

Part 2 is the management of functional safety, which defines an internal functional safety
process for the team or company. This includes having a safety organization that oversees
the planning, coordinating and documentation activities related to functional safety.

Functional safety is of the utmost importance in the development of safety-critical
automotive systems because people’s lives depend on it. Especially now with the
introduction of driver assist and automated driving systems. The management of
security could be adapted to part 2. Security is crucial in the world we live in today.

1SO 26262 Software Compliance in the Automotive Industry

Part 3 is the concept phase that takes in the stakeholder requirements and drives what
you are going to build and ultimately deliver. In figure 2-1, notice on the right side of
the concept phase box the beginning of a gray-shaded V watermark. The shaded Vs
represent the interconnection among parts 3, 4, 5, 6, and 7 of the standard. These
part series are based upon the V-model software development lifecycle. You have

the different phases of development represented on the left and the verification and
validation or testing phases on the right. If you are a systems or software engineer in
the embedded industry, the V-model is well known.

Part 4 is the beginning of product development at the system level, which includes
parts 5 and 6 but looking at these from a high level of abstraction. The architecture is
defined, including functional test cases that verify and validate the architecture. To dive
in deeper into the detail design and implementation, part 5 and part 6 are defined.

Part 5 targets development of hardware, which is out of scope for this document.

Part 6 targets software development. You can see a smaller lighter grey V watermark
for software development and again the left-hand side of the V encapsulates the
requirements decomposition, design, and implementation phases but now a much
lower level of granularity. On the right-hand side of the V, sections 6.9, 6.10, and 6.11
represent the testing or verification and validation of the software. This includes unit
testing, static analysis, structural code coverage, requirements traceability and more.

It also includes requirements for the software development of automotive applications.
This includes obligations for initiation of product development, specification of
software safety requirements, software architectural design, software unit design

and implementation. On the verification and validation of the software component,
you have multiple methods recommended or mandated based on the assigned safety
integrity level (ASIL).

Part 7 addresses the production and operation of the product, once it’s out in the
field. This means you must consider things like maintenance and decommissioning or
sunsetting of your product.

Part 8 specifies the various supporting processes and solutions needed in the
development of the system that help ensure functional safety. This includes having
a configuration management solution, a change management, a documentation
management, and other solutions in place.

Another important aspect of Part 8 is the qualification of the software tools being used.
You don’t want to use an open source tool or an uncertified tool from a vendor that
undermines the safety or security of your product by introducing issues. Use a tool that
has been certified by the Technical Inspection Association (TUV) and has a proven in-
use history or argument.

1SO 26262 Software Compliance in the Automotive Industry

Part 9 is a critical section to understand because it pertains to assigning a risk
classification on the system under development. This means that you have to take into
consideration the risk to the passengers or pedestrians if the electrical or electronic
system in development were to malfunction or fail.

A hazard analysis and risk assessment need to be performed. ISO 26262 is a risk-based
safety standard, where the risk of hazardous operational situations is assessed, and
safety measures are defined to detect and to avoid or control failures, so mitigating
actions can take effect.

Part 10 basically provides an overview of the ISO 26262 standard with additional
explanations that enhance the understanding and concepts of the other parts in the
standard, so it's informative.

Part 11 is the adaptation of functional safety guidelines to semiconductors for
automotive. It offers guidance and information to semiconductor manufacturers on
how to develop ISO 26262 compliant IP. It helps incorporate functional safety because
users of semiconductors may not know how to use the semiconductor safely. This came
about because automotive systems have become very complex and semiconductors
have enabled most of the recent innovations. That includes vision-based technology,
enhanced graphics processing units (GPUs), application processors, sensors, DRAM, and
other components that empower advanced driver-assistance systems or ADAS.

Part 12 is the adaptation of the standard for motorcycles, which has been intentionally
left out of Figure 2-1 and this ebook.

Performing Hazard Analysis and Risk Assessment

In ISO 26262, a hazard analysis and risk assessment (HARA) needs to be performed on
the system under development. Upon completion of the HARA an ASIL is assigned to
the software component and there are levels A through D. Level A represents the lowest
hazard assignment and Level D represents the highest hazard assignment. Meaning that
the failure of a system with ASIL D assignment could be catastrophic.

There is also a quality management (QM) level assignment, which means that there is
no safety requirement. ASIL is assigned by taking the severity of the injury times the
probability of the failure times the controllability. The following table spells out each
level for severity, exposure, and controllability.

There are several tables freely made available that provide help in determining the ASIL
value. The table below is an example of one that's much easier to read and shows the
ASIL levels in colors based on severity, exposure, and controllability.

10

1SO 26262 Software Compliance in the Automotive Industry

SEVERITY EXPOSURE CONTROLLABILITY
No Injuries Incredibly unlikely Controllable in general
Light to moderate injuries Very low probability (injury could Simply controllable
happen only in rare operating
conditions)
Severe to life-threatening (survival Low probability Normally controllable (most drivers
probable) injuries could act to prevent injury)
Life-threatening (survival uncertain) to Medium probability Difficult to control or uncontrollable

fatal injuries

High probability (injury could happen
under most operating conditions)

Figure 2-2: Severity = What would be the impact or damage if the failure occurred?
Hazard Analysis and Exposure = The frequency or probability that the failure would occur.
Risk Assessment Controllability = The extent to which we can ensure that the event doesn’t happen.

| e
E1l QM QM QM QM
c1 E2 QM QM QM QM
E3 QM QM QM A
E4 QM QM A B
E1l QM QM QM QM

E2 QM QM QM A

E3 QM QM A B

E4 folV} A B | €
E1l QM QM QM A

E2 QM QM A B
Ft:gure. 2-3: C3 E3 aM A 8 _
Simplified ASIL

assesment table E4 cl B _-

Cc2

Active and Passive Safety

Roadside vehicles come with lots of safety systems and some are considered active
safety and others passive safety.

Active safety is used to refer to technology assisting in the prevention of a crash
or accident. You have your traction control, anti-lock braking system, vision ADAS,
and others.

Passive safety systems are to keep the passengers safe. For example, in case of a crash,
you have airbags, and seatbelts. The electronic windshield wiper and instrument cluster
are also passive safety systems.

11

1SO 26262 Software Compliance in the Automotive Industry

Figure 2-4: 2 i Radar Cruise Control
Active and Passive Ele :‘trl‘c Il’ower _Steerlng Inadvertent Braking
Safety bei’;:EEg"q ASILB Rear Lights
S - Failure Both Sides

Airbag £ = ey ASILA
Inadvertent L)epfcay -
ASILD | ==
Rear View Camera
No Valid Sensor Data
ASILB

Head Lights e - : B o
y- _ _ ’ s 1 Brake Lights

Failure Both Sides

ASILB Failure Both Sides

ASILB

L
Engine Management
Unwanted Acceleration
ASILC-D

Instrument Cluster
Loss al Data

— Antilock Braking
Suspension - Vision ADAS Unintended Braking
n Oscillates Incorrect Sensor Feedback ASILD
ASILB

Performing Test Verification & Validation of Software Unit
Design and Implementation

Since the focus of this ebook is software, it's important to cover the test verification
and validation methods recommended by the standard. For example, Table 9

captures verification methods 1a through 1h to be applied during unit design and
implementation. Method 1f, “Static code analysis” is recommended for ASIL level A and
highly recommended for ASIL levels B through D.

The columns in Table 7 below show A to D ASIL levels. A single “+” symbol indicates
recommended by the standard, a double “++” indicates highly recommended, and an “0”
indicates no recommendation.

Table 7 - Methods for software unification

Methods e

A B C D

la |Walk-througha ++ + 0 o

1b |Pair-programminga + + + +

1c |Inspectiona + ++ ++ ++

1d |Semi-formal verification - - - e

le |Formal verification 0 0 + +

1f |Control flow analysisb. ¢ + + ++ ++

lg |Data flow analysisb.¢ + + +4 ++

1h |Static code analysisd ++ ++ ++ ++

Figure 2-5: 1i |Static analyses based on abstract interpretation® + + + +
I1SO 26262 Part 6, 1j |Requirements-based testf ++ ++ ++ ++
9.4.2:2018 1k |Interface tests it ++ +i i

12

1SO 26262 Software Compliance in the Automotive Industry

Other key methods of verification are done through dynamic analysis, for requirements-
based testing and fault injection. Table 11 for example has “Analysis of boundary
values”. This is a method for deriving test case to flush out defects by means of proving
inputs into the unit that are not just the min, mid, and max, but the boundaries outside
the scope of its range, to see if the unit is robust enough to handle these outlier cases.

Table 8 - Methods for deriving test cases for software unit testing

ASIL
Methods A B c D
la |Analysis of requirements ++ ++ +4+ ++
1b |Generation and analysis of equivalence classesa + ++ ++ ++
1c |Analysis of boundary valuest + ++ ++ ++
1d |Error guessing based on knowledge or experiencec + + + +

a2 Equivalence classes can be identified based on the division of inputs and outputs, such that a representative test value
can be selected for each class.

Figure 2-6:
1SO 26262 Part 6 b This method applies to interfaces, values approaching and crossing the boundaries and out of range values.
9.4.3:2018 ¢ Error guessing tests can be based on data collected through a “lessons learned” process and expert judgment.
And Table 9 lists the recommended structural code coverage metrics to ensure test
coverage, flush out dead code, and hidden defects.
Table 9 - Structural coverage metrics at the software unit level
ASIL
Methods
A B C D
Figure 2-7: la |Statement coverage +4+ ++ + +
1SO 26262 Part 6 1b [Branch coverage + i TS =
9.4.4:2018 le [MC/DC (Modified Condition/Decision Coverage) + + - ++

13

1SO 26262 Software Compliance in the Automotive Industry

Requirements for Compliance
in Testing

Static Analysis

Many of the quality tasks specified in ISO 26262, including data and control flow
analysis and semantic analysis are supported by modern advanced tools like Parasoft
C/C++test. In addition, static analysis tools include metrics and support peer code
review with capabilities that assist unit testing and runtime error detection.

The Role of Static Analysis in ISO 26262 Software Verification

Verification methods like static analysis provide teams with a practical way to
expose, prevent, and correct errors in automotive software systems. The real power
of advanced static analysis tools comes from the ability to analyze the code based
on industry coding compliance standards like MISRA C/C++, CERT C/C++, and
AUTOSAR C++14.

The analysis reports code rule and directive violations, along with code complexity and
quality metrics. This data can be source-controlled for historical and auditing purposes.
Equally important is the use of a defect tracking and managing system to provide
meaningful analytical views and prioritization with the intent of solving the highest
risk issues down to the lowest.

Table 7 - Methods for software unit verification

Methods A

A B D

la |Walk-througha ++ - o 0

1b |Pair-programminga + + + +

1c |Inspectiona + P ++ 4

1d |Semi-formal verification + ++ ++

le |Formal verification 0 + +

1f |Control flow analysisb: ¢ + ++ ++

1lg |Data flow analysis® ¢ + + ++ ++

1h [Static code analysisd ++ ++ 4+ 4+

Figure 3-1: 1i |Static analyses based on abstract interpretatione + + + +
1SO 26262 Part 6, 1j |Requirements-based testf ++ ++ ++ ++
9.4.2:2018 1k |Interface test 4 ++ ++ ++

14

1SO 26262 Software Compliance in the Automotive Industry

The specific sections of ISO 26262, part 6: Product development: software level that is
addressed by static analysis tools are described below.

Walkthroughs and Inspections

Informal methods used to verify design and implementation. Static analysis tools
automate much of the tedious aspects of code inspection such as coding standards
compliance while flagging errors and possible software weaknesses.

Control Flow Analysis

A static code analysis technique for determining the control flow of a program. Modern
advanced static analysis tools, such Parasoft C/C++test, use sophisticated control and
data flow analysis to detect complex defects and security vulnerabilities.

Data Flow Analysis

A technique for gathering information about the possible set of values calculated at
various points in a computer program. Data flow analysis is a critical aspect of advanced
static analysis tools that helps detect complex errors such as tainted data vulnerabilities.

Static Code Analysis

The general term used to describe the analysis of code that is performed without actual
code execution. This includes the terms used above.

The Role of Static Analysis Tools in Support of ISO
26262 Design Principles for Software Unit Design and
Implementation

Coding standards embody the best practices learned from years of experience and
aim to harden code by avoiding bad practices that result in inadequate quality and
security while promoting good practices that create more resilient code. In the case of
automotive standards, they are based on best practices plus guidance on preventing
the types of software failures that have been observed over the years.

Coding standards usually define a subset of a programming language deemed safer and
more secure to use. The aim of this is to prevent unpredictable behavior in the first
place, limiting the risky language features that make them possible.

The only practical, objective, and sustainable way to enforce coding standards is with
static code analysis tools, which can automatically analyze enormous amounts of
source code at a time. These tools integrate into software builds in a CI/CD pipeline
and are available directly in a developer’s IDE. And they provide reports indicating the
conformance of analyzed software to the standard selected.

15

1SO 26262 Software Compliance in the Automotive Industry

Different Types of Static Code Analysis

One of the most common types of static code analysis is SAST or static application
security testing. This is also considered a best practice for application security testing
but can be applied elsewhere. To identify all error classes, multiple coding standards
(MISRA, AUTOSAR, CERT, CWE) may need to be used.

As such, it's best to familiarize yourself with various types of static code analysis and
the errors they’re meant to detect.

Performance

These tests identify errors that will reduce overall performance. They can also be used
to ensure that developers stay up-to-date with current best practices.

Security

Certainly a critical test, security-related source code analysis finds security risks
like weak cryptography, configuration problems, and framework-specific command
injection errors.

Reliability

These tests help prevent issues with functionality. No developer wants to deal with an
emergency unresponsive service message at 4 a.m. This type of static code analysis is
useful for finding memory leaks or threading problems.

Style

This type of static analysis encourages teams to adopt uniform coding styles for ease of
use, understanding, and bug fixing. Since it identifies style violations, developers don’t
have to waste time looking for them

What Errors Can Static Code Analysis Detect?

Each static analysis rule or guideline tackles different issues. Some issues that affect
reliability might be resource leaks for C or null pointer exceptions in C++. MISRA
C:2023 Directive 4.12 exists to prevent the use of dynamic memory that can lead
to out-of-storage run-time failures, which is undesirable.

The guideline states, “The identifiers ‘calloc’, ‘malloc’, ‘realloc’, ‘aligned_alloc’ and ‘free’
shall not be used and no macro with one of these names shall be expanded.”

16

1SO 26262 Software Compliance in the Automotive Industry

Therefore, the following code will produce a violation.
int* pl = (int®malloc(10); /* Violation */
free(pl); /* Violation */

The recommended solution is to pre-allocate a block of memory and manage it as
needed via your defined equivalent of “malloc” and “free”. Similarly in C++, the common
solution is to overload the “new” and “delete” operators.

