
ISO 26262 SOFTWARE
COMPLIANCE IN THE

AUTOMOTIVE INDUSTRY

Table of Contents

3	 Overview
3	 Automotive Industry Outlook

7	 What Is ISO 26262?

14	 Requirements for Compliance in Testing
14	 Static Analysis

28	 Unit Testing
33	 Regression Testing

36	 Software Integration Testing

44	 Software System Testing

47	 Structural Code Coverage

50	 Requirements and the Traceability Matrix

55	 A Unified, Fully Integated Testing Solution for
C/C++ Software Development
55	 Tool Qualification for Safety-Critical Automotive Systems

60	 Reporting and Analytics for Automotive Software

66	 More Resources
66	 Safety-Critical Automotive Software Development Assets

for Download

2

Overview
AUTOMOTIVE INDUSTRY OUTLOOK
The automotive industry continues to rapidly evolve and grow into technical areas
where other industries have operated for many years. For example, NASA’s Jet
Propulsion Laboratory releases code fixes and new functionality that is currently being
developed to spacecraft that is millions of miles away, on route to their destination.
Similarly, we find the automotive industry now providing software updates on cars that
have been sold and are being driven by their consumers all around the world.

SAFETY & SECURITY CHALLENGES

This type of evolution—particularly that of advanced driver-assistance systems
(ADAS)—comes with a new set of challenges in safety and security. Standards like ISO
26262 address functional safety of the development of electric and electronic systems
(E/E), which include propulsion, dynamic control systems, and driver assistance.

Additionally, platforms like AUTOSAR provide an open standardized software layer
architecture that further improves safety. They include guidelines for the use of the
C++14 language in development of critical and safety-related systems. However,
manufacturers have realized that due to the increased complexity and unknows
of modern technologies working together, along with changes in the internal and
external environment, safety and security concerns have arisen that these standards
don’t address.

When addressing ISO 21434, it’s important to understand that the recommended
security consideration for cybersecurity should be integrated into your existing
development processes. ISO 21434 references ISO 26262 in consideration of having
these two disciplines take an interdisciplinary exchange of strategies, coordination and
even tools used. This means that your organization should have your system engineers
work with your security engineers through the requirements analysis phase for safety
and security.

In parallel, perform hazard analysis and risk assessment (HARA) for safety, and threat
analysis and risk assessment (TARA) for security. Nonetheless, a strong collaborative
environment is needed to ensure a safe and secure result.

ISO 26262 Software Compliance in the Automotive Industry

3

Ensuring security at the software
implementation phase starts by applying
static code analysis. The MISRA coding
standard incorporates security guidelines,
but you can also augment and strengthen
code security by adopting CERT.

Continuing up the right side of the V,
perform unit testing of all your low-
level security requirements. In the next
phase, create test cases that incorporate
additional functionality. These test cases
ensure that your high-level requirements
are satisfied.

Moving to system testing, create system tests to ensure that the system
requirements are verified. Confirm that all the test cases trace back to your
requirements. This guarantees that no requirement goes untested. However, to
safeguard that each requirement is fully tested, incorporate structural code coverage
as recommended by ISO 21434 and ISO 26262. Code coverage ensures that your
security test cases fully cover every possible path of execution through its security
functionality remediation measures.

To overcome safety and security challenges, teams can turn to solutions like Parasoft
C/C++test, which has been certified for use in safety-critical applications per ISO
26262 and is TÜV SÜD certified to satisfy ISO 21434. Both of these standards
recommend performing static analysis, dynamic analysis—which includes unit,
integration, and system testing—code coverage, and requirements traceability.
Offering exactly what ISO 26262 and ISO 21434 recommend for software verification
in safety and security, Parasoft also provides the documentation required to prove
compliance with both standards.

UNECE WP.29 REGULATORY REQUIREMENTS

The United Nations Economic Commission for Europe (UNECE) released regulatory
requirements on June 23, 2020, where they outlined new processes and technologies
that automotive manufacturers must incorporate into both their organization and
vehicles. These regulations also apply to Tier 1 and Tier 2 suppliers of software and
hardware components, including mobile services.

Vehicle manufacturers are required to put into the organizational structure, a risk-
based management framework for discovering, analyzing, and protecting against
relevant threats, vulnerabilities, and cyberattacks.

Figure 1-1:
V process model
for software safety
and security

ISO 26262 Software Compliance in the Automotive Industry

4

The following categories require cybersecurity testing and passing inspections.

	» Category M covers standard four wheel cars.

	» Category N is for pickup trucks and vans.

	» Categories L6 and L7 include electric cars and autonomous capabilities.

A passing grade on both organizational and vehicle WP.29 key requirements means
that the manufacturer receives a certificate of compliance. New vehicles without this
certificate cannot be sold in the EU after July 2024. Be aware, that the United States
does not participate or have its own similar regulations. However, the writing is on
the wall.

AUTOMOTIVE SPICE

Automotive Software Process Improvement and Capability Determination (ASPICE)
provides a measurement framework for independent assessors to evaluate an
organization’s capability for software development. Ensuring software safety
and cybersecurity does not only lie within the technical engineering aspects of
the development of the electronic system, but also requires the organization to
incorporate processes and checks.

These processes and checks must include ways to track and monitor progress within
all practices of the organization to ensure:

1.	 Safety and cybersecurity practices have been adopted.

2.	 Safety and cybersecurity requirements are being satisfied.

This is also one of the two key certification criteria for UNECE WP.29 on
organizational cybersecurity capability.

UNSAFE SCENARIOS

It's brought to fruition other outgrowths from ISO 26262, like ISO/PAS 21448 more
commonly referred to as SOTIF (safety of the intended functionality). SOTIF helps
you analyze and prevent the misuse of the intended functionality where it creates
an unsafe scenario. For example, your vehicle inadvertently shuts down while you're
driving it, due to an initiated software update.

Security vulnerabilities also pose unsafe scenarios. An attacker could use the car’s
Wi-Fi connection to remotely exploit an exposed port. They could somehow work
their way from the advanced in-vehicle infotainment (IVI) into taking control of, or
influencing, safety-critical components like braking or steering due to sharing the
same communications infrastructure.

ISO 26262 Software Compliance in the Automotive Industry

5

THE ROLE OF STANDARDS

Standards like SAE J3061, superseded by ISO/SAE 21434, specify that an initial Threat
Analysis and Risk Assessment (TARA) be completed to assess potential threats related
to operation, privacy, and other factors where a road user/driver can be impacted. If
the risk for any threat is sufficiently high, then a cybersecurity process is necessary.
There are various approaches to flushing out security vulnerabilities and requirements
that mitigate the risks. Learn more about TARA and why your development team
needs TARA.

Standards like UL 4600 now exists specifically for fully autonomous vehicle operation.
This means that there is no human supervision, and the autonomy assumes full
responsibility. This standard focuses on building a safety case for the deployment of
SAE Level 4/5 vehicles, not on how to test safety of autonomous vehicles on public
roads. That would involve a different standard.

These standards and others play a crucial role in safety and security for the automotive
industry. OEMs carry the liability costs for delivering unsafe and insecure vehicles
to the masses. To mitigate these risks, OEMs need to adopt and adhere to these
standards. However, OEMs should mandate the same quality and adherence by their
suppliers. A weakness in one component can undermine the safety and security of the
entire system.

BUILDING CUSTOM CODING STANDARDS

Working with some of its automotive OEMs, Parasoft has built custom coding
standards that incorporate MISRA, AUTOSAR C++14, CERT, CWE, and other custom
rules to be used by their suppliers. This ensures that the same level of quality software
exists across the entire supply chain.

Parasoft C/C++test is a unified testing solution that includes unit testing and
structural code coverage as part of its functionality. This solution for C/C++
software development supports a comprehensive set of hardware targets and
development ecosystems that suppliers and OEMs can use with varying development
infrastructures. Parasoft C/C++test has been certified by TÜV SÜD for use on safety-
and security-critical systems. For ADAS and secure connected cards, C/C++test’s
seamless integration with Parasoft SOAtest and Parasoft Virtualize combines API
testing with runtime application coverage and simulated virtual test beds.

ISO 26262 Software Compliance in the Automotive Industry

6

https://www.parasoft.com/blog/why-your-development-team-needs-tara/

WHAT IS ISO 26262?
ISO 26262 is a functional safety standard that covers the entire automotive product
development process. It includes activities such as requirements specification, design,
implementation, integration, verification, validation, and configuration.

The standard provides guidance on automotive safety lifecycle activities by specifying
the following requirements:

	» Functional safety management for automotive applications

	» The concept phase for automotive applications

	» Product development at the system level for automotive applications software
architectural design

	» Product development at the hardware level for automotive applications software
unit testing

	» Product development at the software level for automotive applications

	» Production, operation, service, and decommissioning

	» Supporting processes: interfaces within distributed developments, safety
management requirements, change and configuration management, verification,
documentation, use of software tools, qualification of software components,
qualification of hardware components, and proven-in-use argument

	» Automotive Safety Integrity Level (ASIL) oriented and safety-oriented analyses

ISO 26262 is an adaptation of IEC 61508 for the automotive industry. IEC 61508 is a
basic functional industrial safety standard for electrical, electronic, and programmable
electronic devices, and applicable to all kinds of industries. Other sectors like Medical
IEC 62304, Railway EN 50128 have also been derived from IEC 61508.

Since ISO 26262 has been extracted and expanded from IEC 61508 for the
automotive industry, by inheritance it is a functional safety standard that provides
guidance for regulating the entire product lifecycle process, at the software and
hardware level from conceptual development through to decommissioning. It
covers electrical and electronic automotive systems and their development process,
including requirements specification, design, implementation, integration, verification,
validation, and configuration.

The latest release, ISO 26262:2018 is subdivided into 12 parts. The standard has been
evolving since its first edition, released back in 2018.

ISO 26262 Software Compliance in the Automotive Industry

7

Part 1 is the vocabulary section for the standard. Terms, definitions, and abbreviations
are found here.

Part 2 is the management of functional safety, which defines an internal functional
safety process for the team or company. This includes having a safety organization
that oversees the planning, coordinating and documentation activities related to
functional safety.

Functional safety is of the utmost importance in the development of safety-critical
automotive systems because people’s lives depend on it. Especially now with the
introduction of driver assist and automated driving systems. The management of
security could be adapted to part 2. Security is crucial in the world we live in today.

Part 3 is the concept phase that takes in the stakeholder requirements and drives what
you are going to build and ultimately deliver. In figure 2-1, notice on the right side of
the concept phase box, the beginning of a grey shaded V watermark. The shaded Vs
represent the interconnection among parts 3, 4, 5, 6, and 7 of the standard. These
part series are based upon the V-model software development lifecycle. You have
the different phases of development represented on the left and the verification and
validation or testing phases on the right. If you are a systems or software engineer in
the embedded industry, the V-model is well known.

Figure 2-1:
Overview of ISO 26262

ISO 26262 Software Compliance in the Automotive Industry

8

Part 4 is the beginning of product development at the system level, which includes
parts 5 and 6 but looking at these from a high level of abstraction. The architecture is
defined, including functional testcases that verify and validate the architecture. To dive
in deeper into the detail design and implementation, part 5 and part 6 are defined.

Part 5 targets development of hardware, which is out of scope for this document.

Part 6 targets software development. You can see a smaller lighter grey V watermark
for software development and again the left-hand side of the V encapsulates the
requirements decomposition, design, and implementation phases but now a much
lower level of granularity. On the right-hand side of the V, sections 6.9, 6.10, and 6.11
represent the testing or verification and validation of the software. This includes unit
testing, static analysis, structural code coverage, requirements traceability and more.

It also includes requirements for the software development of automotive applications.
This includes obligations for initiation of product development, specification of
software safety requirements, software architectural design, software unit design
and implementation. On the verification and validation of the software component,
you have multiple methods recommended or mandated based on the assigned safety
integrity level (ASIL).

Part 7 address the production and operation of the product, once it’s out in the
field. This means you must consider things like maintenance and decommissioning or
sunsetting of your product.

Part 8 specifies the various supporting processes and solutions needed in the
development of the system that help ensure functional safety. This includes having
a configuration management solution, a change management, a documentation
management, and other solutions in place.

Another important aspect of Part 8 is the qualification of the software tools being
used. You don’t want to use an open source tool or an uncertified tool from a vendor
that undermines the safety or security of your product by introducing issues. Use a
tool that has been certified by the Technical Inspection Association (TÜV) and has a
proven in-use history or argument.

Part 9 is a critical section to understand because it pertains to assigning a risk
classification on the system under development. This means that you have to take into
consideration the risk to the passengers or pedestrians if the electrical or electronic
system in development were to malfunction or fail.

A hazard analysis and risk assessment need to be performed. ISO 26262 is a risk-based
safety standard, where the risk of hazardous operational situations is assessed, and
safety measures are defined to detect and to avoid or control failures, so mitigating
actions can take effect.

ISO 26262 Software Compliance in the Automotive Industry

9

Severity = What would be the impact or damage if the failure occurred?
Exposure = The frequency or probability that the failure would occur.
Controllability = The extent to which we can ensure that the event doesn’t happen.

Part 10 basically provides an overview of the ISO 26262 standard with additional
explanations that enhance the understanding and concepts of the other parts in the
standard, so its informative.

Part 11 is the adaptation of functional safety guidelines to semiconductors for
automotive. It offers guidance and information to semiconductor manufacturers
on how to develop ISO 26262 compliant IP. It helps incorporate functional safety
because users of semiconductors may not know how to use the semiconductor
safely. This came about because automotive systems have become very complex and
semiconductors have enabled most of the recent innovations. That includes vision-
based technology, enhanced graphics processing units (GPUs), application processors,
sensors, DRAM, and other components that empower advanced driver-assistance
systems or ADAS.

Part 12 is the adaptation of the standard for motorcycles, which has been intentionally
left out of Figure 2-1 and this ebook.

PERFORMING HAZARD ANALYSIS AND RISK ASSESSMENT

In ISO 26262, a hazard analysis and risk assessment (HARA) needs to be performed on
the system under development. Upon completion of the HARA an ASIL is assigned to
the software component and there are levels A through D. Level A representing the
lowest hazard assignment and Level D representing the highest hazard assignment.
Meaning that the failure of a system with ASIL D assignment could be catastrophic.

There is also a quality management (QM) level assignment, which means that there is
no safety requirement. ASIL is assigned by taking the severity of the injury times the
probability of the failure times the controllability. The following table spells out each
level for severity, exposure, and controllability.

Figure 2-2:
Hazard Analysis and
Risk Assessment

ISO 26262 Software Compliance in the Automotive Industry

10

CONTROLLABILITY EXPOSURE
SEVERITY

S0 S1 S2 S3
QME1

C1

C2

C3

QM QM QM

QME1 QM QM QM

QME2 QM QM QM
QME3 QM QM A

QM QM QM A

QM QM QM A

QME4

E2
E3
E4
E1
E2
E3
E4

QM A B

QM QM A B

QM QM A B

QM A B C

QM A B C
QM B C D

Active and Passive Safety

Roadside vehicles come with lots of safety systems and some are considered active
safety and others passive safety.

Active safety is used to refer to technology assisting in the prevention of a crash
or accident. You have your traction control, anti-lock braking system, vision ADAS,
and others.

Passive safety systems are to keep the passengers safe. For example, in case of a
crash, you have airbags, and seatbelts. The electronic windshield wiper and instrument
cluster are also passive safety systems.

There are several tables freely made available that provide help in determining the
ASIL value. The table below is an example of one that's much easier to read and shows
the ASIL levels in colors based on severity, exposure, and controllability.