The intent of the software, the language, and the platform all affect the kinds of errors
static code analysis can detect.

Static Code Analysis Deviations

Static code analysis identifies errors based on given rulesets. That means that, if any
line defies a rule, it will be flagged. Of course, as in real life, there are some exceptions
to these rules across different software types.

In situations like these, developers allow for deviations. The rules can adjust to the
circumstances and allow for special issues. A team can decide yes or no whether or not
that deviation is acceptable. This also gets documented as it violates the original rules.

How to Choose a Static Code Analysis Tool

Parasoft’s suite of tools to automate software testing works across diverse workflows
and team compositions. When it comes to static code analysis, that rings just as true.

It speeds up the development cycle, reduces defect rates, and provides continuous
improvement. Identifying which tool might work best for your needs starts simply
with the base language of the source code. In addition to C and C++ solutions, Parasoft
also provides solutions for Java testing with Jtest as well as testing C# and VB.NET
languages with dotTEST.

Static code analysis can be performed either in the IDE (Eclipse, VS Code, Visual
Studio) or using the command-line interface for automation and continuous integration
pipelines. The results of the analysis can be accessed immediately within the IDE and
from generated reports (HTML, PDF, XML), as well as aggregated for further post-
processing, reporting, and analytics from the award-winning Parasoft DTP reporting
and analytics dashboard.

17

1SO 26262 Software Compliance in the Automotive Industry

MISRA C 2023

MISRA C is a set of coding guidelines for the C programming language. The focus of the
standard is increasing the safety of software by pre-emptively preventing programmers
from making coding mistakes that can lead to runtime failures (and possible safety
concerns) by avoiding known problem constructs in the C language.

Over the years, many developers of embedded systems were (and still are) complaining
that MISRA C was too stringent of a standard and that the cost of writing fully
compliant code was difficult to justify. Realistically, given that MISRA C is applied in
safety-critical software, the value of applying the standard to a project depends on
factors such as:

» Risk of a system malfunction because of a software failure
» Cost of a system failure to the business

» Development tools and target platform

» Level of developer’s expertise

Programmers must find a practical middle ground that satisfies the spirit of the
standard and still claim MISRA compliance without wasting effort on non-value added
activities.

MISRA C Compliance

In the document, "MISRA Compliance:2020," the MISRA Consortium provides the
response needed by the community with a well-defined framework of what the
statement, “MISRA Compliant,” truly means.

The document helps organizations use a common language articulating the compliance
requirements by defining the following artifacts:

The Guideline Enforcement Plan

Demonstrates how each MISRA guideline is verified.

The Guideline Re-Categorization Plan

Communicates the agreed-upon severity of individual rules in the guidelines as part of
the vendor/client relationship.

18

1SO 26262 Software Compliance in the Automotive Industry

The Deviations Report

Documents the violations of guidelines with appropriate rationale.

The Guidelines Compliance Summary
This is the primary record of overall project compliance.

When first introducing MISRA C into a project, commonly where code already exists,
the key document is the guideline re-categorization plan. This document captures all
directives, rules, and identifies which categories have been re-categorized. However, it's
important to have the same rational categorization for newly developed code as well.
For example, the following diagram shows part of a re-categorization plan.

L PARASOFT.

& Download PDF

MISRA Compliance Report

Fiiter: atm-for-misra-c Target Build: misrac-2022 Compliance Profile: MISRA C 2023 Analysis Tool: Parasoft C/Ce+tast 20231 Compiler: ADD COMPILER Revision Date; 2023-04.03
{This repornt i compliant with: *MISRA Complance: 2020 Achieving complance with MISRA Coding Gusdelines™)
Project Compliance: 0 Not Com P liant

Guideline Enforcement Plan Guideline Re-calegorization Plan Deviation Report (Tolal: 6) Build Audit Report

Category: Al e Compliance: All e

Zf:;:":" y The "MISRA C 2023" compliance document recommends against re-categorizations
ompliance
Report - from a less stringent to a more stringent classification. In addition, it is possible to

disapply advisory rules altogether after reviewing the types of violations with the team.

The requirement to document deviations is only necessary for all required rules. Any
violations in adopted code should be reviewed. Deviations need to clearly state that
violations do not compromise safety and security. Regardless of recategorization, if
there is a finding that compromises the safety or security of the system, the issue must
be fixed. Also, modifications to the existing code may introduce other issues not clearly
seen by the developer.

19

1SO 26262 Software Compliance in the Automotive Industry

AUTOSAR C++14

AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide development
partnership of OEM manufacturers, Tier 1 automotive suppliers, semiconductor
manufacturers, software suppliers, tool suppliers, and others that focus on establishing
and standardizing automotive software architecture.

Adaptive AUTOSAR defines a platform for developing automotive control units, which
provide sophisticated functionalities like advanced driving assistance systems, media
streaming, or software updates via the internet. The platform contains the specification
of interfaces that define services and APIs for building modern automotive systems.

A key component of the AUTOSAR Adaptive Platform is the AUTOSAR C++14 coding
standard, which defines guidelines for the use of modern C++ in critical and safety-
related systems. While AUTOSAR C++14 remains foundational, the automotive
industry increasingly aligns with MISRA C++ 2023, the latest standard from the MISRA
consortium.

MISRA C++ 2023 modernizes and replaces MISRA C++ 2008, integrating support for
C++17 and C++20 while maintaining backward compatibility with AUTOSAR C++14.

Recognized as complementary standards, MISRA C++ 2023 and AUTOSAR C++14
share safety, reliability, and compliance goals. Both standards provide traceability to
widely adopted C++ guidelines, including:

» HIC++ 4.0

» JSF AV C++

» SEI CERT C++

» C++ Core Guidelines

» ISO/IEC TS 17961

The collaboration between AUTOSAR and MISRA ensures harmonization for
developers working in safety-critical domains like automotive, aerospace, and
industrial systems.

20

1SO 26262 Software Compliance in the Automotive Industry

Parasoft C/C++test, a unified testing tool for C/C++ development, and Parasoft DTP,
a reporting and analytics dashboard, deliver comprehensive support for AUTOSAR
C++14 and MISRA C++ 2023. This dual coverage enables organizations to:

» Enforce MISRA rules with industry-leading static analysis checkers.

» Streamline compliance reporting for ISO 26262, ASPICE, and other automotive
safety standards.

» Address challenges in software quality, security, and regulatory adherence across
evolving C++17/C++20 codebases.

By integrating AUTOSAR C++14’s robustness with MISRA C++ 2023’s modern language
support, Parasoft provides a future-proof solution for automotive software teams
navigating the transition to advanced C++ ecosystems.

AUTOSAR C++14 Compliance

AUTOSAR C++14 does not provide explicit guidance on the process of achieving
compliance. However, given that AUTOSAR guidelines are based on MISRA C++
2008 (superseded by MISRA C++ 2023), it's reasonable to refer to the MISRA
Compliance:2020 document for claiming compliance.

The desired situation is to have a static analysis tool that covers as many guidelines
as possible. The rules that cannot be enforced with static analysis will require manual
reviews, which are expensive.

As with MISRA C or C++ compliance, a deviation handling procedure needs to be
established. The deviation procedure formalizes the steps that need to be taken
when development needs to deviate from a specific guideline. As MISRA prescribes,
it's expected that “...the procedure will be based around obtaining a sign-off for every
deviation or class of deviations.”

This is a particularly important piece of the puzzle. It prevents abusing the deviation
concept by developers deviating at will. Effectively, you'll need formal tickets stored in
your system that document every deviation in the source code. At the end of a project,
an AUTOSAR Compliance Report must be created to document the overall level of
compliance achieved. This summary includes an entry for each guideline outlined in The
Guidelines and specifies the compliance level attained.

21

1SO 26262 Software Compliance in the Automotive Industry

The possible compliance levels for a guideline are:
» Compliant. No violations of the guideline exist within the project.

» Deviations. All violations of the guideline within the project are justified by
approved deviations.

» Violations. The project contains violations of the guideline that are not covered by
deviations.

» Disapplied. Compliance with the guideline has not been assessed.

& Download PDF

AUTOSAR Compliance Report

Filter: atm-for-autosar Target Build: atm-for-autosar-2018-12-03 Compliance Profile: AUTCSAR C++14 Analysis Tool: Parasoft C++test 10.4.1 Compiler: ADD COMPILER
Revision Date: 2018-12-17

Project Compliance: €3 Not Compliant

Guideline Enforcement Plan Guideline Re-categorization Plan ~ Deviation Report (Total: 13) Build Audit Report

Obligation: | Al 4 Target: | Al % Analysis: [Al 0 Compliance: | Al 0
of Deviations
Guideline Obligation Target Analysis Compliance # of Viclations In-Code Suppressions DTP Suppressions
AD-1-1 required implementation automated & Compliant V] (4] o
AD-1-2 required implementation automated & Compliant v] 0 0
AD-1-3 required implementation automated & Compliant o a H]
AD-1-4 required implementation automated & Compliant 0 1] i}
AQ-1-5 required implementation automated Mo rules enabled MNIA NfA M/A
AD-4-1 required infrastructuretocichain non-automated Mo rules enabled MIA NiA MNIA
AD-4-2 required implementation automated Mo rules enabled MNIA NiA NiA
AD-4-3 required toolchain automated Mo rules enabled NiA Nia NiA
At-1-1 required implementation automated Mo rules enabled MNIA NiA MNIA
Al-1-2 required toolchain non-automated Mo rules enabled MNIA NIA NIA
At-1-3 required implementation automated Mo rules enabled A NfA NIA
A1-241 required implementation non-automated Mo rules enabled MNIA NIA Nis
Figure 5-1:
AUTOSAR

Compliance Report A formal process for handling deviations must document enforcement methods for
every applicable guideline. This document is called the Guidelines Enforcement Plan
(GEP). Also, a Guidelines Recategorization Plan (GRP) is needed, which documents in
a formal way any changes that are introduced to rule categories. And the Guidelines
Compliance Summary (GCS) is a final artifact from the compliance process that presents
the level of compliance that was achieved for every guideline.

22

Figure 5-2:

Parasoft covers 100%
of all required and
automated AUTOSAR
C++14 rules.

1SO 26262 Software Compliance in the Automotive Industry

Support for AUTOSAR C++14 in Parasoft C/C++test

The only practical way to enforce compliance with a coding standard like

AUTOSAR C++14 is with a static analysis tool, like Parasoft C/C++test, a code
quality tool supporting multiple testing technologies. Parasoft C/C++test support for
AUTOSAR C++14, provides a set of built-in checkers (rules) for verifying compliance
with standards including MISRA C 2023, MISRA C++ 2023, JSF AV C++, SEI CERT
C/C++, HIC++, CWE Top 25, CWE On the Cusp, OWASP, and more.

Parasoft compliance packs provide users with standard specific configurations,
automatic generation of compliance documentation, risk assessment framework, and
dynamic compliance reporting dashboards (DTP) to help stakeholders easily aggregate,
correlate, and apply analytics to centralize reporting for each step along the complex
software supply chain.

Obligation Level ES?tfachinr: s:‘;tsl;y Supported Unsupported Cze:ec:;te
Required Automated 301 0 301 100%
Required Partially 18 2 20 90%
Required Non-Automated 19 22 M 46%
Required All 338 24 362 93%

With the 100% coverage for Required & Automated rules, Parasoft testing tool suite
ensures AUTOSAR compliance throughout the software development life cycle,
improves code quality, and reduces cost associated with resources and time to market.

Parasoft provides comprehensive support for CERT C and CERT C++ secure coding
standards with complete coverage of all the CERT C/C++ guidelines including both
rules and recommendations that are detectable by static analysis. Checker names,
dashboards, and reports use the CERT naming convention to make conformance and
auditing easier. A CERT conformance dashboard, which includes the CERT risk score,
helps developers focus on the most critical violations.

23

1SO 26262 Software Compliance in the Automotive Industry

SElI CERT

The Software Engineering Institute (SEI) Computer Emergency Response Team (CERT)
has a set of guidelines to help developers create safer, more secure, and more reliable
software. Started in 2006 at a meeting of the C Standard Committee, the first CERT C
standard was published in 2008, and is constantly developing and evolving.

There's a book form version published in 2016, but it doesn't include the latest updates.
This standard doesn'’t have specific frozen releases like CWE Top 25 and OWASP Top
10. The standard arose from a large community of over 3,000 people with a focus on
engineering and prevention. The CERT secure coding standards focus on prevention

of the root causes of security vulnerabilities rather than treating or managing the
symptoms by searching for vulnerabilities.

The CERT coding guidelines are available for C, C++, Java, Perl, and Android. They fall
into two main categories: rules and recommendations.

Rules are guidelines that are detectable by static analysis tools and require strict
enforcement, while recommendations are guidelines that have a lower impact and are
sometimes difficult to analyze automatically.

CERT includes a risk assessment system that combines the likelihood of occurrence,
severity, and relative difficulty of mitigation. This helps developers prioritize which
guideline violations are the most important to investigate. The inclusion of mitigation
efforts to the guideline priority is an important addition to the CERT secure coding
standards, which many other standards lack.

The CERT bullseye diagram reflects the cost factor. The center of the bullseye
represents the highest severity guidelines, which are more difficult to fix. The benefit
of this prioritization is focusing on the most critical violations that provide the biggest
bang for the buck in security improvement while helping the development team filter
out less important warnings.

24

1SO 26262 Software Compliance in the Automotive Industry

L1: P12 — P27

High severity, likely,
inexpensive to
repair flaws

Medium severity,
probable, medium
cost to repair flaws

12. P6— P9

L3: P1-P4 : :
- Low severity, unlikely,
Figure6-1: expensive to repair flaws
SEI CERT severity bullseye
diagram

SEI CERT C/C++ Conformance

According the SEI CERT C documentation, conformance "requires that the code not
contain any violations of the rules specified in this standard. If an exceptional condition
is claimed, the exception must correspond to a predefined exceptional condition, and
the application of this exception must be documented in the source code.”

Although conformance is less specific than standards such as MISRA, the principles
remain similar. Rules should be followed, and deviations are rare and well documented.
Recommendations should be used when possible and those that aren’t needed to

be documented.

Violations that persist in the source code need to be documented. However, no
deviation is acceptable for performance or usability and the onus is on the developer
to demonstrate that the deviation will not lead to a vulnerability.

Parasoft C/C++test provides a comprehensive CERT compliance dashboard and reports.
Individual compliance reports are available on demand based on the latest build of the
software or any previous build.

These reports can be sorted and navigated to investigate violations in more detail.
Also, a conformance test plan is available to correlate the CERT guideline with the
appropriate Parasoft static analysis checker is an important tool if conformance
documentation is needed for audit purposes. In addition, all the interesting reports as
specified by the team are available in a single PDF available for download for auditors.

25

1SO 26262 Software Compliance in the Automotive Industry

ARASOFT.

Report Center

SEI CERT C Compliance T Fedos Aacue s

be: security Last 10 builds First B
CERT Compliance = CERT Compliance - Rules by Status - CERT Cornplisnce - Recommendations by Status. »=

'CERT

CERT Compliance - Rules by Stats.

823 1 1.9K 0

Not Compliant Viclations Deviations Viclations Deviations
Build: be-020-06-04 Bl - 20200504
Campliance: SEI CERT C 2018 Compliance: SEI CERT C 2018

Build: be-2020-05-04
Compliance: SEI CERT C 2018

GERT Compilance b... = GERT Compiiance by Priority - CERT Viclations by Category - TresMap -

Not Compliant

Buid: bo-Z2020-065-04 Complience: SEI CERT C 2018

| | nimgers Characters and Strings Memory Managsment
Q 1 - Not Compliant 1
| INT1C INT{S-C STROO-C STRO4-C MEMO2-C
©) 17 - Not Compliant I
Cl L3 - Not Compliant i o]
il
be-2020-05-04 = MEMOI-C MEMOT-C
CERT Analysis Com... = - STRIC s
C e BE] CERT G oin
5 5ONE Emar Handl
72%1 = - .
ol 72% sz EXPOO-C Em*ns- ERR33.C ERRI2.
Rules i Compliance: 261 241
Rules Enabled: 381 b 308 EXP19-
Wiolalions: 2676 Expresson 208 INTOT-C NTIZC INTIEC wipe EE1ZE & ERROT-C
& EXP EXF
oo, e &
f. EE*S
Figure 6-2:
CERT compliance
dashboard
PARAS(D ?
& Download PDF
.
CERT Compliance Report
Filter: bo-cert ¢ Target Build: be-cen ¢-2018-08-00 Cempliance Profile: SE| CERT C 2018 Analysis Tool: Parasoflt C++1est 10.4.1 Revision Date: 2019-02-27
Project Compliance: € Missing rule(s) in analysis
Conformance Testing Plan Deviation Report (Total: 4) Build Audit Report
Type: | An : Level: | Ans Compliance: | Al ¢
of Deviations
Guideline Type Lavel Compliance # of Violations In-Code Supprassions DTP Suppressions
CERT-API00_C Recommendation L3 Compliant with Violations 314 0 0
CERT-API01_C Recommendation L2 Compliant with Violations 7 0 0
CERT-API02 C Recommendation L2 Compliant with Violations 15 0 0
CERT-API03_C Recommendation L3 No rules enabled NA NA NA
CERT-API04_C Recommendation L3 No rules enabled N/A N/A N/A
CERT-API05_C Recommendation L1 No rules enabled NA NA N/A
CERT-APIO7_C Recommendation L3 No rules enabled NA NA NA
CERT-API08_C Recommendation L No rules enabled NA NA N/A
CERT-API09_C Recommendation L3 No rules enabled NA NA NA
CERT-API10_C Recommendation L1 No rules enabled NA NA NA
CERT-ARRO00_C Recommendation L2 No rules enabled N/A N/A N/A
CERT-ARRO1_C Recommendation 8] Compiiant with Violations 5 0 0
CERT-ARR02_C Recommendation L2 © Missing rule(s) in analysis 0 0 0
CERT-ARR30_C Rule L2 @ Compiliant 0 0 0
CERT-ARR32 C Rule L2 ® Compliant [{] (] 0
CERT-ARR36_C Rule L2 & Compliant 1} [} 0

Figure 6-3:
Auto-generated CERT
Compliance Report

26

1SO 26262 Software Compliance in the Automotive Industry

Support for CERT C/C++ in Parasoft C/C++test

Parasoft provides comprehensive support for CERT C and CERT C++ secure coding
standards with complete coverage of all the CERT C/C++ guidelines including both
rules and recommendations that are detectable by static analysis. Checker names,
dashboards, and reports use the CERT naming convention to make conformance and
auditing easier. A CERT conformance dashboard, which includes the CERT risk score,
helps developers focus on the most critical violations.

27

1SO 26262 Software Compliance in the Automotive Industry

CWE - Common Weakness Enumeration

CWE is a list of discovered software weaknesses based on the analysis of reported
vulnerabilities (CVEs). The collection of CVEs and CWEs is a U.S. government-
funded initiative developed by the software community and managed by the MITRE
organization. In its entirety, the CWE list contains over 800 items.

These 800+ items are organized in more usable lists such as the well-known CWE Top
25. The Top 25 lists the most common and dangerous security weaknesses, which

are all exploits that have a high chance of occurring and the impact of exploiting the
weakness is large. The software weaknesses documented by a CWE are the software
implicated in a set of discovered vulnerabilities (documented as CVEs) when analysis
was performed to discover the root cause. CVEs are specific observed vulnerabilities
in software products that have an exact definition of how to exploit them.

The current version of CWE Top 25 is from 2024. An updated Top 25 is currently in
process with improved linking to CVEs and the NVD. Ranking considers real world
information so that it truly represents the Top 25 application security issues today.
As soon as it is released, Parasoft will have updated support for the latest version.

The current CWE Top 25 is listed below.

2024 CWE Top 25 x

Rank
Rank i Name Score u?:(EEsV Ch::ge

2023
1 CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’) 56.92 3 +1
2 CWE-787 Out-of-bounds Write 45.20 18 -1
3 CWE-89 Improper N ization of Special El ts used in an SQL Command ("'SQL Injection") 35.88 4 [v]
4 CWE-352 Cross-Site Request Forgery (CSRF) 19.57 1] +5
5 CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 12.74 4 +3
6 CWE-125 Out-of-bounds Read 11.42 3 +1
7 CWE-78 Improper Neutralization of Special Elements used In an OS Command ("0OS Command Injection’) 11.30 5 -2
8 | CWE-416 Use After Free 10.19 5 -4
9 CWE-862 Missing Authorization 10.11 [v] +2
10 CWE-434 Unrestricted Upload of File with Dangerous Type 10.03 [v] [+]

11 WE-94 Improper Control of Generation of Code ('Code Injection') 7.13 7 +12
12 CWE-20 |Improper Input Validation 6.78 1 -6
13 CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection') 6.74 4 +3
14 CWE-287 Improper Authentication 5.94 4 -1
15 CWE-269 Improper Privilege Management 5.22 0 +7
16 CWE-502 Deserialization of Untrusted Data 5.07 5 -1

17 CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 5.07 0 +13
18 CWE-863 Incorrect Authorization 4.05 2 +6
Table 7-1: 19 CWE-918 Server-Side Request Forgery (SSRF) 4,05 2 0
CWE Top 25 20 CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 3.69 2 -3
21 WE-476 NULL Pointer Dereference 3.58 0 -9
22 | CWE-798 Use of Hard-coded Credentials 3.46 2 -4
23 CWE-190 Integer Overflow or Wraparound 3.37 3 -

24 CWE-400 Uncontrolled Resource Consumption 3.23 0 +13
25 CWE-306 Missing Authentication for Critical Function 2.73 5 -5

28

1SO 26262 Software Compliance in the Automotive Industry

For software teams that have a good handle on the Top 25, there is another grouping
of the next most common and impactful vulnerabilities called the CWE CUSP. Another
way to think of these are the top 25 honorable mentions.

The CWE uses a risk scoring method to rank the Top 25 (and on the CUSP). This score
takes into consideration the technical impact of a software weakness (how dangerous
an exploit of the weakness is in the real world) as measured by the CWSS (common
weakness scoring system). Examples of technical impacts from vulnerabilities may
include denial of service (DoS), distributed denial of service (DDoS), read or write
access to protected information, unauthorized access, and so on.

The details of these methods aren’t too important, but the sorted list is useful in
understanding which vulnerabilities to be concerned about the most. As an example,

it's possible that your application is purely internal and DoS issues aren’t critical for you.

Being able to prioritize the most important weaknesses of your application can help
overcome overwhelm with static analysis violations.

CWE Top 25 and On the Cusp Compliance

Introducing the coding standard compliance process into the team development
workflow is not an easy task. As such, it's important to select a tool that will help
in achieving compliance without imposing too much overhead and without the
requirement for additional manual procedures. The following points are important
decision-making factors when selecting the solution for static analysis.

The CWE Top 25 and its lesser known sibling, On the Cusp, are not coding standards
per se, but a list of weaknesses to avoid, improving security. To be CWE compliant, a
project should be able to prove that it has made reasonable efforts to detect and avoid
these common weaknesses.

29

Figure 7-2:
CWE 4.4 - NET
compliance
dashboard

1SO 26262 Software Compliance in the Automotive Industry

Parasoft’s advanced static analysis tools for C, C++, Java, and .NET are officially
compatible with CWE, providing automated detection of both Top 25 and On the

Cusp weaknesses (and many more). CWE-centric dashboards give users quick access to
standards violations and current project status. A built-in CWE Top 25 configuration is
available for C, C++, .NET, and Java and has full coverage of all the

25 common weaknesses.

2 PARASOFT

Report Center

CWE 4.4 - NET

CWE Compliance - S... == CWE Compliance - P... = CWE Compliance - Weaknesses by Status -

CJ‘/E 47 7% 887 0 GWE-381: Uinchecked Encr Condiion)
Missing rule(s) in b Viclations Deviations CWE-548: Suspicious Comment %
i WE-502 Deveriskioa %

analysis R — CWE-S0 Deserialz eusted

+QRE

! A CWE-35 Cross-Sile Reguest Forger 1]
Bk Quasitz-2021-06-07 521108 Comgliance: CWE 4.5 - NET
Gomghance: CWE 4.5 - NET Cuartz-2021-08.07 mase
Top 5 CWE Software Development Weaknesses = Top 5 GWE Violations - Top 5 CWE Technical impacts -
ne CWEJS6.NCSAE] Moddy Data 02
o o DoS: Unrefatie Execution 40
% 50 Fead Dats 54
52 CWE 50215 £ w 247
CWE- 145 Humeris Esrors » CWE BBVPRD] Execuse Unauthorized Code or Comm. 200
mase. mase. more

CWE Analysis Comgl... = CWE Compliance by Weakness. - CWE Weaknessas by Technical lmpact - Treehap -

65% 1 1%

Fouiees in Compliance: 43
Fusies Enabled: 144
WViolations: 821

Hiococoecoo !

The Parasoft tools include information from the CWRAF risk analysis framework, such
as technical impact, so you can benefit from the same type of prioritization based on
risk and technical impact and weaknesses found in your code.

The On the Cusp guidelines are also available. When enabled, they're treated the
same way as the Top 25 and reports provide the same level of detail. This is useful
since the UL 2900 (formerly Underwriters Laboratory) and FDA recommends the full
list of guidelines (Top 25 + On the Cusp + OWASP Top 10). It's possible to integrate
other guidelines from CWE lists or other standards and guidelines using Parasoft’s
custom checker configurations as needed.

30

1SO 26262 Software Compliance in the Automotive Industry

Parasoft also supports detailed compliance reporting to streamline audit processes.
The web dashboards provide the link to compliance reports that provide a complete
picture of where a project stands. In addition, the CWE Weakness Detection Plan
maps the CWE entry against the checkers that are used to detect the weakness. This
helps illustrate how compliance was achieved by an auditor, and the audit reports are
available to download as PDFs for easy reporting.

L PARASOFT. e T

A Download PDF

CWE Compliance Report

Filter: Quartz - CWE 44 Target Bulld: Cuartz-2021-00-07 Compliance Profile; CWE 4.5 - NET Analysis Tool: Parasoft dofTEST 2021 2 Revislon Date: 2021-11-11

Project Gampliance: &3 Missing rule(s) in analysis

Weakness Detection Plan Deviation Report (Total: 0) Build Audit Report

Compliance: | All w
Weakness Compitance " of Vickalions W of Devialions
CWE-11 Mo rules enabled MiA WA
CWE-12 Mo rules enabled A, MiA
CWE-13 Mo rules enabled A MA
CWE-14 No rules enabled A WiA
CWE-20 9 Not Compliant 4 a
CWE-22 & Compliant Qa 0
CWE-59 o L]
CWE-B4 o a
CWE-77 o 0
CWE-78 & Compliant /] L]
CWE-TS 0 Mot Compliant] a
CWE-BD Q) Wot Compliant z8 a
CWE-B1 Mo rules snabied [y MIA
CWE-82 No nules anabied A, NiA
CWE-83 No rules enabled NiA M
CWE-88 2 Nat Compliant 28 o
CWE-89 & Compliant] 0
CWE-80 & Compliant] 0 »

Figure 7-3:
CWE Compliance
Report

31

Requirements

Figure 8-1:
The V-model of

1SO 26262 Software Compliance in the Automotive Industry

Unit Testing

Software verification and validation is an inherent part of automotive software
development and testing is a key way to demonstrate correct software behavior.
Unit testing is the verification of module design. It ensures that each software unit
does what it's required to do.

In addition, safety and security requirements may require that software units don’t
behave in unexpected ways and are not susceptible to manipulation with unexpected
data inputs.

Validates

Acceptance
Testing

Validates

System
Design

Validates
Architecture Integration

Design Testing
Validates

' Unit Testing

Nl

software development

showing the
relationship between
each phase and the
validation inferred at
each stage of testing.

In terms of the classic V model of development, unit test execution is a validation
practice to ensure module design is correct. ISO 26262 has specific guidelines for what
needs to be tested for unit testing.

ISO 26262 has specific guidelines for testing in accordance with safety integrity levels
where requirements-based testing, interface testing, and resource usage evaluation

are highly recommended for all levels. Fault injection is recommended at lower ASIL
(Automotive Safety Integrity Levels) A and B, and highly recommended at ASIL C and D.
Similarly, the method of driving test cases is also specified with recommended practices.

32

1SO 26262 Software Compliance in the Automotive Industry

Table 10 - Methods for verification of software integration

Methods i
A B C D
la [Requirements-based testa ++ +4 4 4
1b |Interface test + + ++ 4+
1c |Faultinjection testb 3 i 4+ ++
1d |Resource usage evaluationtd ++ ++ ++ ++
Figure 8-2: le |Back-to-back comparison test between model and code, if applicablee + + ++ +4
1SO 26262 Part 6, 1f |Verification of the control flow and data flow + + ++ ++
lg |Static code analysisf ++ +3 I +4+
10.4.2:2018 Ii Static analyses based on abstract interpretations + + + +
Table 11 - Methods for deriving test cases for software integration
testing
ASIL
Methods A 5 ¢ 5
la |Analysis of requirements ++ ++ ++ ++
1b |Generation and analysis of equivalence classes2 + ++ ++ i+
lc |Analysis of boundary valuesb + ++ ++ ++
1d |Error guessing based on knowledge or experiencec + + + +
a2 Equivalence classes can be identified based on the division of inputs and outputs, such that a representative test value
Figure 8-3: can be selected for each class.
1SO 26262 Part 6, b This method applies to parameters’ or variables’ values approaching and crossing the boundaries and out of range values.
10.4.3:2018 ¢ Error guessing tests can be based on data collected through a “lessons learned” process and expert judgment.