Figure 2-3:
Simplified ASIL
assesment table

Figure 2-4:
Active and Passive Safety

ISO 26262 Software Compliance in the Automotive Industry

11

PERFORMING TEST VERIFICATION & VALIDATION OF SOFTWARE UNIT DESIGN
AND IMPLEMENTATION

Since the focus of this ebook is software, it’s important to cover the test verification
and validation methods recommended by the standard. For example, Table 9
captures verification methods 1a through 1h to be applied during unit design and
implementation. Method 1f, “Static code analysis” is recommended for ASIL level A
and highly recommended for ASIL levels B through D.

The columns on the right in Table 9 shows the A to D ASIL levels. A single “+” symbol
represents recommended by the standard and “++” representing highly recommended.

++ 	 Highly Recommended

+ 	 Recommended

o 	 No Recommendation

Figure 2-5:
ISO 26262 Part 6,
8.4.5:2011

Table 9 - Methods for the verification of software unit design and implementation

METHODS
B C DA

++ +

++ ++

+ ++ ++ ++

+ ++

o o

+ + ++ ++

+ + ++ ++
o o + +

+ + ++ ++

+ + + +

ASIL

1a
1b
1c
1d
1e
1f
1g
1h

Walk-througha

a In the case of model-based software develeopment the software unit specification design
and implementation can be verified at the model level.

b Methods 1e and 1f can be applied at the source code level. These methods are applicable
both to manual code develeopment and to model-based development.

Inspectiona

Semi-formal verification

Formal verification
Control flow analysisb,c

Data flow analysisb,c

Static code analysis

Semantic code analysisd

c Methods 1e and 1f can be part of methods 1d, 1g or 1h.
d Method 1h is used for mathematical analysis of source code by use of an abstract

representation of possible values for the variables. For this it is not necessary to translate
and execute the source code.

Other key methods of verification are done through dynamic analysis, for
requirements-based testing and fault injection. Table 11 for example has “Analysis
of boundary values”. This is a method for deriving test case to flush out defects by
means of proving inputs into the unit that are not just the min, mid, and max, but the
boundaries outside the scope of its range, to see if the unit is robust enough to handle
these outlier cases.

ISO 26262 Software Compliance in the Automotive Industry

12

METHODS
B C DA

+ ++

++ +++ ++

++ ++
++ ++ ++ ++

+ + + +

ASIL

1a
1b
1c
1d
a Equivalence classes can be identified based on the division of inputs and outputs, such that a representative test value can be

selected for each class.
b This method applies to interfaces, values approching and crossing the boundaries and out of range values.
c Error guessing tests can be based on data collected through a “lessons learned” process and expert judfement.

Generation and analysis of equivalence classesa

Analysis of requirements

Analysis of boundary valuesb

Error guessingc

Figure 2-6:
ISO 26262 Part 6,
9.4.4:2011

Table 11 - Methods for deriving test cases for software unit testing

And Table 12 lists the recommended structural code coverage metrics to ensure test
coverage, flush out dead code, and hidden defects.

METHODS
B C DA

+ ++

+ +++ +

++ ++
++ ++ + +

ASIL

1a
1b
1c

Branch coverage

MC/DC (Modified Condition/Decision Coverage

Statement coverage

Figure 2-7:
ISO 26262 Part 6,
9.4.5:2011

Table 12 - Structural coverage metrics at the software level

ISO 26262 Software Compliance in the Automotive Industry

13

Requirements for Compliance
in Testing
STATIC ANALYSIS
Many of the quality tasks specified in ISO 26262, including data and control flow
analysis and semantic analysis are supported by modern advanced tools like Parasoft
C/C++test. In addition, static analysis tools include metrics and support peer code
review with capabilities that assist unit testing and runtime error detection.

THE ROLE OF STATIC ANALYSIS IN ISO 26262 SOFTWARE VERIFICATION

Verification methods like static analysis provide teams a practical way to expose,
prevent, and correct errors in automotive software systems. The real power from
advanced static analysis tools comes from the ability to analyze the code based on
industry coding compliance standards like MISRA, CERT and AUTOSAR.

Not only does the analysis report include code rules and directive violations, but also
code complexity, quality metrics. This data can be source controlled for historical and
auditing purposes. Equally important is the use of a defect tracking and managing
system to provide meaningful analytical views and prioritization for the intent of
solving the highest risk issues down to the lowest.

METHODS
B C DA

++ +

++ ++

+ ++ ++ ++

+ ++

o o

+ + ++ ++

+ + ++ ++
o o + +

+ + ++ ++

+ + + +

ASIL

1a
1b
1c
1d
1e
1f
1g
1h

Walk-througha

a In the case of model-based software develeopment the software unit specification design
and implementation can be verified at the model level.

b Methods 1e and 1f can be applied at the source code level. These methods are applicable
both to manual code develeopment and to model-based development.

Inspectiona

Semi-formal verification

Formal verification
Control flow analysisb,c

Data flow analysisb,c

Static code analysis

Semantic code analysisd

c Methods 1e and 1f can be part of methods 1d, 1g or 1h.
d Method 1h is used for mathematical analysis of source code by use of an abstract

representation of possible values for the variables. For this it is not necessary to translate
and execute the source code.

Figure 3-1:
ISO 26262 Part 6,
8.4.5:2011

Table 9 - Methods for the verification of software unit design and implementation

ISO 26262 Software Compliance in the Automotive Industry

14

The specific sections of the ISO 26262, part 6: Product development: software level
that are addressed by static analysis tools are described below.

Walkthroughs and Inspections

Informal methods used to verify design and implementation. Static analysis tools
automate much of the tedious aspects of code inspection such as coding standards
compliance while flagging errors and possible software weaknesses.

Control flow Analysis

A static code analysis technique for determining the control flow of a program.
Modern advanced static analysis tools, such Parasoft C/C++test, use sophisticated
control and data flow analysis to detect complex defects and security vulnerabilities.

Data Flow Analysis

A technique for gathering information about the possible set of values calculated at
various points in a computer program. Data flow analysis is a critical aspect of advanced
static analysis tools that helps detect complex errors such as tainted data vulnerabilities.

Static Code Analysis

The general term used to describe the analysis of code that is performed without
actual code execution. This includes the terms used above.

Semantic Code Analysis

An analysis of the code performed during compile time where semantic information is
gathered to perform type checking. The analysis judges whether the syntax structure
constructed in the code derive any meaning or not. For example, making sure variables
are declared before used.

THE ROLE OF STATIC ANALYSIS TOOLS IN SUPPORT OF ISO 26262 DESIGN
PRINCIPLES FOR SOFTWARE UNIT DESIGN AND IMPLEMENTATION

Coding standards embody the best practices learned from years of experience and
aim to harden code by avoiding bad practices that result in inadequate quality and
security while promoting good practices that create more resilient code. In the case of
automotive standards, they are based on best practices plus guidance on preventing
the types of software failures that have been observed over the years.

Coding standards usually define a subset of a programming language deemed safer and
more secure to use. The aim of this is to prevent unpredictable behavior in the first
place, limiting the risky language features that make them possible.

ISO 26262 Software Compliance in the Automotive Industry

15

The only practical, objective, and sustainable way to enforce coding standards is with
static code analysis tools, which can automatically analyze enormous amounts of
source code at a time. These tools integrate into software builds in a CI/CD pipeline
and are available directly in a developer’s IDE. And they provide reports indicating the
conformance of analyzed software to the standard selected.

The following sections cover the important industry standards in the automotive
software industry and how automation, tools, and processes can be leveraged to
ease compliance.

MISRA C 2023

MISRA C is a set of coding guidelines for the C programming language. The focus
of the standard is increasing safety of software by pre-emptively preventing
programmers from making coding mistakes that can lead to runtime failures (and
possible safety concerns) by avoiding known problem constructs in the C language.

Over the years, many developers of embedded systems were (and still are) complaining
that MISRA C was too stringent of a standard and that the cost of writing fully
compliant code was difficult to justify. Realistically, given that MISRA C is applied in
safety-critical software, the value of applying the standard to a project depends on
factors such as:

	» Risk of a system malfunction because of a software failure

	» Cost of a system failure to the business

	» Development tools and target platform

	» Level of developer’s expertise

Programmers must find a practical middle ground that satisfies the spirit of the
standard and still claim MISRA compliance without wasting effort on non-value added
activities.

MISRA C Compliance

In the document, "MISRA Compliance:2020," the MISRA Consortium provides the
response needed by the community with a well-defined framework of what the
statement, “MISRA Compliant,” truly means.

The document helps organizations use a common language articulating the compliance
requirements by defining the following artifacts:

The Guideline Enforcement Plan

Demonstrates how each MISRA guideline is verified.

ISO 26262 Software Compliance in the Automotive Industry

16

The Guideline Re-Categorization Plan

Communicates the agreed upon severity of individual rules in the guidelines as part of
the vendor/client relationship.

The Deviations Report

Documents the violations of guidelines with appropriate rationale.

The Guidelines Compliance Summary

This is the primary record of overall project compliance.

When first introducing MISRA C into a project, commonly where code already exists,
the key document is the guideline re-categorization plan. This document captures all
directives, rules, and identifies which categories have been re-categorized. However,
it’s important to have the same rational categorization for newly developed code as
well. For example, the following diagram shows part of a re-categorization plan.

Figure 3-2:
MISRA Compliance
Report

ISO 26262 Software Compliance in the Automotive Industry

17

The "MISRA C 2023" compliance document recommends against re-categorizations
from a less stringent to a more stringent classification. In addition, it is possible to
disapply advisory rules all together after reviewing the types of violations with the
team.

The requirement to document deviations is only necessary for all required rules. Any
violations in adopted code should be reviewed. Deviations need to clearly state that
violations do not compromise safety and security. Regardless of recategorization, if
there is a finding that compromises the safety or security of the system, the issue must
be fixed. Also, modifications to the existing code may introduce other issues not clearly
seen by the developer.

AUTOSAR C++14

AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide development
partnership of OEM manufacturers, Tier 1 automotive suppliers, semiconductor
manufacturers, software suppliers, tool suppliers, and others that focus on establishing
and standardizing automotive software architecture.

Adaptive AUTOSAR defines a platform for developing automotive control units, which
provide sophisticated functionalities like advanced driving assistance systems, media
streaming, or software updates via internet. The platform contains the specification of
interfaces that define services and APIs for building modern automotive systems.

A key component of AUTOSAR Adaptive Platform is AUTOSAR C++14 coding
standard that defines guidelines for the use of the modern C++ language in critical and
safety-related systems. This is the only standard on the market that supports modern
C++. The standard is well documented and provides traceability to the other existing
C++ standards, such as HIC++ 4.0, JSF, SEI CERT C++, C++ Core Guidelines, and to
MISRA C++ 2008.

In Jan 2019, MISRA consortium announced the integration of AUTOSAR C++ 14
coding guidelines with MISRA. The MISRA Working Group will continue releasing new
C++ industry standards and incorporate the latest version of C++ language, C++ 17,
and its successor, C++20, later.

Parasoft C/C++test, a unified testing tool for C/C++ development, and Parasoft
DTP, a reporting and analytics dashboard, provide a comprehensive solution to help
organizations overcome the challenges associated with automotive software quality
and compliance. Parasoft C/C++test and Parasoft DTP support AUTOSAR C++ 14
(19.03) with the most comprehensive coverage of static analysis checkers for the
AUTOSAR C++14 guidelines and unique compliance reporting.

ISO 26262 Software Compliance in the Automotive Industry

18

AUTOSAR C++14 Compliance

AUTOSAR C++14 does not provide explicit guidance on the process of achieving
compliance. However, given that AUTOSAR guidelines are based on MISRA C++ 2008,
it's reasonable to refer to the MISRA compliance guidelines, discussed above, for
guidance on achieving compliance.

The desired situation is to have a static analysis tool that covers as many guidelines
as possible. The rules that cannot be enforced with static analysis will require manual
reviews, which are expensive.

As with MISRA C compliance, a deviation handling procedure needs to be established.
The deviation procedure formalizes the steps that need to be taken when development
needs to deviate from a specific guideline. As MISRA prescribes it, it is expected that
“…the procedure will be based around obtaining a sign-off for every deviation or class
of deviations.”

This is a particularly important piece of the puzzle. It prevents abusing the deviation
concept by developers deviating at will. Effectively, you'll need formal tickets stored
in your system that document every deviation in the source code. The same pertains
to the compliance matrix and any additional configurations and process descriptions
created to enforce compliance. MISRA C++2008 is truly clear here and requires
“formalization within quality system.”

Finally, if all the procedures described in MISRA C++ 2008 point 4.3 are in place for
AUTOSARC++14, we can claim compliance by demonstrating:

	» A compliance matrix has been completed that shows how compliance has been
enforced.

	» All the C++ code in the product is compliant with the rules of AUTOSARC++ 14
document. If not, they are documented deviations.

	» A list of all instances of the rules not being followed is maintained and for each
instance there is an appropriately signed-off deviation.

ISO 26262 Software Compliance in the Automotive Industry

19

Figure 3-3:
AUTOSAR Compliance
Report

A formal process for handling deviations must document enforcement methods for
every applicable guideline. This document is called the Guidelines Enforcement Plan
(GEP). Also, a Guidelines Recategorization Plan (GRP) is needed, which documents in
a formal way any changes that are introduced to rule categories. And the Guidelines
Compliance Summary (GCS) is a final artifact from the compliance process that
presents the level of compliance that was achieved for every guideline.

Support for AUTOSAR C++14 in Parasoft C/C++test

The only practical way to enforce compliance with a coding standard like AUTOSAR
C++14 is with a static analysis tool, like Parasoft C/C++test, a code quality tool
supporting multiple testing technologies. Parasoft C/C++test support for AUTOSAR
C++14, provides a set of built-in checkers (rules) for verifying compliance with
standards including MISRA C 2023, MISRA C++ 2023, JSF AV C++, SEI CERT C/C++,
HIC++, CWE Top 25, CWE On the Cusp, OWASP, and more.

Parasoft compliance packs provide users with standard specific configurations,
automatic generation of compliance documentation, risk assessment framework, and
dynamic compliance reporting dashboards (DTP) to help stakeholders easily aggregate,
correlate, and apply analytics to centralize reporting for each step along the complex
software supply chain.

ISO 26262 Software Compliance in the Automotive Industry

20

ENFOCEMENT BY
STATIC ANALYSIS SUPPORTED UNSUPPORTED ALL PERCENT

COVERAGE
OBLIGATION

LEVEL

Required

Required

Required

Required

Partially

Automated

Non-Automated

All

18

301

19

338

2

0

22

24

20

301

41

362

90%

100%

46%

93%

Figure 3-4:
Parasoft covers 100%
of all required and
automated AUTOSAR
rules.

With the 100% coverage for Required & Automated rules, Parasoft testing tool suite
ensures AUTOSAR compliance throughout the software development life cycle,
improves code quality, and reduces cost associated with resources and time to market.

Parasoft provides comprehensive support for CERT C and CERT C++ secure coding
standards with complete coverage of all the CERT C/C++ guidelines including both
rules and recommendations that are detectable by static analysis. Checker names,
dashboards, and reports use the CERT naming convention to make conformance and
auditing easier. A CERT conformance dashboard, which includes the CERT risk score,
helps developers focus on the most critical violations.

SEI CERT

The Software Engineering Institute (SEI) Computer Emergency Response Team (CERT)
has a set of guidelines to help developers create safer, more secure, and more reliable
software. Started in 2006 at a meeting of the C Standard Committee, the first CERT C
standard was published in 2008, and is constantly developing and evolving.

There's a book form version published in 2016, but it doesn't include the latest
updates. This standard doesn’t have specific frozen releases like CWE Top 25 and
OWASP Top 10. The standard arose from a large community of over 3,000 people
with a focus on engineering and prevention. So the CERT secure coding standards
focus on prevention of the root causes of security vulnerabilities rather than treating
or managing the symptoms by searching for vulnerabilities.