Breaking these down individually, consider how each unit test requirement from
ISO 26262 can be satisfied and accelerated with test automation tools like

Parasoft C/C++test. By the way, if you're already using a unit testing framework like
GoogleTest, Cppunit, Boost.Test, or a homegrown one, consider plugging in
C/C++test CT. It adds code coverage, requirements traceability, and report
generation to these popular open testing frameworks.

Unit Test Methods

Requirement-Based Test

These tests directly test functionality as specified in each requirement. Test automation
tools need to support bidirectional traceability of requirements to their tests and the
requirements testing coverage reports to show compliance.

33

1SO 26262 Software Compliance in the Automotive Industry

Interface Test

These tests ensure programming interfaces behave and perform as specified. Test tools
need to create function stubs and data sources to emulate the behavior of external
components for automatic unit test execution.

Fault Injection Test

These tests use unexpected inputs and introduce failures in the execution of code to
examine failure handling or lack thereof. Test automation tools must support injection
of fault conditions using function stubs and automatic unit test generation using a
diverse set of preconditions, such as min, max, and heuristic values.

Resource Usage Evaluation

These tests evaluate the amount of memory, file space, CPU execution or other target
hardware resources used by the application.

Test Case Drivers

Analysis of Requirements

Every requirement drives at minimum a single unit test case. Although test automation
tools do not generate tests directly from requirements, they must support two-way
traceability from requirements to code and requirements to tests. And maintain
requirements, tests, and code coverage information.

Generation & Analysis of Equivalence Classes

Test cases must ensure that units behave in the same manner for a range of inputs,
not just cherry-picked inputs for each unit. Test automation tools must support test
case generation using data sources to efficiently use a wide range of input values.
Parasoft C/C++test uses factory functions to prepare sets of input parameter values
for automated unit test generation.

Analysis of Boundary Values

Automatically generated test cases, such as heuristic values, boundary values, employ
data sources to use a wide range of input values in tests.

34

1SO 26262 Software Compliance in the Automotive Industry

Error Guessing

This method uses the function stubs mechanism to inject fault conditions into tested
code flow analysis results and can be used to write additional tests.

Automated Test Execution and Test Case Generation

Test automation provides large benefits to embedded automotive software. Moving
away from test suites that require a lot of manual intervention means that testing can
be done quicker, easier, and more often.

Offloading this manual testing effort frees up time for better test coverage and other
safety and quality objectives. An important requirement for automated test suite
execution is being able to run these tests on both host and target environments.

Target-Based Testing for Automotive Systems

Automating testing for automotive software is more challenging due to the complexity
of initiating and observing tests on embedded targets—not to mention the limited
access to target hardware that software teams have.

Software test automation is essential to make embedded testing workable on a
continuous basis from host development system to target system. Testing embedded
software is particularly time consuming. Automating the regression test suite provides
considerable time and cost savings. In addition, test results and code coverage data
collection from the target system are essential for validation and standards compliance.

Traceability between test cases, test results, source code, and requirements must be
recorded and maintained. So data collection is critical in test execution.

Parasoft C/C++test is offered with its test harness optimized to take minimal additional
overhead for the binary footprint and provides it in the form of source code, where it
can be customized if platform-specific modifications are required.

35

Figure 8-4:

A high-level view of
deploying, executing,
and observing tests
from host to target.

1SO 26262 Software Compliance in the Automotive Industry

Download/Test [\u ~ AN

Instrumented Application

AN bl ‘

Communication RGeSl JeTel I
D

e

=

One huge benefit that the Parasoft C/C++test solution offers is its dedicated
integrations with embedded IDEs and debuggers that make the process of executing
test cases smooth and automated. Supported IDE environments include eclipse,

VS Code, Green Hills Multi, Wind River Workbench, IAR EW, ARM MDK, ARM DS-5,
TI CCS, Visual Studio, and many others.

Automated Test Case Generation

Unit test automation tools universally support some sort of test framework, which
provides the harness infrastructure to execute units in isolation while satisfying
dependencies via stubs. Parasoft C/C++test is no exception. Part of its unit test
capability is the automated generation of test harnesses and the executable
components needed for host and target-based testing.

Test data generation and management is by far the biggest challenge in unit testing.
Test cases are particularly important in safety-critical software development because
they must ensure functional requirements and test for unpredictable behavior, security,
and safety requirements. All while satisfying test coverage criteria.

Parasoft C/C++test automatically generates test cases like the popular CppUnit format.
By default, C/C++test generates one test suite per source/header file. It can also be
configured to generate one test suite per function or one test suite per source file.

36

1SO 26262 Software Compliance in the Automotive Industry

Safe stub definitions are automatically generated to replace "dangerous" functions,
which include system 1/O routines such as rmdir(), remove(), rename(), and so on.
In addition, stubs can be automatically generated for missing function and variable
definitions. User-defined stubs can be added as needed.

B2 tests L
= = autogenerated
= = Account.Oo

(€] Testsuite_debit.cop
(€] TestSuite_deposit.cop
= AT, oo
(€] TestSute ATM.cop
L] TestSute_flllserfieguest. cpp
(£ TestSute_viewAccount.cop
= Bank.oox
[£] TestSute_sddAccount.cop
[£] TestSuite_Bank.cpp
le] TestSuite_petAccount.cop
[€] TestSute x7eBank.cop
= k= BaseDeplay. 000
TestSute_showBalance. cpp
TestSuite_showInfoTolser.cpp
= indude
= = Account. hao
LE] TestSuibe_Account.cpp
€] TestSuite_getAccounthumber, cop

ks
g

n

e TestSuste getSalance.cpp
‘ L] TestSuite_getPassword.cpp
Figure 8-5: \E] TastGuite seticcounthiumber.cpp
Parasoft C/C++ L& TestSuite setPassword.opp
automated test case = = BaseDuplay hxx
generation, in this [€ TestSute BaseDisplay.cop
case, one test suite L€ TestSuite xTeBassDisplay.opp

per function.

37

1SO 26262 Software Compliance in the Automotive Industry

Regression Testing

As part of most C and C++ software development processes, regression testing is done
after changes are made to software. These tests determine if the new changes impact
the existing operation of the software.

Regression tests are necessary, but they only indicate that recent code changes have
not caused tests to fail. There's no assurance that these changes will work. In addition,
the nature of the changes that motivate the need to do regression testing can go
beyond the current application and include changes in hardware, operating system,
and operating environment.

Regression Testing in Safety-Critical Software

In safety-critical C and C++ software development, validation is critical in proving
correct functionality, safety, and security. Tests are needed to confirm any changes to
the application to ensure functionality and to verify there are no unforeseen impacts
the rest of the system.

If a test case that previously passed now fails, then a potential regression has been
identified. New functionality could be the cause of the failure. If so, the test case may
need to be updated with consideration to those changes in input and output values.

Regression testing of embedded systems also includes the execution of:
» Integration test cases

» System test cases

» Performance test cases

» Stress test cases and more

All previously created test cases may need to be executed to ensure that no regressions
exist and that a new dependable software version release is constructed. This is critical
because each new software system or subsystem release is built or developed upon. If
you do not have a solid foundation the whole thing can collapse.

Parasoft DTP supports the creation of regression testing baselines as an organized
collection of tests and will automatically verify all outcomes. These tests automatically
run regularly to verify whether code modifications change or break the functionality
captured in the regression tests.

38

1SO 26262 Software Compliance in the Automotive Industry

If any changes are introduced, these test cases will fail and alert the team to the
problem. During subsequent tests, DTP will report tasks if it detects changes to the
behavior captured in the initial test.

How to Decide What to Regression Test

The key challenge with regression testing is determining what parts of an application
to test. It is common to default to executing all regression tests when there’s doubt on
what impacts recent code changes have had—the all-or-nothing approach.

For large C and C++ software projects, this becomes a huge undertaking and drags
down the productivity of the team. This inability to focus testing hinders much of the
benefits of iterative and continuous processes, potentially exacerbated in embedded
software where test targets are a limited resource.

A couple of tasks are required here.
» ldentify which tests need to be re-executed.

» Focus the testing efforts (unit testing, automated functional testing, and manual
testing) on validating the features and related code that are impacted by the most
recent changes.

Understand the Impact of Code Changes on Testing With Test
Impact Analysis

Test impact analysis uses data collected during test runs and changes in code between
builds to determine which files have changed and which specific tests touched those
files. Parasoft’s analysis engine can analyze the delta between two builds and identify
the subset of regression tests that need to be executed. It also understands the
dependencies on the modified units to determine the ripple effect the changes have
made on other units.

Parasoft’s Jtest for Java testing and dotTEST for C# and VB.NET software testing
solutions provide insight into the impact of software changes. Each solution
recommends where to add tests and where further regression testing is needed.
See the example change based testing report below.

39

1SO 26262 Software Compliance in the Automotive Industry

= PARASOFT. v @~ admin v

Change Based Testing - Files

Filter: Parabank-v3 Baseline Build: PARABANK3-20170503 Target Build: PARABANK3-21170619 Coverage Tag: Parabank-All

Totals -- Pass: 172 Fail: 7 Incomplete: 10 Retest: 6

File Name Pass Fail v Incomplete Retest

ParaBankBeanPostProcessor.java _— 10 1
Transaction.java _— 10 5
HistoryPoint.java _— 0 0
BankManagerimpl.java _— 9 6
JdbcAdminDao.java _— 9 2
AbstractLoanProcessor.java _— 0 1
LoanRequest.java _— 2 1
JdbcTransactionDao.java _— 10 5!
AdminManagerimpl.java _— 4 1
AvailableFundsLoanProcessor.java _— 0 1
LoanResponse.java _— 2 1
CombinedLoanProcessor.java _— 0 0
ConfigurableLoanProvider.java _ _ 2 1
LocalLoanProvider.java _ _ 0 0

Figure 9-1:

/;Z:;G'T"e'z:nizzft Developers and testers can get a clear understanding of the changes in the codebase
from Parasoft DTP between builds using the Process Intelligence Engine (PIE) within Parasoft DTP

shows testedandnot combined with our proprietary coverage analysis engines:

tested areas of the

code. » Jtest for Java

» dotTEST for C# and VB.NET
With this combination, teams can improve efficiency and achieve the promise of Agile.

This form of smart test execution is called test impact analysis. It's sometimes referred
to as change based testing.

40

1SO 26262 Software Compliance in the Automotive Industry

Software Integration Testing

Integration testing follows unit testing with the goal of validating the architectural
design. Integration testing can be done bottom-up and top-down with a combination of
approaches likely in many software organizations.

Bottom-Up Integration

This testing begins with unit testing, followed by tests of progressively higher-level
combinations of units called modules or builds. The approach follows a version of the
testing pyramid where unit testing forms the foundation of a thorough testing regime.
Integration tests follow the integration of units into larger architectural blocks.

Top-Down Integration

In this testing, the highest level modules are tested first. Progressively, testing of lower-
level modules follows. This approach assumes significant subsystems are complete
enough to include and test as a whole.

Figure 10-1: The V-model is good for illustrating the relationship between the stages of

The V-model of development and stages of validation. At each testing stage, more complete portions of
software development he software are validated against the phase that defines it.

showing the

lationship bet .
e "h OZS P ed‘ivhee" The V-model might imply a waterfall development method. However, there are ways to
each pnase an e

validation inferredat INCOrporate Agile, DevOps, and CI/CD into this type of product development while still
eachstage of testing. being standards-compliant.

Validates

Requirements Acceptance

Testing

Validates

_ Validates
Architecture Integration

Design Testing
Validates \

Linit Testing

41

1SO 26262 Software Compliance in the Automotive Industry

While the act of performing tests is considered software validation, it’s supported by a
parallel verification process that involves the following activities to make sure teams are
building the process and the product correctly:

» Reviews

» Walkthroughs
» Analysis

» Traceability
» Test

» Code coverage and more

The key role of verification is to ensure building delivered artifacts from the previous
stage to specification in compliance with company and industry guidelines.

Integration and System Testing as Part of a Continuous
Testing Process

Performing some level of test automation is foundational for continuous testing. Many
organizations start by simply automating manual integration and system testing (top-
down) or unit testing (bottom-up).

To enable continuous testing, organizations need to focus on creating a scalable test
automation practice that builds on a foundation of unit tests, which are isolated and
faster to execute. Once unit testing is fully automated, the next step is integration
testing and eventually system testing.

Continuous testing leverages automation and data derived from testing to provide
real-time, objective assessment of the risks associated with a system under
development. Applied uniformly, it allows both business and technical managers
to make better trade-off decisions between release scope, time, and quality.

Continuous testing isn’t just more automation. It’s a larger reassessment of software
quality practices that are driven by an organization’s cost of quality and balanced
for speed and agility. Even within the V-model used in safety-critical software
development, continuous testing is still a viable approach, particularly during phases
of testing, for example, during unit testing and integration testing.

The diagram below illustrates how different phases of testing are part of a continuous
process that relies on a feedback loop of test results and analysis.

42

1SO 26262 Software Compliance in the Automotive Industry

Policy Management Defect Prevention

Defect Remediation Tasks

i

Requirements
Defined

J' “*| Development [®

Development Testing Integration Testing

System Testing

Development

Static Analysis

UnitjCompanent

Peer Review

Code Coverage

o & ;
= : Bamboo Test Environment Access
- i .
v
- | = AR Mo Go
ﬁ TeamC |ty .qﬁ ?.*'{ _ Bum_nf:.s
% Release Path Decision

Figure 10-2:
A continuous

Parasoft Analysis and Reporting in Support of Integration and
System Testing

testing cycle

Parasoft test automation tools support the validation (actual testing activities) in terms
of test automation and continuous testing. These tools also support the verification

of these activities, which means supporting the process and standards requirements.
Key aspects of safety-critical automotive software development are requirements
traceability and code coverage.

Two Way Traceability

Requirements in safety-critical software are the key driver for product design and
development. These requirements include functional safety, application requirements,
and nonfunctional requirements that fully define the product. This reliance on
documented requirements is a mixed blessing because poor requirements are one of
the critical causes of safety incidents in software. In other words, the implementation
wasn't at fault, but poor or missing requirements were.

Automating Bidirectional Traceability

Maintaining traceability records on any sort of scale requires automation. Application
lifecycle management tools include requirements management capabilities that are
mature and tend to be the hub for traceability. Integrated software testing tools like
Parasoft complete the verification and validation of requirements by providing an
automated bidirectional traceability to the executable test case. This includes the pass
or fail result and traces down to the source code that implements the requirement.