The CERT coding guidelines are available for C, C++, Java, Perl, and Android. They fall
into two main categories: rules and recommendations.

Rules are guidelines that are detectable by static analysis tools and require strict
enforcement, while recommendations are guidelines that have a lower impact and are
sometimes difficult to analyze automatically.

CERT includes a risk assessment system that combines likelihood of occurrence,
severity, and relative difficulty of mitigation. This helps developers prioritize which
guideline violations are the most important to investigate. The inclusion of mitigation
effort to the guideline priority is an important addition to the CERT secure coding
standards, which many other standards lack.

ISO 26262 Software Compliance in the Automotive Industry

21

The cost factor allows for the creation of the “CERT bullseye” diagram in which the
center bullseye is the highest severity guidelines that are more difficult to fix. The
benefit of this prioritization is focusing on the most critical violations that provide the
biggest bang for the buck in security improvement while helping the development
team filter out less important warnings.

Figure 3-5:
SEI CERT severity bullseye
diagram

SEI CERT C/C++ Conformance

According the SEI CERT C documentation, conformance "requires that the code not
contain any violations of the rules specified in this standard. If an exceptional condition
is claimed, the exception must correspond to a predefined exceptional condition, and
the application of this exception must be documented in the source code.”

Although conformance is less specific than standards such as MISRA, the principles
remain similar. Rules should be followed and deviations rare and well documentation.
Recommendations should be used when possible and those that aren’t needed to
be documented.

Violations that persist in the source code need to be documented. However, no
deviation is acceptable for performance or usability and the onus is on the developer
to demonstrate that the deviation will not lead to a vulnerability.

ISO 26262 Software Compliance in the Automotive Industry

22

Parasoft C/C++test provided comprehensive CERT compliance dashboard and reports.
Individual compliance reports are available on demand based on the latest build of the
software or any previous build.

These reports can be sorted and navigated to investigate violations in more detail.
Also, a conformance test plan is available to correlate the CERT guideline with the
appropriate Parasoft static analysis checker is an important tool if conformance
documentation is needed for audit purposes. In addition, all the interesting reports as
specified by the team are available in a single PDF available for download for auditors.

Figure 3-6:
CWE Top 25 compliace
dashboard

ISO 26262 Software Compliance in the Automotive Industry

23

Figure 3-7:
CERT Compliance Report

Support for CERT C/C++ in Parasoft C/C++test

Parasoft provides comprehensive support for CERT C and CERT C++ secure coding
standards with complete coverage of all the CERT C/C++ guidelines including both
rules and recommendations that are detectable by static analysis. Checker names,
dashboards, and reports use the CERT naming convention to make conformance and
auditing easier. A CERT conformance dashboard, which includes the CERT risk score,
helps developers focus on the most critical violations.

CWE - COMMON WEAKNESS ENUMERATION

CWE is a list of discovered software weaknesses based on the analysis of reported
vulnerabilities (CVEs). The collection of CVEs and CWEs is a US government
funded initiative developed by the software community and managed by the MITRE
organization. In its entirety, the CWE list contains over 800 items.

These 800+ items are organized in more usable lists such as the well-known CWE Top
25. The Top 25 lists the most common and dangerous security weaknesses, which
are all exploits that have a high chance of occurring and the impact of exploiting the
weakness is large. The software weaknesses documented by a CWE is the software
implicated in a set of discovered vulnerabilities (documented as CVEs) when analysis
was performed to discover the root cause. CVEs are specific observed vulnerabilities
in software products that have an exact definition of how to exploit them.

ISO 26262 Software Compliance in the Automotive Industry

24

The current version of CWE Top 25 is from 2011. An updated Top 25 is currently in
process with improved linking to CVEs and the NVD. Ranking considers real world
information so that it truly represents the Top 25 application security issues today. As
soon as it is released, Parasoft will have updated support for the latest version.

The current CWE Top 25 is listed below.

Table 3-8: CWE Top 25 For software teams that have a good handle on the Top 25, there is another grouping
of the next most common and impactful vulnerabilities called the CWE CUSP. Another
way to think of these are the top 25 honorable mentions.

The CWE uses a risk scoring method to rank the Top 25 (and on the CUSP). This score
takes into consideration the technical impact of a software weakness (how dangerous
an exploit of the weakness is in the real world) as measured by the CWSS (common
weakness scoring system). Examples of technical impacts from vulnerabilities may
include denial of service (DoS), distributed denial of service (DDoS), read or write
access to protected information, unauthorized access, and so on.

The details of these methods aren’t too important, but the sorted list is useful in
understanding which vulnerabilities to be concerned about the most. As an example,
it’s possible that your application is purely internal and DoS issues aren’t critical
for you. Being able to prioritize on the most important weaknesses for your own
application can help overcome overwhelm with static analysis violations.

ISO 26262 Software Compliance in the Automotive Industry

25

CWE Top 25 and On the Cusp Compliance

Introducing the coding standard compliance process into the team development
workflow is not an easy task. As such, it's important to select a tool that will help
in achieving compliance without imposing too much overhead and without the
requirement for additional manual procedures. The following points are important
decision-making factors when selecting the solution for static analysis.

The CWE Top 25 and its lesser known sibling, On the Cusp, are not a coding standards
per se, but a list of weaknesses to avoid, improving security. To be CWE compliant, a
project should be able to prove that is has made reasonable efforts to detect and avoid
these common weaknesses.

Parasoft’s advanced static analysis tools for C, C++, Java, and .NET are officially
compatible with CWE, providing automated detection of both Top 25 and On
the Cusp weaknesses (and many more). CWE-centric dashboards give users quick
access to standards violations and current project status. A built in CWE Top 25
configuration is available for C, C++, .NET, and Java and has full coverage of all the
25 common weaknesses.

Figure 3-9:
CWE 3.2 - .NET
compliance dashboard

ISO 26262 Software Compliance in the Automotive Industry

26

The Parasoft tools include information from the CWRAF risk analysis framework, such
as technical impact, so you can benefit from the same type of prioritization based on
risk and technical impact and weaknesses found in your own code.

The On the Cusp guidelines are also available. When enabled, they're treated the same
way as the Top 25 and reports provide the same level of detail. This is useful since
the UL 2900 (formerly Underwriters Laboratory) and FDA recommend the full list of
guidelines (Top 25 + On the Cusp + OWASP Top 10). It’s possible to integrate other
guidelines from CWE lists or other standards and guidelines using Parasoft’s custom
checker configurations as needed.

Parasoft also supports detailed compliance reporting to streamline audit processes.
The web dashboards provide the link to compliance reports that provide a complete
picture of where a project stands. In addition, the CWE Weakness Detection Plan
maps the CWE entry against the checkers that are used to detect the weakness. This
helps illustrate how compliance was achieved to an auditor, and the audit reports are
available to download as PDFs for easy reporting.

Figure 3-10:
CWE 3.2 - .NET compliace
report

ISO 26262 Software Compliance in the Automotive Industry

27

UNIT TESTING
Software verification and validation is an inherent part of automotive software
development and testing is a key way to demonstrate correct software behavior. Unit
testing is the verification of module design. It ensures that each software unit does
what it's required to do.

In addition, safety and security requirements may require that software units don’t
behave in unexpected ways and are not susceptible to manipulation with unexpected
data inputs.

Figure 4-1:
The V-model of software
development showing the
relationship between each
phase and the validation
inferred at each stage of
testing.

In terms of the classic V model of development, unit test execution is a validation
practice to ensure module design is correct. ISO 26262 has specific guidelines for what
needs to be tested for unit testing.

ISO 26262 has specific guidelines for testing in accordance with safety integrity level
where requirements-based testing and interface testing are highly recommended for
all levels. Fault injection and resource usage tests are recommended at lower integrity
levels and highly recommended at ASIL (Automotive Safety Integrity Levels) D. Similarly,
the method of driving test cases is also specified with recommended practices.