43

1SO 26262 Software Compliance in the Automotive Industry

Parasoft integrates with market-leading requirements management tools or ALM
systems such as IBM DOORS Next, PTC Codebeamer, Polarion from Siemens, Atlassian
Jira, Jama Connect, and others. As shown in the image below, each of Parasoft’s test
automation solutions, C/C++test, Jtest, dotTEST, SOAtest, and Selenic, used within the
development life cycle support the association of tests with work items defined in these
systems, such as requirements, defects, test case/test runs. Traceability is managed
through Parasoft DTP's central reporting and analytics dashboard.

Code Analysis Non-functional Mon-functional

Test Automation Test Automation

Requirements equirements
- Security -TDD « APl Test - Load/Performance - APl Test « Load/Performance
- Reliability « Unit Test = Unit Test Testing « Unit Test Testing
~ -~ A . —~ . ~
€++> C/CH+test <> Jtest < » > dotTEST = < SOAtest -Z:-/) Selenic = £ SOAtest -Z:-) Selenic

999 QWY ¥

Management [—
System Bidirectional Traceability

Traceability Reporting

Figure 10-3:
Requirements

|
|
traceability and |
|

reporting
Qs g sy e i =
Parasoft DTP correlates the unique identifiers from the management system with:
» Static analysis findings
» Code coverage
» Results from unit, integration, and functional tests
[[pe——
&« O @ g 02 paranch oompl & i ;-4 ¥ £ o=
B Automotive ECU o T | o | | Syt
8 201a s 17 |k
+ Total Tests 83.3% » Requirements -
g " Bui Aprid_3
= 35/42 M ! g
coseBeamer Requirements - Pia = B Tast - Build Administration == | codeSeamer Tesl Co.. = Viclations -
Figure 10-4: g ' : S .
Parasoft provides a ' = : e : ’ .
reporting dashboard i i - - : 6% ekt
that capture the o ‘ : ' b
[3
project’s testing
status, correlation " T o — -
to requirements and 2.0
progress toward = 2RI B No data avaitable
Dote: J070-04-08 Pl run on analyss.
completion. MOLOD GZSITAM | cosengemi A 3 Processod
L hbearrogemewee]

Results are displayed within Parasoft DTP’s traceability reports and sent back to the
requirements management system. They provide full bidirectional traceability and
reporting as part of the system’s traceability matrix.

44

1SO 26262 Software Compliance in the Automotive Industry

Ae ¥uwat 1 [Fagh Lewel Requirement rores? [ow Level Requirement Specmication @ ¥ Lew I3 Test canes
Specificasion i Tead Cases
B s roes ’ I 12 10287) S i B oo
]
@
Figure 10-5: '
codebeamer o
traceability matrix.
System requirements
to high-level
requirements to [¥]
low-level requirement
to test cases and test a
results.
The traceability reporting in Parasoft DTP is highly customizable. The following image
shows a requirements traceability matrix template for requirements authored in
Polarion that trace to the test cases, static analysis findings, the source code files, and
the manual code reviews.
T2 PARASOFT ¥ @- sma-
Polarion Requirement Traceability
Filtar: Autor T Target Bulld: ALM
" © © B & O ®
| |
|
| |
. E
|
| |
. E
. E
Figure 10-6: 'L
Requirements e & as
traceability matrix] M
template from L
Parasoft DTP L
integrated with L

Siemens Polarion.

The bidirectional correlation between test results and work items provides the basis
of requirements traceability. Parasoft DTP adds test and code coverage analysis

to evaluate test completeness. Maintaining this bidirectional correlation between
requirements, tests, and the artifacts that implement them is an essential component
of traceability.

45

1SO 26262 Software Compliance in the Automotive Industry

Code Coverage

Code coverage expresses the degree to which the application’s source code is exercised
by all testing practices, including unit, integration, and system testing — both automated
and manual.

Collecting coverage data throughout the life cycle enables more accurate quality and
coverage metrics, while exposing untested or under tested parts of the application.
Depending on the safety integrity level (ASIL in ISO 26262), the depth and
completeness of the code coverage will vary.

Application coverage can also help organizations focus testing efforts when time
constraints limit their ability to run the full suite of manual regression tests. Capturing
coverage data on the running system on its target hardware during integration and
system testing completes code coverage from unit testing.

Benefits of Aggregate Code Coverage

Captured coverage data is leveraged as part of the continuous integration (Cl) process,
as well as part of the tester’s workflow. Parasoft DTP performs advanced analytics

on code coverage from all tests, source code changes, static analysis results, and test
results. The results help identify untested and undertested code and other high risk
areas in the software.

Analyzing code, executing tests, tracking coverage, and reporting the datain a
dashboard or chart is a useful first step toward assessing risk, but teams must still
dedicate significant time and resources to reading the tea leaves and hope that they've
interpreted the data correctly.

Understanding the potential risks in the application requires advanced analytics
processes that merge and correlate the data. This provides greater visibility into the
true code coverage and helps identify testing gaps and overlapping tests. For example,
what is the true coverage for the application under test when your tools report
different coverage values for unit tests, automated functional tests, and manual tests?

The percentages cannot simply be added together because the tests overlap. This is
a critical step for understanding the level of risk associated with the application under
development.

46

1SO 26262 Software Compliance in the Automotive Industry

L PARASOFT

Repart Center

@ B = X 2 +

Dashicards Add Dashtoard Share Downicad PDF Retiesh Widgets Add Wiiget Daiots Dasnboand

Managing Change

Static Anabysls Fies.Changed = - Conarags. = Tes=Changed = Viclatons - Changed = Viclasons -

ANML snhanced Satic Anadysis A 4
Functional Test Rty 91 6 "
Complata Cods Covenge Total Changes 64.3% =

Matrice Pacstank_SAUIT 222007 "3
Paratacs_BALIT_ 3122025
T v Rapcet . . - - e — o ol 4 e
AUTOSAR Ce+14 Complance . .
MESRAC 2012 Compimece ~
- s
SE| CERT C Complance oo i
e 16.9%
SE1 CERT C++ Compiance - —a
UL 2000 - NET
OWASP Top 10 2017 « NET
GWE Top 28 2010 - NET o = _— - A i G BN -

CWE 4.0~ NET

PCI D35S - NET 64,3% Tam ™ J\/ -
OWASE Top 10 2017 - Java o 1
CWE Top 25 2010 - dava e e —/\L)
CWE 4.0 (Top 28+ on P cuss) — o : 4 E 3 = '
Figure 10-7: s T b 'E“:‘
CHSA-ASD-STIC Raview " P’
Parasoft DTP ks il Tk 169 : " '
reporting and s

Resouse Groups Exsmples =
-

2871868
Parstani_SA.UT_3-3-7017 [Parsbans_SAUT_313-3000 P ST AL Parstars SAAIT 233017 | Parasark SAUT_313299%

i

analytics dashboard JE—

Accelerating Integration and System Testing With Parasoft
Test Automation Tools

Parasoft’s software test automation tools accelerate verification by automating the many
tedious aspects of record keeping, documentation, reporting, analysis, and reporting.

» Two-way traceability for all artifacts ensures requirements have code and tests to
prove they are being fulfilled. Metrics, test results, and static analysis results are
traced to components and vice versa.

» Code and test coverage verifies all requirements are implemented and makes sure
the implementation is tested as required.

» Target and host-based test execution supports different validation techniques as
required.

» Smart test execution manages change with a focus on tests for only code that
changed and any impacted dependents.

» Reporting and analytics provides insight to make important decisions and keeps
track of progress. Decision making needs to be based on data collected from the
automated processes.

» Automated documentation generation from analytics and test results support
process and standards compliance.

» Standards compliance automation reduces the overhead and complexity by
automating the most repetitive and tedious processes. The tools can keep track of
the project history and relating results against requirements, software components,
tests, and recorded deviations.

47

1SO 26262 Software Compliance in the Automotive Industry

Software System Testing

System testing tests the system as a whole. Once all the components are integrated,
the entire system is tested rigorously to verify it meets the specified functional, safety,
security, and other nonfunctional requirements.

Specialized testing teams perform this type of testing in safety-critical software.
System testing falls within the scope of black box testing. As such, it shouldn't require
any knowledge of the inner design of the code or logic.

An important distinction with system level testing is the system is tested in an
environment that is close to the production environment where the application will
be deployed. At this stage, specific safety functions are validated and system wide
security testing is run.

Automotive System Testing at the Service Level

Individual systems within an automobile may not be considered part of a service.
However, connectivity into larger systems means they should be. For example, in
an automobile, the role of the engine control unit (ECU) alone is to ensure proper
combustion and emissions in the engine, but the car is tracking fuel economy, using

Figure 11-1:
Engine Control the ECU, and reporting it to a central server over a wireless connection.
Unit (ECU) and user
services all connected 1 DiS Mileage data is then used to plan routes and estimate operating costs. Suddenly,
to the cloud the ECU is a critical leaf node in a business decision making process.
: [fn'\f‘"
EMERGEMCY
SERVICES
® A
MAIGATION Era
OPS
-
i & ® o H
ENGINE DASH W ENVIROMMEMNTAL BRAKE

CONTROLS COMNTROLS

1 F "] 4 &

48

1SO 26262 Software Compliance in the Automotive Industry

Instead of viewing system quality in terms of meeting individual device requirements,

the scope is broadened to consider the quality of the services provided. Testing at the
service level ensures nonfunctional requirements are met. For example, performance

and reliability are difficult to assess at the device level or during software unit testing.

Service based testing can simulate the operational environment of a device to provide
realistic loads. In the HVAC example, the new temperature sensor can be tested with

varying request rates to see if it meets performance requirements.

Security is a significant concern in automotive systems. Cyber attacks most likely
originate from the network itself by attacking the exposed APIs. Service based testing
can create simulated environments for robust security testing, either through fuzzing
(random and erroneous data inputs) or denial-of-service attacks. A new temperature
sensor in the HVAC example might operate correctly with expected requests, but crash
when overloaded. An attacker might be able to exploit this to overload the system and
cause an outage.

Virtual Test Environment and Service Level Testing

A real test lab requires the closest physical manifestation of the environment in which
an automobile is planned to work. Even in the most sophisticated lab, it's difficult to
scale to a realistic environment. A virtual lab fixes this problem.

Virtual labs evolve past the need for hard-to-find (or non-existent) hardware
dependencies. They use sophisticated service virtualization with other key test
automation tools.

Service Virtualization

Simulates all the dependencies needed by the device under test to perform full
system testing. This includes all connections and protocols used by the device with
realistic responses to communication. For example, service virtualization can simulate
an enterprise server backend that an automobile communicates with. Similarly,
virtualization can simulate a dependent system, like traffic or weather data, in a
realistic manner.

Service and API Testing

Provide a way to drive the system under test in a manner that ensures the services it
provides (and APIs provided) are performing flawlessly. These tests can be manipulated
via the automation platform to perform performance and security tests as needed.

49

1SO 26262 Software Compliance in the Automotive Industry

Runtime Monitoring

Detects errors in real time on the system under test and captures important trace
information.

Test Lab Management and Analytics

Provide the overarching control of the virtual labs. Once virtualized, the entire lab setup
can be replicated as needed and test runs can be automated and repeated. Analytics
provide the necessary summary of activities and outcomes.

Parasoft SOAtest and Virtualize for Service Level Testing of
Automotive Software

Developers can build integrations earlier, stabilize dependencies, and gain full control
of their test data with Parasoft Virtualize. Teams can move forward quickly without
waiting for access to dependent services that are either incomplete or unavailable.
Companies can enable partners to test against their applications with a dedicated
sandbox environment. These Parasoft solutions are particularly valuable in the
development and testing of software-defined vehicles (SDVs).

Parasoft SOAtest delivers fully integrated APl and web service testing tools that
automate end-to-end functional API testing. Teams can streamline automated testing
with advanced functional test creation capabilities for applications with multiple
interfaces and protocols.

SOAtest and Virtualize are well suited for network based system-level testing of various
types, including the following:

» Comprehensive protocol stack that supports HTTP, MQTT, RabbitMQ, JMS, XML,
JSON, REST, SOAP, and more.

» Security and performance testing during integration and system testing with
integration into the existing CI/CD process.

» End-to-end testing that combines API, web, mobile, and database interactions into
virtual test environments.

50

Figure 12-1:
1SO 26262 Part 6,
9.4.4:2018

1SO 26262 Software Compliance in the Automotive Industry

Structural Code Coverage

Collecting and analyzing code coverage metrics is an important aspect of safety-critical
automotive software development. Code coverage measures the completion of test
cases and executed tests. It provides evidence that validation is complete, at least as
specified by the software design.

It also identifies dead code. This is code that can logically never be reached. It
demonstrates the absence of unintended behavior. Code that isn’t covered by any test
is a liability because its behavior and functionality are unknown.

The amount and extent of code coverage depend on the safety integrity level.
The higher the integrity level, the higher the rigor, and, inevitably, the number and
complexity of test cases.

The following table shows the recommendations for types of code coverage at each
ISO 26262 ASIL.

Table 9 - Structural coverage metrics at the software level

Methods e
A B C D
la |Statement coverage ++ ++ + +
1b |Branch coverage + 4 4 ++
lc |MC/DC (Modified Condition/Decision Coverage) + + + ++

Statement coverage requires that each program statement be executed at least once
and is recommended at the lower ASIL levels. Branch and MC/DC coverage encompass
statement coverage.

Branch coverage ensures that each decision branch (if-then-else constructs) is
executed.

Modified condition/decision coverage (MC/DC) requires the most complete code
coverage to ensure test cases execute each decision branch and all the possible
combinations of inputs that affect the outcome of decision logic. For complex logic,
the number of test cases can explode, so the modified condition restrictions are used
to limit test cases to those that result in standalone logical expressions changing. See
this tutorial from NASA.

51

1SO 26262 Software Compliance in the Automotive Industry

Advanced unit test automation tools such as Parasoft C/++test provide all these code
coverage metrics. C/C++test automates this data collection on host and target testing
and accumulates test coverage history over time. This code coverage history can span
unit, integration, and system testing to ensure coverage is complete and traceable at all
levels of testing.

Increasing Code Coverage With Automated Unit Test Case
Creation

The creation of productive unit tests has always been a challenge. Functional safety
standards compliance demands high-quality software, which drives a need for test
suites that affect and produce high code coverage statistics. Teams require unit test
cases that help them achieve 100% code coverage.

This is easier said than done. Analyzing branches in the code and trying to find
reasons why certain code sections are not covered continues to steal cycles from
development teams.