ISO 26262 Software Compliance in the Automotive Industry

28

Figure 4-2:
ISO 26262 Part 6,
10.4.3:2011

Figure 4-3:
ISO 26262 Part 6,
10.4.4:2011

METHODS
B C DA

++ ++

++ ++++ ++

++ ++

+ + + ++
+ + + ++

+ + ++ ++

ASIL

1a
1b
1c
1d
1e

Requirement-based test
Interface test

Fault injection test

Resource usage evaluation
Back-to-back comparison test between model and code (if applicable)

Table 13 - Methods for software unit verification

METHODS
B C DA

++ ++

++ +++ ++

++ ++

+ ++ ++ ++
+ + + +

ASIL

1a
1b
1c
1d

Analysis of requirements
Generation and analysis of equivalence classes

Analysis of boundary values

Error guessing

Table 14 - Methods for deriving test cases for software integration testing

Breaking these down individually, consider how each unit test requirement from
ISO 26262 can be satisfied and accelerated with test automation tools like
Parasoft C/C++test.

UNIT TEST METHODS

Requirement-Based Test

These tests directly test functionality as specified in each requirement. Test
automation tools need to support bidirectional traceability of requirements to their
tests and the requirements testing coverage reports to show compliance.

Interface Test

These tests ensure programming interfaces behave and perform as specified. Test
tools need to create function stubs and data sources to emulate behavior of external
components for automatic unit test execution.

Fault Injection Test

These tests use unexpected inputs and introduce failures in the execution of code to
examine failure handling or lack thereof. Test automation tools must support injection
of fault conditions using function stubs and automatic unit test generation using a
diverse set of preconditions, such as min, max, and heuristic values.

ISO 26262 Software Compliance in the Automotive Industry

29

Resource Usage Evaluation

These tests evaluate the amount of memory, file space, CPU execution or other target
hardware resources used by the application.

TEST CASE DRIVERS

Analysis of Requirements

Clearly, every requirement drives at minimum a single unit test case. Although test
automation tools do not generate tests directly from requirements, they must support
two-way traceability from requirements to code and requirements to tests. And
maintain requirements, tests, and code coverage information.

Generation & Analysis of Equivalence Classes

Test cases must ensure that units behave in the same manner for a range of inputs
not just cherry picked inputs for each unit. Test automation tools must support test
case generation using data sources to efficiently use a wide range of input values.
Parasoft C/C++test uses factory functions to prepare sets of input parameter values
for automated unit test generation.

Analysis of Boundary Values

Automatically generated test cases, such as heuristic values, boundary values, employ
data sources to use a wide range of input values in tests.

Error Guessing

This method uses the function stubs mechanism to inject fault conditions into tested
code flow analysis results and can be used to write additional tests.

AUTOMATED TEST EXECUTION AND TEST CASE GENERATION

Test automation provides large benefits to embedded automotive software. Moving
away from test suites that require a lot of manual intervention means that testing can
be done quicker, easier, and more often.

Offloading this manual testing effort frees up time for better test coverage and other
safety and quality objectives. An important requirement for automated test suite
execution is being able to run these tests on both host and target environments.

Target-Based Testing for Automotive Systems

Automating testing for automotive software is more challenging due to the complexity
of initiating and observing tests on embedded targets. Not to mention the limited
access to target hardware that software teams have.

ISO 26262 Software Compliance in the Automotive Industry

30

Software test automation is essential to make embedded testing workable on a
continuous basis from host development system to target system. Testing embedded
software is particularly time consuming. Automating the regression test suite provides
considerable time and cost savings. In addition, test results and code coverage data
collection from the target system are essential for validation and standards compliance.

Traceability between test cases, test results, source code, and requirements must be
recorded and maintained. So data collection is critical in test execution.

Parasoft C/C++test is offered with its test harness optimized to take minimal additional
overhead for the binary footprint and provides it in the form of source code, where it
can be customized if platform-specific modifications are required.

Figure 4-4:
A high-level view of
deploying, executing, and
observing tests from host
to target.

One huge benefit that the Parasoft C/C++test solution offers is its dedicated
integrations with embedded IDEs and debuggers that make the process of executing
test cases smooth and automated. Supported IDE environments include eclipse, VS
Code, Green Hills Multi, Wind River Workbench, IAR EW, ARM MDK, ARM DS-5, TI
CCS, Visual Studio, and many others.

Test Executable

Runtime Library

Communication
Module

Listening Agent

Deploy

Communication
Channel

ECU

ISO 26262 Software Compliance in the Automotive Industry

31

AUTOMATED TEST CASE GENERATION

Unit test automation tools universally support some sort of test framework, which
provides the harness infrastructure to execute units in isolation while satisfying
dependencies via stubs. Parasoft C/C++test is no exception. Part of its unit test
capability is the automated generation of test harnesses and the executable
components needed for host and target-based testing.

Test data generation and management is by far the biggest challenge in unit testing.
Test cases are particularly important in safety-critical software development because
they must ensure functional requirements and test for unpredictable behavior,
security, and safety requirements. All while satisfying test coverage criteria.

Parasoft C/C++test automatically generates test cases like the popular CppUnit format.
By default, C/C++test generates one test suite per source/header file. It can also be
configured to generate one test suite per function or one test suite per source file.

Safe stub definitions are automatically generated to replace "dangerous" functions,
which includes system I/O routines such as rmdir(), remove(), rename(), and so on.
In addition, stubs can be automatically generated for missing function and variable
definitions. User-defined stubs can be added as needed.

Figure 4-5:
Parasoft C/C++
automated test case
generation, in this
case, one test suite per
function.

ISO 26262 Software Compliance in the Automotive Industry

32

REGRESSION TESTING
As part of most software development processes, regression testing is done after
changes are made to software. These tests determine if the new changes had an
impact on the existing operation of the software.

Regression tests are necessary, but they only indicate that recent code changes have
not caused tests to fail. There's no assurance that these changes will work. In addition,
the nature of the changes that motivate the need to do regression testing can go
beyond the current application and include changes in hardware, operating system,
and operating environment.

REGRESSION TESTING IN SAFETY-CRITICAL SOFTWARE

In safety-critical software development, validation is critical in proving correct
functionality, safety, and security. Tests are needed to confirm any changes to the
application to ensure functionality and to verify there are no unforeseen impacts on
the rest of the system.

If a test case passed in the past and now fails, a potential regression has been
identified. The failure could be caused by new functionality, in which the test case
may need to be updated, so that it takes into consideration changes in inputs and
outputs values.

Regression testing of embedded systems also includes the execution of:

	» Integration test cases

	» System test cases

	» Performance test cases

	» Stress test cases and more

In fact, all previously created test cases may need to be executed to ensure that no
regressions exist and that a new dependable software version release is constructed.
This is critical because each new software system or subsystem release is built or
developed upon. If you do not have a solid foundation the whole thing can collapse.

Parasoft C/C++test supports the creation of regression testing baselines as an
organized collection of tests and will automatically verify all outcomes. These
tests are run automatically on a regular basis to verify whether code modifications
change or break the functionality captured in the regression tests. If any changes
are introduced, these test cases will fail to alert the team to the problem. During
subsequent tests, C++test will report tasks if it detects changes to the behavior
captured in the initial test.

ISO 26262 Software Compliance in the Automotive Industry

33

HOW TO DECIDE WHAT TO REGRESSION TEST

The key challenge with regression testing is determining what parts of an application
to test. It is common to default to executing all regression tests when there’s doubt on
what impacts recent code changes have had — the all or nothing approach.

For large software projects, this becomes a huge undertaking and drags down the
productivity of the team. This inability to focus testing hinders much of the benefits
of iterative and continuous processes, potentially exacerbated in embedded software
where test targets are a limited resource.

A couple of tasks are required here.

	» Identify which tests need to be re-executed.

	» Focus the testing efforts (unit testing, automated functional testing, and manual
testing) on validating the features and related code that are impacted by the most
recent changes.

Developers and testers can get a clear understanding of the changes in the codebase
between builds using the Process Intelligence Engine (PIE) within Parasoft DTP
(Development Testing Platform) combined with Parasoft’s proprietary coverage
analysis engines:

	» C/C++test for C & C++

	» dotTEST for C#

	» Jtest for Java

With this combination, teams can improve efficiency and achieve the promise of Agile.

This form of smart test execution is called Test Impact Analysis. It's sometimes
referred to as change based testing.

UNDERSTAND THE IMPACT OF CODE CHANGES ON TESTING WITH TEST
IMPACT ANALYSIS

Test Impact Analysis uses data collected during test runs and changes in code between
builds to determine which files have changed and which specific tests touched those
files. Parasoft’s analysis engine can analyze the delta between two builds and identify
the subset of regression tests that need to be executed. It also understands the
dependencies on the units modified to determine what ripple effect the changes have
made on other units.

ISO 26262 Software Compliance in the Automotive Industry

34

Figure 5-1:
An example change-
based testing report from
Parasoft DTP showing
areas of the code which
are and are not tested.

Change Based Testing - Files
Filter: Parabank-v3 Baseline Build: PARABANK3-20170503 Target Build: PARABANK3-21170619 Coverage Tag: Parabank-All

Totals -- Pass: 172 Fail: 7 Incomplete: 10 Retest: 6

File Name

ParaBankBeanPostProcessor.java

Transaction.java

HistoryPoint.java

Position.java

Customer.java

Account.java

BankManagerImpl.java

JdbcAdminDao.java

AbstractLoanProcessor.java

LoanRequest.java

JdbcTransactionDao.java

AdminManagerImpl.java

AvailableFundsLoanProcessor.java

LoanResponse.java

CombinedLoanProcessor.java

ConfigurableLoanProvider.java

LocalLoanProvider.java

Pass

171

19

13

25

58

34

34

102

6

9

14

40

4

5

1

13

2

Fail Incomplete Retest

7

6

5

5

4

4

4

3

2

2

1

1

1

1

1

1

1

10

10

0

1

5

9

9

9

0

2

10

4

0

2

0

2

0

1

5

0

0

6

6

6

2

1

1

5

1

1

1

0

1

0

admin

Parasoft C/C++test, Jtest, and dotTEST provide insight into the impact of software
changes. Each solution recommends where to add tests and where further regression
testing is needed. See the example change based testing report below.

ISO 26262 Software Compliance in the Automotive Industry

35

SOFTWARE INTEGRATION TESTING
Integration testing follows unit testing with the goal of validating the architectural
design. Integration testing can be done bottom up and top down with a combination of
approaches likely in many software organizations.

BOTTOM-UP INTEGRATION

This testing begins with unit testing, followed by tests of progressively higher-level
combinations of units called modules or builds. The approach follows a version of the
testing pyramid where unit testing forms the foundation of a thorough testing regime.
Integration tests follow the integration of units into larger architectural blocks.

TOP-DOWN INTEGRATION

In this testing, the highest level modules are tested first. Progressively, testing of
lower-level modules follows. This approach assumes significant subsystems are
complete enough to be tested as a whole.

The V-model is good for illustrating the relationship between the stages of
development and stages of validation. At each testing stage, more complete portions
of the software are validated against the phase that defines it.

The V-model might imply a waterfall development method. However, there are ways to
incorporate Agile, DevOps, and CI/CD into this type of product development while still
being standards compliant.

Figure 6-1:
The V-model of software
development showing the
relationship between each
phase and the validation
inferred at each stage of
testing.

ISO 26262 Software Compliance in the Automotive Industry

36

While the act of performing tests is considered software validation, it’s supported by
a parallel verification process that involves the following activities to make sure teams
are building the process and the product correctly:

	» Reviews

	» Walkthroughs

	» Analysis

	» Traceability

	» Test

	» Code coverage and more

The key role of verification is to ensure building delivered artifacts from the previous
stage to specification in compliance with company and industry guidelines.

INTEGRATION AND SYSTEM TESTING AS PART OF A CONTINUOUS TESTING
PROCESS

Performing some level of test automation is foundational for continuous testing. Many
organizations start by simply automating manual integration and system testing (top
down) or unit testing (bottom up).

To enable continuous testing, organizations need to focus on creating a scalable test
automation practice that builds on a foundation of unit tests, which are isolated and
faster to execute. Once unit testing is fully automated, the next step is integration
testing and eventually system testing.

Continuous testing leverages automation and data derived from testing to provide
real-time, objective assessment of the risks associated with a system under
development. Applied uniformly, it allows both business and technical managers to
make better trade-off decisions between release scope, time, and quality.

Continuous testing isn’t just more automation. It’s a larger reassessment of software
quality practices that's driven by an organization’s cost of quality and balanced
for speed and agility. Even within the V-model used in safety-critical software
development, continuous testing is still a viable approach, particularly during phases of
testing, for example, during unit testing and integration testing.

The diagram below illustrates how different phases of testing are part of a continuous
process that relies on a feedback loop of test results and analysis.

ISO 26262 Software Compliance in the Automotive Industry

37

Figure 6-2: A continuous
testing cycle

PARASOFT ANALYSIS AND REPORTING IN SUPPORT OF INTEGRATION AND
SYSTEM TESTING

Parasoft test automation tools support the validation (actual testing activities) in terms
of test automation and continuous testing. These tools also support the verification
of these activities, which means supporting the process and standards requirements.
Key aspects of safety-critical automotive software development are requirements
traceability and code coverage.

Two Way Traceability

Requirements in safety-critical software are the key driver for product design and
development. These requirements include functional safety, application requirements,
and nonfunctional requirements that fully define the product. This reliance on
documented requirements is a mixed blessing because poor requirements are one of
the critical causes of safety incidents in software. In other words, the implementation
wasn’t at fault, but poor or missing requirements were.

Automating Bidirectional Traceability

Maintaining traceability records on any sort of scale requires automation. Application
lifecycle management tools include requirements management capabilities that are
mature and tend to be the hub for traceability. Integrated software testing tools like
Parasoft complete the verification and validation of requirements by providing an
automated bidirectional traceability to the executable test case. This includes the pass
or fail result and traces down to the source code that implements the requirement.

Parasoft integrates with market leading requirements management tools or
ALM systems such as Intland codebeamer, Polarion from Siemens, Atlassian Jira,
Jama Connect, and others. As shown in the image below, each of Parasoft’s test
automation solutions (C/C++test, Jtest, dotTEST, SOAtest, and Selenic) used within

ISO 26262 Software Compliance in the Automotive Industry

38

the development life cycle support the association of tests with work items defined
in these systems, such as requirements, defects, test case/test runs. Traceability is
managed through Parasoft DTP, central reporting and analytics dashboard.

Figure 6-3: Parasoft
provides a reporting
dashboard that capture
the project’s testing
status, correlation to
requirements and progress
towards completion.

Parasoft DTP correlates the unique identifiers from the management system with:

	» Static analysis findings

	» Code coverage

	» Results from unit, integration, and functional tests

Results are displayed within Parasoft DTP’s traceability reports and sent back to the
requirements management system. They provide full bidirectional traceability and
reporting as part of the system’s traceability matrix.

ISO 26262 Software Compliance in the Automotive Industry

39

Figure 6-4: codebeamer
traceability matrix.
System requirements to
high level requirements to
low level requirement to
test cases and test results.

Figure 6-5: Requirements
traceability matrix
template from Parasoft
DTP integrated with
Siemens Polarion.

The traceability reporting in Parasoft DTP is highly customizable. The following image
shows a requirements traceability matrix template for requirements authored in
Polarion that trace to the test cases, static analysis findings, the source code files, and
the manual code reviews.

ISO 26262 Software Compliance in the Automotive Industry

40

The bidirectional correlation between test results and work items provides the basis
of requirements traceability. Parasoft DTP adds test and code coverage analysis
to evaluate test completeness. Maintaining this bidirectional correlation between
requirements, tests, and the artifacts that implement them is an essential component
of traceability.

Code Coverage

Code coverage expresses the degree to which the application’s source code is
exercised by all testing practices, including unit, integration, and system testing — both
automated and manual.