Parasoft Coverage Advisor

Parasoft C/C++test resolves the coverage gaps in test suites. Parasoft discovered how
to use advanced static code analysis (data and control flow analysis) to find values for
the input parameters required to execute specific lines of uncovered code.

In complex code, there are always those elusive code statements of which it is
exceedingly difficult to obtain coverage. It’s likely there are multiple input values with
various permutations and possible paths that make it mind twisting and time consuming
to decipher. But only one combination can get you the coverage you need. Parasoft
makes it easy to obtain coverage of those difficult to reach lines of code.

Select the line of code you want to cover, and the Coverage Advisor will tell you what
input values, global variables, and external calls you need to stimulate the code and
obtain coverage.

52

1SO 26262 Software Compliance in the Automotive Industry

I it sasiipaala(int sainSentorSipnal, ist coSensorSignal) 2 Lindis Teping CileT
i - . Rivers Fie
res = @
i (semsoritatusl) |= o) | u b [« 11
lacal_error("Temp senior failere™): ey Do las BO0R F3
Lo U H Cipen Type Fspraschy (]
1 olTe
i (Ivalidator (mainsensorsignal) || Ivalidetor(cosensorsignal)) { oo i
local_error{™Signals could not be valideted™); e e
ratwrn SAFE_DEFAULT; O Typar Himpd i ey CwisT
1 Expione Wacro Expanson]
Xl if (mainSencorSipnal « UPPER_LIMIT MAIN SIGRAL LK Tos i Secnntr ror aser Ciri=Ea
cofieniorSignal ¢ UPPER_LINIT_(OSToNAL) oo W ,
{
o (mainSensorsipnal ¢ ol Sigaal) | S I At Shafta ' ¢
return malnSensorSipnal « cofensorSignal; i s |
1 ' ‘
1
res; Parine Tl
1) O Fim [+ 1%
Senste Alashins s |
Redgonor 1 I
R Lt Tty Denchationg |
Rederenoes
A Finusheedd Graerh Tevt ¥
IT/AT Tewty Sexiconded Make Targets ;
et I Pwaoft B 3 Test Using “Fiecommended Ruter™ 1
Rut A4 + @ Test Hahory
it s v & TestUsing
' Seope Praxliie Ax voA S Bathor 8 Line
+ Enecytien e 5o Al Shovw Bewt Case(s) RO Covened plemment
= Bapart 8 Publish al Show in Coverage Adviscr
Team 3
Figure 12-2:
Invoking Coverage
Advisor by right- The figure below shows an analysis report providing the user with a solution.

clicking on the line of .y
e The Pre-conditions field expresses:

code.
» The range and input values for mainSensorSignal and coSensorSignal
» The expected outputs from the external calls
Upon creating the unit test case with these set parameter values and stubs for external
calls, the user will obtain coverage of the line selected, plus the additional lines
expressed in the Expected Coverage field.
& Flow Analysis fast .. @ Stubs il Coverage &l Coverage Advisor i | & Console =8
Pre-conditions for executing line 13 in processor.cpp - process(int, Point =, int)
~ Solution #1
Required dependencies:
© Function parameter(s); int x
Pre-conditions:
2 x>100
Expected coverage:
#d 6lines (6.8,9,10,12.13)
- Solution #2
Required dependencies:
O External function call(s): int calculateValue(int)
© Function parameter(s): Point * point, int x
Pre-conditions:
S x <= 100
) O point!=0
Figure 12-3:

O calculateValue(int) > point->x

Expected coverage:
&l 5 lines (6,89, 12, 13)

Two test case
solutions provided by
Coverage Advisor.

53

1SO 26262 Software Compliance in the Automotive Industry

Requirements and the Traceability Matrix

In ISO 26262, requirements management is a mandatory part of the software
development process and the traceability of those requirements to implementation—
and subsequently, proof of correct implementation need to be ensured.

Requirements traceability is defined as “the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction (i.e., from its origins, through
its development and specification, to its subsequent deployment and use, and through
periods of on-going refinement and iteration in any of these phases).”

In the simplest sense, requirements traceability is needed to keep track of exactly what
you're building when writing software. It is used to verify requirements, which means
checking documentation and design specifications against requirements to ensure the
software does what it's supposed to and that you're only building what is needed.

Traceability works both to prove you satisfied the requirements and to identify what
doesn't. If there are architectural elements or source code that can’t be traced to a
requirement, then it’s a risk and shouldn’t be there. The benefits go beyond providing
proof of the implementation. Disciplined traceability is an important visibility into
development progress.

It's important to realize that many requirements in safety-critical software are derived
from safety analysis and risk management. The system must perform its intended
functions, of course, but it must also mitigate risks to greatly reduce the possibility

of injury. Moreover, in order to document and prove that these safety functions are
implemented and tested fully and correctly, traceability is critical.

Tracing requirements isn't simply linking a paragraph from a document to a section of
code or a test. Traceability must be maintained throughout the phases of development
as requirements manifest into design, architecture, and implementation. Consider the
typical V diagram of software.

Requirements Acceptance

Verification Verification Testing

Verification Verification

L’\ Architecture

Design Integration

Verification Verification Testing

Verification
L’\ Module
Design Unit Testing

diagram shows how
traceability goes {
forward and backward C-nding
through each phase of

!Gotel O.C.Z and Finklestein A.C.W., "An analysis of the requirements traceability problem", in Proceedings of ICRE94,

development.
1st International Conference on Requirements Engineering, Colorado Springs, Co, IEEE CS Press, 1994

Figure 13-1:
The classic V

54

Requirements

Figure 13-2:
Various levels

of requirements
are validated at
various phases

of development
using different test
methods.

1SO 26262 Software Compliance in the Automotive Industry

Each phase drives the subsequent phase. In turn, the work items in these phases
must satisfy the requirements from the previous phase. System design is driven by
requirements. System design satisfies the requirements, and so on.

Requirements traceability management (RTM) proves that each phase is satisfying the
requirements of each subsequent phase. However, this is only half of the picture. None
of this traceability demonstrates that requirements are being met. That requires testing.

Validates

Acceptance
Testing

Validates

Validates

Architecture Integration
Design Testing

Validates

Unit Testing

In the V diagram shown above, each testing phase verifies the satisfaction of the
specifications associated with the corresponding design/implementation phase. In the
example, you see:

» Acceptance testing validates requirements.
» System testing validates system requirements.
» Integration testing verifies architecture design.

» Unit testing verifies module design, and so on.

55

]
%]
%]

Figure 13-3:

Requirements
traceability matrix
example in PTC
Codebeamer

1SO 26262 Software Compliance in the Automotive Industry

Software development on any realistic moderate to large scale will have many
requirements, complex design and architecture, and possibly thousands of units and
unit tests. Automation of RTM in testing is necessary, especially for safety-critical
software that requires documentation of traceability for certifications and audits.

Requirements Traceability Matrix

A requirement traceability matrix is a document that illustrates the satisfaction of
requirements with a corresponding work item, like a unit test, module source code,
architecture design element, and so on.

The matrix is often displayed as a table, which shows how each requirement is
“checked off” by a corresponding part of the product. Creation and maintenance of
these matrices are often automated with requirements management tools with the
ability to display them visually in many forms and even hard copy, if required.

Below is a requirements traceability matrix example from Intland codebeamer. It shows
system level requirements decomposed to high-level and low-level requirements, and
the test cases that verify each.

¥ B gt el Unperwrmans Ypaofusson il b [Lo Lirest Bpguisemani Spacitcatos [Tewt Coseapm 3 I Test Casea
¥
¥]
]
] |
]
[+]
] [}
]

Automating Bidirectional Traceability

Maintaining traceability records on any sort of scale requires automation. Application
lifecycle management tools include requirements management capabilities that are
mature and tend to be the hub for traceability. Integrated software testing tools like
Parasoft complete the verification and validation of requirements by providing an
automated bidirectional traceability to the executable test case, which includes the
pass or fail result and traces down to the source code that implements the requirement.

56

1SO 26262 Software Compliance in the Automotive Industry

Parasoft integrates with market-leading requirements management and Agile planning
systems such as IBM DOORS Next, PTC Codebeamer, Polarion from Siemens, Jama
Connect, Atlassian Jira, and Azure DevOps Requirements.

As shown in the image below, each of Parasoft’s test automation tools, C/C++test,
C/C++test CT, Jtest, dotTEST, SOAtest, and Selenic, support the association of tests
with work items defined in these systems, such as requirements, stories, defects,
and test case definitions. Traceability is managed through the central reporting and
analytics dashboard, Parasoft DTP.

. Deploy / :
Devemp !BUIld

Nonfunctional

Non-functional

» Test Automation
Requirements

Code Analysis Test Automation Test Automation

Requirements

= TDD
* Unit Test

* APITest
* Ul Test

* APl Test

* Security
* Reliability

* Load/Performance
Testing

* Load/Performance
Testing

o

Y| .\ L 4 | ¢ 4
| | N -
Figure 13-4:
Parasoft provides
bidirectional Parasoft DTP correlates the unique identifiers from the management system with static

traceability from analysis findings, code coverage, and test results from unit, integration, and functional

k ite to test
worktfrems 70 s tests. Results are displayed within Parasoft DTP’s traceability reports and sent back to

cases and test

results, displaying the requirements management system. They provide full bidirectional traceability and
traceability reports reporting as part of the system’s traceability matrix.
with Parasoft DTP and

reporting results back The traceability reporting in Parasoft DTP is highly customizable. The following image
to the requirements . e
shows a requirements traceability matrix template with requirements authored in
Polarion that trace to the test cases, static analysis findings, the source code files,
and the manual code reviews.

management system.

57

1SO 26262 Software Compliance in the Automotive Industry

i |
& ¢ % %] +
Drashboard Add Dashbeard Share Download POF Refresh Widgets Add Widget
Defaud Dashboard Fiter - Target
z : 150 26262 Compliance v b | ebarmii | s o |
Partioho Dashboard
e Analysts AUTDSARGmmhrL - Ambmwhl. bl Viclations - Changed = Tﬂ.ﬂﬂm 2
i -
AUML enfanced Stc Andlyss AUTESAR . 143
Functichal Test Results o, v . F
81.9%, e o 83%
Compiete Code Coverage Mot Compltant = Passd
. 4550 e Tests 4554
Meircs
Buit b0 20-05-44 299/ 365 |
Managing Change Complance: AUTOSAR G414 Sitcd *
Traceabity Report MHSRA Compiiance - = MISRA Complance -... = Wiolations by Severities - Total Tests = _Code Coverage =
150 26262 Complianca
DO-17B/C Compiiance. A 368 T 80
IEC 62304 Compliance 74.3% Total T 64.3%
IEC 51508 Complisnca m B>
EN 50178 Compinnce st BeFI08-04 1277171 = ’ T —— 2.8K14.3K
Complancs: MISRA C 2012 e ZOED-0G-04 Parabank_SA-LT_3-17-200
AUTOSAR C++14 Complianca .
CERT Compiisnes -, *= | GERT Compliance - .., = Viciazians acrasa busids - Test runs Beross budds e
MISRA C 2012 Compliance .
SE1 GERT G Compliancs ['_:E/.\RT B
SEI CERT C++ Gompliance 92 8%, i
CAVASP Top 102017 - NET !
CWE Top 25 2019 - NET Bk D ARMAE0 TTraz 209 4 —— —
CWE 4.0- NET Gomgliance: SE1CERT G+ 2018 Sodeinokos
PCIDSS - NET AUTOSAR Compliance - Guidelines by Status. = MISRA Compliance - Guldelines by Stius - Code coverage across bulds -
OWASP Top 10 2017 - Java
CWE Top 25 2019 - Java 1.9K 0 1.7K 0
CWE 4.0 - Java Viclations Deviations Violations Dewiations “—/
PEIDSS - Java Wl B 220-08.54 Bk o I020.05-08
Complance: AUTOBKR Crs 14 Comgilance: WERAC 2012 M : ’
My Quaity Tasks
Maotadata Examplan

Figure 13-5:
Requirements

traceability matrix
template from
Parasoft DTP
integrated with
Polarion ALM.

The bidirectional correlation between test results and work items provides the basis
of requirements traceability. Parasoft DTP adds test and code coverage analysis

to evaluate test completeness. Maintaining this bidirectional correlation between
requirements, tests, and the artifacts that implement them is an essential component
of traceability.

Bidirectional traceability is important so that requirement management tools and other
lifecycle tools can correlate results and align them with requirements and associated
work items.

The complexity of modern software projects requires automation to scale requirements
traceability. Parasoft tools are built to integrate with best-of-breed requirement
management tools to aid traceability into test automation results and complete the
software test verification and validation of requirements.

58

1SO 26262 Software Compliance in the Automotive Industry

A Unified, Fully Integated Testing
Solution for C/C++ Software
Development

Tool Qualification for Safety-Critical Automotive
Systems

Safety-critical software development standards like ISO 26262 require that
manufacturers prove that the tools they're using to develop software provide correct
and predictable results. The process of providing such evidence is known as tool
qualification. While it's a necessary process, tool qualification is often a tedious and
time-consuming activity that many organizations fail to plan for.

The end deliverable is proof in the form of documentation, but there is more to the
qualification process than just delivering a big pile of static documentation. Parasoft’s
Qualification Kits for C/C++test include a convenient tool wizard that brings automation
into the picture and reduces the time and effort required for tool qualification.

Pre-Certified Tools

Tool qualification needs to start with tool selection, ensuring you are using a
development tool that is certified by an organization, such as TUV SUD. This will
significantly reduce the effort when it comes to tool qualification.

Parasoft C/C++test and C/C++test CT are certified by TUV SUD for functional safety
according to IEC 61508, IEC 62305, EN 50128/EN 50716, and ISO 26262 standards for
both host based and embedded target applications. The fully integrated testing solution
for

C/C++ software development paves the way for a streamlined qualification of static
analysis, unit testing, and coverage requirements for the safety-critical standards.

Pre-certified tools are often enough for lower safety integrity levels such as ASIL A
and B. However, for ASIL C and D, tool qualification requires further validation, usually
requiring verification and validation of the tool itself on target system hardware.

Tool Qualification Requires More Testing

Traditionally, tool qualification has meant significant amounts of manual labor, testing,
and documenting to satisfy a certification audit. But this documentation-heavy process
requires manual interpretation and completion. As a result, it's time consuming and

59

https://www.parasoft.com/solutions/qualification-kits
https://www.parasoft.com/products/ctest

Figure 14-1:
Functional
compliance selection
with additional use
case settings

1SO 26262 Software Compliance in the Automotive Industry

adds to an organization's already heavy testing schedule and budget.

Parasoft leverages its own software test automation tool qualification with
Qualification Kits, which include a documented workflow to dramatically reduce the
amount of effort required.

Benefits of Using the Qualification Kits

» Automatically reduce the scope of qualification to only the parts of the tool in use.
» Automate tests required for qualification as much as possible.

» Manage any manual tests as eloquently as possible and integrate results alongside
automated tests.

» Automatically generate audit-ready documentation that reports on exactly what’s
being qualified — not more, not less!

Qualify Only the Tools Used

There should be no need to do any extra work for qualifying capabilities not used
during development. Reducing the scope of testing, reporting, and documentation is
a key way to reduce the qualification workload.

The example below shows the use case of C/C++ static code analysis being used to
check compliance to the MISRA C 2012 standard, as part of ISO 26262 qualification.
The tool then selects only the parts of the qualification suite needed for this function.

Use Cases of C++test: Standard and Level Selection for Qualification
[T] JSF Compliance M 15026262
W MISRA C 2023 Compliance [] IEC61508
[] Static Analysis - Custom [] ENS0128
[] Unit Testing with Branch Coverage [] DpO178C
[] Unit Testing with MCDC Coverage
& . [] Dpo330
1 unit Testing with Statement Coverage

60

1SO 26262 Software Compliance in the Automotive Industry

- O >
Feature Selection
Please select for each use case which features it uses
v §1 Tool C++test (TCL3) ~ [m] i Feature Coding Standards Analysis ~

5}3 Use Case JSF Compliance (TCL3)

v [m] H Feature Coding standards analysis execution
JE Feature Running coding standards analysis on a project (testable)
JH' Feature Running coding standards analysis on a project source and header files (tes
JE Feature Running coding standards analysis on a project source file (testable)
JE' Feature Running coding standards analysis on a source folder (testable)
[w] & Feature Coding standards analysis results
[m] & Feature Coding standards rules
[w] & Feature Coding standards suppressions
[JE Feature Coverage Analysis
[& Feature Flow Analysis
[m] & Feature Importing / configuring project
[JEf Feature Metrics
[m] JE Feature Reporting
[JEf Feature Standards Compliance
[JEf Feature Stubs Module
[m] 5 Feature Test Configuration
w [] JH Feature Unit Testing
[JE Feature Automated test case generation (mitigatable)
v [JH Feature Reviewing unit tests execution results
[JE Feature Automatic unit test result validation (testable)
[JE Feature Reviewing unit test execution results in Console view (testable)
[JH Feature Reviewing unit test execution results in Quality Tasks view (testable)
[JE Feature Reviewing unit test execution results in Test Progress dialog (testable)
[JEf Feature Reviewing unit tests execution results
[JE Feature Test case execution
[JE Feature Using Test Case Explorer view to manage tests
[JEf Feature User interface

v
£ >
Running coding i lysis on a project [C5-RUN-01] ~
Description:
(1) User shall be able to perform coding standards analysis using selected, predefined test configuration on a project by selecting a project node in the Navigator view and
using any of the following methods:
- using the right-click menu > C++test > Test Using > ... v

< Back Mext = Finish Cancel

® Save

Figure 14-2:

Parasoft Qualification
Kits allow users to
select the options
required for their
project. Upon
selection, only tests
and documentation
are used and provided
from this point
forward.

Leverage Test Automation and Analytics

A unique advantage to qualifying test automation tools is that the tools can be used to
automate their own testing. Automating this as much as possible is key to making it as
painless as possible. Even manual tests, which are inevitable for any development tool,
are handled as efficiently as possible. Step by step instructions are provided and results
are entered and stored as part of the qualification record.

61

1SO 26262 Software Compliance in the Automotive Industry

Parasoft C/C++test and C/C++test CT collect and store all test results from each build,

and tests run as they do for any type of project. These results are brought into the test
status wizard in the Parasoft Qualification Kits to provide a comprehensive overview of
the results like those shown below.

Test Status from Tool chain with C++test
Status of executed test cases. Import existing test results from Tool chain with C++test : EXECUTE AND IMPORT MAMUAL TESTS BEFORE PROCEEDING

| Export Manual Tests for Execution | kEl Import Test Results from Run (Excel) | kEl Import Test Results from Run (TestData) | plo Add Test Data L, Analyze

V% ~
v #

Feature Reviewing coding standards results in Test Progress

RRAAERARARARKARKRRAR

Reviewing coding standards results in Test Progress [C5-RE5-01] ~
Description:

(1) User shall be able to review the statistic information about the results of the coding standards analysis in the Test Progress dialog.
(2) It shall contain information about:
- number of C/C++ language files in selection
and
- number of tested files
and
- number of skipped files
and
- number of files that C++test failed to test
and
- number of violations found
and
- number of viclations suboressed

@ Save < Back Mext = Finish Cancel

Figure 14-3:

Leveraging centralized data collection and automating the
qualification process greatly reduces manual tracking of
compliance progress.

62

1SO 26262 Software Compliance in the Automotive Industry

Managing Known Defects

Every development tool has known bugs and any vendor selling products for safety-
critical development must have these documented. There's more to dealing with
known defects than just documenting them. Tool qualification requires proof that
these defects are not affecting the results used for verification and validation. For each
known defect, the manufacturer must provide a mitigation for each one and document
it to the satisfaction of the certifying auditor.

It's incumbent on the tool vendor to automate the handling of known defects as

much as possible. After all, the vendor is expecting customers to deal with third-party
Figure 14-4: software bugs as part of their workload! The Parasoft C/C++test qualification kits
Known defects are include a wizard to automate the recording of mitigation for known defects as shown

managed directly in in the example below.
Parasoft C/C++test.

Mitigation Selection

Please select a mitigation for each critical element (error or bug)

4 Toggle relevant/remaining errors display

~ k1 C++test (Relevant Errors) ~ @] § Tool C++test (TCL3)

v {1 JSF Compliance (Relevant Errors) [Restriction Do not use this feature - there are known bugs in it that have been reported
#& No violation reported with expressions (mitigated)
% No violation reported if identifiers are placed in different files (mitigated)
%8 No violation reported with dereference operations involving member variables (mitigated)
% No violation reported if stddef.h header is included by some other file (mitigated)
% No violation reported if an expression of void type is used in sizeof() (mitigated)
&5l No violation reported with static variables (mitigated)
% False negative on ‘struct’ (mitigated)
%5 False negative when shift operation inside specific if condition (mitigated)
% Incorrect value from feature CS-RES-D1 "Reviewing coding standards results in Test Progress” (testable)
% Incorrect value from feature C5-RES-02 "Reviewing coding standards results in Quality Tasks view” (testable)
4 Incorrect value from feature CS-RES-03 "Reviewing coding standards results in Console view” (testable)
% Incorrect value from feature C5-RUN-01 "Running coding standards analysis on a project” (testable)
% Incorrect value from feature CS-RUN-02 "Running coding standards analysis on a project source file" (testable)

>

£ Incorrect value from feature C5-RUN-02 "Running coding standards analysis on a project source and header files" (testable)
£ Incorrect value from feature C5-RUN-04 "Running coding standards analysis on a source folder (testable)

£ Incorrect value from feature C5-SUPP-01 “Suppressing coding standards violation" (testable)

£ Incorrect value from feature CS-SUPP-02 "Skipping reporting suppressed coding standards violations" (testable)

£ Incorrect value from feature CS-SUPP-03 “Reviewing / removing coding standards suppressions kept locally” (testable)

% Incorrect value from feature PROJ-BDF-CREATE-01 *Default cpptestscan behavior” (testable)

£ Incorrect value from feature PROJ-BDF-CREATE-02 "Configuring cpptestscan output file” (testable)

< : >
False negative on "struct’ [CPP-33630]

Description:
I5F-22 (CODSTA-CPP-02) false negative on 'struct’
Rule JSF-82 do not report violations on structures. For example:
struct B
{
void operator=(B&) // No violstion
{

return;
}
"

Comment: v

@ Save < Back Next > Finish Cancel

63

1SO 26262 Software Compliance in the Automotive Industry

Automation of Tool Qualification Documentation

The end result of tool qualification is documentation, and lots of it. Every test executed
with results, every known defect with mitigation, manual test results, and exceptions
are all recorded and reported. Qualification kits from other vendors can be just
documentation alone, and without automation, documenting compliance is tedious.

Instead, using the Qualification Kits for C/C++test, the critical documents are generated
automatically as part of the workflow.

» Tool Classification Report determines the qualification needed, and presents the
maximum safety level classification for C/C++test based on the use cases selected
by the user.

» Tool Qualification Plan describes how C/C++test is going to be qualified for use in a
safety relevant development project.

» Tool Qualification Report demonstrates that C/C++test has been qualified according
to the tool qualification plan.

» Tool Safety Manual describes how C/C++test should be used safely, for example
compliant to safety standards, like ISO 26262 and IEC 61508, in safety-critical
projects.

In each of these documents, only the documentation required for the tool features

in use is generated because the scope of the qualification was narrowed down at the
beginning of the project. Automation and narrowing the scope of qualification greatly
reduces the documentation burden.

64

1SO 26262 Software Compliance in the Automotive Industry

Reporting and Analytics for Automotive Software

Parasoft’s extensive reporting capabilities bring the results of Parasoft C/C++test into
context. Test results can quickly be accessed within the IDE or exported into the web-
based reporting system, DTP.

In DTP, reports can be automatically generated as part of Cl builds and printed for code
audits in safety-critical organizations. Results from across builds can be aggregated to
give the team a detailed view without requiring access to the code within their IDE.

In the reporting dashboard, Parasoft’s Process Intelligence Engine (PIE) helps managers
understand the quality of a project over time. It illustrates the impact of change after
each new code change. Integrating with the overall toolchain, PIE provides advanced
analytics that pinpoint areas of risk.

Developer’s View in the IDE

Parasoft C/C++test helps teams efficiently understand results from software testing by
reporting and analyzing results in multiple ways. Directly in the developer’s IDE, users
can view:

» Static analysis findings: warnings and coding standard violations

» Unit testing details: passed/failed assertions, exceptions with stack traces,
info/debug messages

» Runtime analysis failures with allocation stack traces

» Code coverage details: percentage values, code highlights, including coverage test
case correlation

The Quality Tasks view in the IDE makes it easy for developers to sort and filter the
results, for example group per file, per rule, or per project. Developers can make
annotations directly in the source code editors to correlate issues with the source code.
This provides context and more details about reported issues and how to apply a fix.
Code coverage information is presented with visual green and red highlights displayed
in the code editor, together with percentage values (for project, file, and function) in a
dedicated Coverage view.

Analysis results for both IDE and command-line workflows can also be exported

to standard HTML and PDF reports for local reporting. For safety-critical software
development, C/C++test provides an additional dedicated report format. It details
unit test case configuration and includes the log of results from test execution. Users
get a complete report of how the test case was constructed and what happened
during runtime.

65

#20 Parasalt C/C +1est - Serscefsensor.c

File £ Source Relactor Navigate Search Project Parasoft Run Window Help
i SRS R TR R TR I IR]
{5 Praject Explorer

i sensorc
~ | S5ensar 62 {
& Binacies 6 int nusv, index = -1;
£ Inchides . initialize();
if (value >= @ && value <= 18) { /* FIX: handle value < 6 %/
= ety 65 e
i seronc r Index = VALUE_LOW_MSG;
B sensoreve - jamdtdsie] 64 } else iF (value > 10 BE value <= 28) { /* FIX: handle value » 28 %/
Makefite indax = VALUE_HIGH MSG;
- }
printMessage(index, value);
72 return{index);
3}
75 void mainLoop()|
R {
int sensorValie;
@ int status = 1;
g while (1) {
status = readSensor(&sensorValue);
I if (status = STATUS_STOPPED) { /* FIN: == Instend of =
T timer e - [amdS4/ie] break;
BUILD bazel s } else if (status == STATUS_FATLED) {
B roportSensorfatlure();
CMaietists 1xt - PERA
it :
= handleSensarvalua{sensorvalie);
Makelie - }
o sadinout.o L finalizef):
i timer
WORKSPACE bazel -
au . al Coverage
GOV LT EE RS Wi Coverage BA% [37744 exncutable boes]
15 test results ~ i Sensor - B4% [37/44 evecitable lines]
o] Fix Uinit Test Problems. o v [sersorc - B4% [37/44 executable lines]
~ (2] Runtime Exceptions @ firalize - 40% [2/5 executable lines]
w8 [2) Unknawn # mainloop - B4% (7711 exocutable lines]
v & [2] sensorc * handieSendorvalue -- 100% |9 executable boaes]
w 1 [2] Sevesity 1 - Highest ® ini - 100% 878 executable lines)
» b [Line 507 Access wiclanon excepte & main - 100% [2/2 executable lines]
& [Liree 50] Access vielatian excepts # printMessage - 100% {3/3 executable fines]
“ (13 Peview Unit Test Outcomes # readSensor - 100% [474 expcutable knes)
¥ =313] Unverified Outcomes - 100% [2/2
* 8 [13] Unknawn
v & [13] TestSuite_sersor.cc G
p e Sy 5
Writable

Figure 15-1:
Parasoft C/C++test

unifiedtestingview T@am Web-Based Reporting

For team collaboration, Parasoft C/C++test and C/C++test CT publish analysis results
to DTP, a centralized server. Developers can access test results from automated runs
and project managers can quickly assess the quality of the project. Reported results
are stored with a build identifier for full traceability between the results and the build.

Those results include:
» Static analysis findings
» Metric analysis details
» Unit testing details
» Code coverage details

» Source code details

When integrating into CI/CD workflows, Parasoft users benefit from a centralized and
flexible web-based interface for browsing results. The dynamic web-based reporting
dashboard includes customizable reporting widgets, source code navigation, advanced
filtering, and advanced analytics from Parasoft’s Process Intelligence Engine. Users
can access historical data and trends, apply baselining and test impact analysis, and
integrate with external systems like those for test requirements traceability.

>
Senart Insert 6161747 [issMnrRsen

1SO 26262 Software Compliance in the Automotive Industry

- o x
=1
% Tost Case Explorer
~ bal Data Sources
239
& test_finalize 1
£ test handleSensorvalue_1
o test_initalize 1
@ tast maniocp)
@
LAl]
 test risoe_ i
o test_readSensor 2
& 1est_readSerdod 3
@ 1o repanSersarFailure 1
i Tirvae
£ Raquirements BB AP 3 Handle sensor input valuss
12 reguiremes ats, 7 tent definitions 1D ECU-544 -
* i Saftware Low-Level Requirement Specification - expo Name: Handle sensor input values
Es ECU-518 Introduction
~ B3 ECLL515 Low-Level Software Requirements
s 3 ECL-533: ECU shall hanche sensar input values
{3 ECU-544 Handlle sengor input vakies
£y ECU-537: ECL shall dynamically allocate and ini
i ECU-536: ECL software shall manage its memar
&y ECLI-535: ECU shall perform fault detection and
s ECU-524: ECU shall have fault pricritization leve
R ECU-532: ECU shall calculate sersor detersoratic
£y ECU-531: ECL shall kaop in & continues operatic
£ ECU-517: Requirements Traceabdity >

66

1SO 26262 Software Compliance in the Automotive Industry

2 PARASOFT.
Report Center
Reporting & Analytics for Embedded Software | i Bagareheds
(s . v v
2 Coverage e Coverage (Unit) === Coverage (Functional) = Coverage (Manual) = Resource Groups -
875
- 64.3% 59.2% 18.8% 21% o
629
2.8K / 4.3K 2.5K / 4.2K 803/4.3K 899/ 4.3K ol
Parabank_SA-UT_3-12-2020 Parabank_SA-UT_3-12-2020 Parabank_SA-UT_3-12-2020 Parabank_SA-UT_3-12-2020 mare..
All Tests: - Uni Tests o Functional Tests == Test - Coverage Trend by Build -
% Pasaing 7% 4 e 98.7% Patiing 57.4% 1 W Passinig 50% s
wBeE T # Test 236 # Tests 22 1 H
Fallod Tost 55 T # Falled Tests 0 52 1 # Falled Tost 3
5 3 0 2 et) ! 4)) '
All Tests. - Unit Tesls v Functional Tests = Test - Test Trend by Buiid -
3681 122 236 12216 10
Total Tests Total Tests Total Tests Total Tests

B e 0 NL_ T

Buids

Unit Tests by Build - | Functional Tests by Build - Manual Tests by Build -

Powered by Parasofl DTP, Copyright &

Figure 15-2: :
sure Test Impact Analysis
Centralized web-
based reporting and . . .
. Each and every test performed, including manual, system level, and Ul-based, is
analytics dashboard.

recorded for test/fail results, along with their coverage impact on the code base. Each
additional test is overlaid on this existing information, creating a complete picture of
test success and coverage.

As code is changed, the impact is clearly visible on the underlying record, highlighting
tests that now fail or code that is now untested. Raising this information in various
degrees of detail allows developers and testers to quickly identify what needs to be
altered or fixed for the next test run.

Risk-Based Assessment

In addition to change impact analysis, static analysis can be used to highlight areas of
the code that appear riskier than others. Risk can take a variety of forms including:

» Highly complex code

» Unusually high number of coding standard violations
» Use of libraries with known vulnerabilities

» High number of reported static analysis warnings

These are areas of code that may require additional test coverage and even refactoring.

67

Figure 15-3:
Individual code
coverage metrics are
available within the

reporting dashboard.

1SO 26262 Software Compliance in the Automotive Industry

Functional Safety Reporting

Parasoft C/C++ testing solutions provides specific reporting capabilities suited to
functional safety development. Here are two report examples:

» Tests to Requirements Traceability

» Test to Code Coverage Traceability

The 1SO26262 Compliance Pack provides a dedicated, standard-driven report template
to help teams comply with industry standards and provide automatically generated
reports required for code audits.

Code Coverage Metrics

There are various coverage metrics to consider. Knowing which specific type to apply
depends on the software integrity level (ASIL) as defined in ISO 26262.

For automotive systems, the control metrics referenced are statements, branch,
modified condition decision coverage (MC/DC). For the strictest requirements, there's
object/assembly code. Parasoft supports gathering all these coverage metrics, including
terms other industries use like block, call, function, path, decision, and more.

L PARASOFT.

Report Center

Code Coverage Dashboard

: — R—

E D - J

+ 77% 40.4% 64% /
il i WL I AL
mm i W .
O O O ‘e
Lo ML L ' P -
e wmg..,_ econCorerage Overve -

57 /108 ..G -16 50 9-.

68

1SO 26262 Software Compliance in the Automotive Industry

Custom Analytics, Reports and Dashboards

Parasoft DTP is highly customizable and supports user-configured custom processors
for project-specific analysis, custom widgets, and dashboards.

Benefits From Centralized, Aggregated Data Analysis and
Reporting

Manage Compliance With Efficiency, Visibility, and Ease

Instead of just providing static analysis checkers with basic reporting and trends
visualization, Parasoft’s solution for coding standards compliance provides a complete
framework for building a stable and sustainable compliance process.

In addition to standard reporting, Parasoft provides a dedicated compliance reporting
module that gives users a dynamic view into the compliance process. Users can see
results grouped according to categorizations from the original coding standard, manage
the deviations process, and generate compliance documents required for code audits
and certification as defined by the MISRA Compliance:2020 specification.

Reduce the Overhead of Testing

With a unified reporting framework, Parasoft C/C++test efficiently provides multiple
testing methodologies required by the functional safety standards including static
analysis, unit testing, and code coverage.

By presenting cumulative results from the multiple testing techniques, Parasoft
provides consistent reporting that reduces the overhead of testing activities. The
analytics, reports, and dashboards:

» Simplify code audits and the certification process.

» Eliminate the need for users to manually process reporting to build documentation
for the certification process.

» Focus testing efforts where needed by eliminating extraneous testing and
guesswork from test management.

» Reduce the costs of testing while improving test outcomes with better tests, more
coverage, and streamlined test execution.

» Minimize the impact of changes by efficiently managing the change itself.

69

1SO 26262 Software Compliance in the Automotive Industry

Pinpoint Priority and Risk Between New and Legacy Code

Parasoft’s Process Intelligence Engine enables users to look at the changes between
two builds to understand, for example, the level of code coverage or static analysis
violations on the code that has been modified between development iterations,
different releases, or an incremental development step from the baseline set on the
legacy code.

Teams can converge on better quality over time by improving test coverage, reducing
the potential risky code. The technical debt due to untested code, missed coding
guidelines and potential bugs and security vulnerabilities can be reduced gradually build
by build. Using the information provided by Parasoft tools, teams can focus in on the
riskiest code for better testing and maintenance.

TAKE THE NEXT STEP

Learn how your embedded software development team can accelerate the delivery
of high-quality and compliant software. Contact one of our experts today to
request a demo.

Parasoft helps organizations continuously deliver high-quality software with its Al-
powered software testing platform and automated test solutions. Supporting the
embedded, enterprise, and loT markets, Parasoft’s proven technologies reduce the time,
effort, and cost of delivering secure, reliable, and compliant software by integrating
everything from deep code analysis and unit testing to web Ul and API testing, plus
service virtualization and complete code coverage, into the delivery pipeline. Bringing
all this together, Parasoft’s award-winning reporting and analytics dashboard provides

a centralized view of quality, enabling organizations to deliver with confidence and
succeed in today’s most strategic ecosystems and development initiatives—security,
safety-critical, Agile, DevOps, and continuous testing.

“MISRA”, “MISRA C” and the triangle logo are registered trademarks of The MISRA Consortium Limited.
©The MISRA Consortium Limited, 2021. All rights reserved.

70

https://www.parasoft.com/products/parasoft-c-ctest/c-c-request-a-demo/
https://www.parasoft.com/products/parasoft-c-ctest/c-c-request-a-demo/
https://www.parasoft.com/

1SO 26262 Software Compliance in the Automotive Industry

More Resources

Safety-Critical Automotive Software Development
Assets for Download

Case Study

» Renovo Balances Speed & Agility With Safety & Security in ADAS Development

Website

» Automotive Software Testing That Drives Success

» Easily Automate the Tool Qualification Process

» Software Compliance Testing Solutions

» AUTOSAR Compliance With Parasoft

» 1SO 26262 Compliance With Parasoft

» MISRA Compliance With Parasoft

» Integrate Codebeamer and Parasoft

» Integrate Jama Connect and Parasoft

» Integrate Siemens and Parasoft

Whitepapers

» A Practical Guide to Accelerate MISRA C 2023 Compliance With Test Automation

» DevOps Best Practices for Automotive Development

» Embedded Cybersecurity Through Secure Coding Standards CWE and CERT

» Guide to CI/CD for Automotive DevOps

» Guide to ISO 26262 Software Compliance: Achieving Functional Safety in the
Automotive Industry

» How to Accelerate ISO/SAE 21434 Compliance With Automated Software Testing

71

https://www.parasoft.com/resources/case-studies/renovo-balances-speed-agility-with-safety-security-in-adas-development/
https://www.parasoft.com/industries/embedded/automotive/
https://www.parasoft.com/solutions/compliance/tool-qualification/
https://www.parasoft.com/solutions/development-testing/functional-safety-compliance/
https://www.parasoft.com/solutions/compliance/autosar/
https://www.parasoft.com/solutions/compliance/iso-26262/
https://www.parasoft.com/solutions/compliance/misra/
https://www.parasoft.com/integrations/codebeamer/
https://www.parasoft.com/integrations/jama/
https://www.parasoft.com/integrations/siemens/
https://www.parasoft.com/white-paper/a-practical-guide-to-accelerating-misra-c-2012-compliance-with-test-automation/
https://www.parasoft.com/white-paper/devops-best-practices-for-automotive-software-development/
https://www.parasoft.com/white-paper/embedded-cybersecurity-through-secure-coding-standards-cwe-and-cert/
https://www.parasoft.com/white-paper/guide-to-ci-cd-for-automotive-devops/
https://www.parasoft.com/white-paper/iso-26262-software-compliance-with-parasoft/
https://www.parasoft.com/white-paper/iso-26262-software-compliance-with-parasoft/
https://www.parasoft.com/white-paper/how-to-accelerate-iso-sae-21434-compliance-with-automated-software-testing/

1SO 26262 Software Compliance in the Automotive Industry

» How to Accelerate MISRA C & SEI CERT C Compliance

» How to Address Software-Defined Vehicle Challenges With Test Automation

» How to Satisfy ISO 26262 ASIL Requirements: Guide to Achieving Functional Safety
in Automotive

» How to Streamline Unit Testing for Embedded and Safety-Critical Systems

» Qvercoming the Challenges of Safety & Security in the Renovo Automotive Data
Platform

» Using AUTOSAR C++ Coding Guidelines to Streamline ISO 26262 Compliance

Blog Posts

» Achieve ASIL D Compliance With Automated Testing

» Automotive CI/CD DevOps & Test Automation

» AUTOSAR Architecture Requirements on Runtime Environments

» Breaking Down the AUTOSAR C++14 Coding Guidelines

» Coding Standards Compliance for Autonomous Driving Software Testing

» MISRA C/C++ Code Checking

» Reducing the Risk and Cost of Achieving Compliant Software

» Software Development Process for Safety-Critical Systems

» Turn Software Requirements Into Tested Solutions

» Why Static Analysis Is Key to Meeting ADAS Safety Standards

» Why Automotive Cybersecurity Is Important

» Why Your Development Team Needs TARA

Webinars

» Automotive Software Testing for SDVs

» General Motor’s Journey to Adopting Static Analysis With a Legacy Codebase

» Get Complete MISRA C 2023 Support in New Parasoft C/C++test Release

72

https://www.parasoft.com/white-paper/accelerating-misra-c-sei-cert-c-compliance-with-dedicated-reporting-and-workflow-management/
https://www.parasoft.com/white-paper/address-sdv-challenges-with-test-automation/
https://www.parasoft.com/white-paper/satisfying-asil-requirements-with-parasoft-c-ctest/
https://www.parasoft.com/white-paper/satisfying-asil-requirements-with-parasoft-c-ctest/
https://www.parasoft.com/white-paper/streamlining-unit-testing-for-embedded-and-safety-critical-systems/
https://www.parasot.com/white-paper/overcoming-the-challenges-of-safety-security-in-the-renovo-automotive-data-platform/
https://www.parasot.com/white-paper/overcoming-the-challenges-of-safety-security-in-the-renovo-automotive-data-platform/
https://www.parasoft.com/white-paper/using-autosar-c-coding-guidelines-to-streamline-iso-26262-compliance/
https://www.parasoft.com/blog/achieve-asil-d-compliance-with-automated-testing/
https://www.parasoft.com/blog/automotive-ci-cd-devops-test-automation/
https://www.parasoft.com/blog/autosar-architecture-requirements-runtime-environment/
https://www.parasoft.com/blog/breaking-down-the-autosar-c14-coding-guidelines-for-adaptive-autosar/
https://www.parasoft.com/blog/compliance-for-autonomous-driving-software/
https://www.parasoft.com/blog/misra-c-c-code-checking/
https://www.parasoft.com/blog/reducing-the-risk-and-cost-of-achieving-compliant-software/
https://www.parasoft.com/blog/safety-critical-software/
https://www.parasoft.com/blog/turn-software-requirements-into-tested-solutions/
https://www.parasoft.com/blog/adas-safety-standards-automated-testing/
https://www.parasoft.com/blog/why-automotive-cybersecurity-is-important/
https://www.parasoft.com/blog/why-your-development-team-needs-tara/
https://www.parasoft.com/webinar/automotive-software-testing-for-sdvs/
https://www.parasoft.com/webinar/general-motors-journey-to-adopting-static-analysis-with-a-legacy-codebase/
https://www.parasoft.com/webinar/get-complete-misra-c-2023-support-in-new-parasoft-c-ctest-release/

»

»

»

»

»

»

»

1SO 26262 Software Compliance in the Automotive Industry

Is This the Year of EVs?

MISRA C:2012 AMD 3: What You Need to Know

MISRA C++ 2023: Everything You Need to Know

Qualcomm Presents: How to Achieve System on Chip Functional Safety Compliance

Streamline 1ISO 26262 & 1SO 21434 Compliance With Automated Testing

Test Verification Principles & Practices of ISO 26262, Parts 4 & 6

Unveiling Parasoft C/C++test CT for Continuous Testing & Compliance Excellence

73

https://www.parasoft.com/webinar/is-this-the-year-of-evs/
https://www.parasoft.com/webinar/misra-c2012-amd-3-what-you-need-to-know/
https://www.parasoft.com/webinar/misra-c-2023-everything-you-need-to-know/
https://www.parasoft.com/webinar/qualcomm-presents-how-to-achieve-system-on-chip-functional-safety-compliance/
https://www.parasoft.com/webinar/iso-26262-and-iso-21434-compliance/
https://www.parasoft.com/webinar/test-verification-principles-practices-of-iso-26262-parts-4-6/
https://www.parasoft.com/webinar/cpptest-ct-introduction/

	Overview
	Automotive Industry Outlook
	What Is ISO 26262?

	Requirements for Compliance
in Testing
	Static Analysis
	MISRA C 2023
	AUTOSAR C++14
	SEI CERT
	CWE - Common Weakness Enumeration
	Unit Testing
	Regression Testing
	Software Integration Testing
	Software System Testing
	Structural Code Coverage
	Requirements and the Traceability Matrix

	A Unified, Fully Integated Testing Solution for C/C++ Software Development
	Tool Qualification for Safety-Critical Automotive Systems
	Reporting and Analytics for Automotive Software

	More Resources
	Safety-Critical Automotive Software Development Assets for Download