Collecting coverage data throughout the life cycle enables more accurate quality and
coverage metrics, while exposing untested or under tested parts of the application.
Depending on the safety integrity level (ASIL in ISO 26262), the depth and
completeness of the code coverage will vary.

Application coverage can also help organizations focus testing efforts when time
constraints limit their ability to run the full suite of manual regression tests. Capturing
coverage data on the running system on its target hardware during integration and
system testing completes code coverage from unit testing.

Benefits of Aggregate Code Coverage

Captured coverage data is leveraged as part of the continuous integration (CI) process,
as well as part of the tester’s workflow. Parasoft DTP performs advanced analytics
on code coverage from all tests, source code changes, static analysis results, and test
results. The results help identify untested and undertested code and other high risk
areas in the software.

Analyzing code, executing tests, tracking coverage, and reporting the data in a
dashboard or chart is a useful first step toward assessing risk, but teams must still
dedicate significant time and resources to reading the tea leaves and hope that they’ve
interpreted the data correctly.

Understanding the potential risks in the application requires advanced analytics
processes that merge and correlate the data. This provides greater visibility into the
true code coverage and helps identify testing gaps and overlapping tests. For example,
what is the true coverage for the application under test when your tools report
different coverage values for unit tests, automated functional tests, and manual tests?

The percentages cannot simply be added together because the tests overlap. This
is a critical step for understanding the level of risk associated with the application
under development.

ISO 26262 Software Compliance in the Automotive Industry

41

Figure 6-6:
Parasoft DTP reporting
and analytics dashboard

Understanding the Impact of Code Changes on Testing With Test Impact Analysis

Test Impact Analysis uses data collected during test runs and changes in code between
builds to determine which files have changed and which specific tests touched those
files. Parasoft’s analysis engine can analyze the delta between two builds and identify
the subset of regression tests that need to be executed. It also understands the
dependencies on the units modified to determine the ripple effect the changes have
made on other units.

Parasoft C/C++test, Jtest, and dotTEST provide insight into the impact of software
changes and recommend where to add tests and where further regression testing is
needed.

ACCELERATING INTEGRATION AND SYSTEM TESTING WITH PARASOFT TEST
AUTOMATION TOOLS

Parasoft’s software test automation tools accelerate verification by automating the many
tedious aspects of record keeping, documentation, reporting, analysis, and reporting.

	» Two-way traceability for all artifacts ensures requirements have code and tests to
prove they are being fulfilled. Metrics, test results, and static analysis results are
traced to components and vice versa.

	» Code and test coverage verifies all requirements are implemented and makes sure
the implementation is tested as required.

ISO 26262 Software Compliance in the Automotive Industry

42

	» Target and host-based test execution supports different validation techniques as
required.

	» Smart test execution manages change with a focus on tests for only code that
changed and any impacted dependents.

	» Reporting and analytics provides insight to make important decisions and keeps
track of progress. Decision making needs to be based on data collected from the
automated processes.

	» Automated documentation generation from analytics and test results support
process and standards compliance.

	» Standards compliance automation reduces the overhead and complexity by
automating the most repetitive and tedious processes. The tools can keep track of
the project history and relating results against requirements, software components,
tests, and recorded deviations.

ISO 26262 Software Compliance in the Automotive Industry

43

Figure 7-1:
Engine Control Unit (ECU)
and user services all
connected to the cloud

SOFTWARE SYSTEM TESTING
System testing tests the system as a whole. Once all the components are integrated,
the entire system is tested rigorously to verify it meets the specified functional, safety,
security, and other nonfunctional requirements.

This type of testing in safety-critical software is performed by a specialized testing
team. System testing falls within the scope of black box testing. As such, it shouldn't
require any knowledge of the inner design of the code or logic.

An important distinction with system level testing is the system is tested in an
environment that is close to the production environment where the application will
be deployed. At this stage, specific safety functions are validated and system wide
security testing is run.

AUTOMOTIVE SYSTEM TESTING AT THE SERVICE LEVEL

Individual systems within an automobile may not be considered part of a service.
However, connectivity into larger systems means they should be. For example, in
an automobile, the role of the engine control unit (ECU) alone is to ensure proper
combustion and emissions in the engine, but the car is tracking fuel economy, using the
ECU, and reporting it to a central server over a wireless connection.

This mileage data is then used to plan routes and estimate operating costs. Suddenly,
the ECU is a critical leaf node in a business decision making process.

ISO 26262 Software Compliance in the Automotive Industry

44

Instead of viewing system quality in terms of meeting individual device requirements,
the scope is broadened to consider the quality of the services provided. Testing at the
service level ensures nonfunctional requirements are met. For example, performance
and reliability are difficult to assess at the device level or during software unit testing.
Service based testing can simulate the operational environment of a device to provide
realistic loads. In the HVAC example, the new temperature sensor can be tested with
varying request rates to see if it meets performance requirements.

Security is a significant concern in automotive systems. Cyber attacks most likely
originate from the network itself by attacking the exposed APIs. Service based testing
can create simulated environments for robust security testing, either through fuzzing
(random and erroneous data inputs) or denial-of-service attacks. A new temperature
sensor in the HVAC example might operate correctly with expected requests, but
crash when overloaded. An attacker might be able to exploit this to overload the
system and cause an outage.

VIRTUAL TEST ENVIRONMENT AND SERVICE LEVEL TESTING

A real test lab requires the closest physical manifestation of the environment in which
an automobile is planned to work. Even in the most sophisticated lab, it’s difficult to
scale to a realistic environment. A virtual lab fixes this problem.

Virtual labs evolve past the need for hard-to-find (or non-existent) hardware
dependencies. They use sophisticated service virtualization with other key test
automation tools.

Service Virtualization

Simulates all the dependencies needed by the device under test in order to perform
full system testing. This includes all connections and protocols used by the device
with realistic responses to communication. For example, service virtualization can
simulate an enterprise server backend that an automobile communicates. Similarly,
virtualization can control simulate a dependent system, like traffic or weather data, in a
realistic manner.

Service and API Testing

Provide a way to drive the system under test in a manner that ensures the services it
provides (and APIs provided) are performing flawlessly. These tests can be manipulated
via the automation platform to perform performance and security tests as needed.

Runtime Monitoring

Detects errors in real time on the system under test and captures important trace
information.

ISO 26262 Software Compliance in the Automotive Industry

45

Test Lab Management and Analytics

Provide the overarching control of the virtual labs. Once virtualized, the entire lab
setup can be replicated as needed and test runs can be automated and repeated.
Analytics provide the necessary summary of activities and outcomes.

PARASOFT SOATEST AND VIRTUALIZE FOR SERVICE LEVEL TESTING OF
AUTOMOTIVE SOFTWARE

Developers can build integrations earlier, stabilize dependencies, and gain full control
of their test data with Parasoft Virtualize. Teams can move forward quickly without
waiting for access to dependent services that are either incomplete or unavailable.
Companies can enable partners to test against their applications with a dedicated
sandbox environment.

Parasoft SOAtest delivers fully integrated API and web service testing tools that
automate end-to-end functional API testing. Teams can streamline automated testing
with advanced functional test creation capabilities for applications with multiple
interfaces and protocols.

SOAtest and Virtualize are well suited for network based system-level testing of
various types, including the following:

	» Comprehensive protocol stack that supports, HTTP, MQTT, RabbitMQ, JMS, XML,
JSON, REST, SOAP, and more.

	» Security and performance testing during integration and system testing with
integration into the existing CI/CD process.

	» End-to-end testing that combines API, web, mobile, and database interactions into
virtual test environments.

ISO 26262 Software Compliance in the Automotive Industry

46

STRUCTURAL CODE COVERAGE
Collecting and analyzing code coverage metrics is an important aspect of safety-
critical automotive software development. Code coverage measures the completion of
test cases and executed tests. It provides evidence that validation is complete, at least
as specified by the software design.

It also identifies dead code. This is code that can logically never be reached. It
demonstrates the absence of unintended behavior. Code that isn’t covered by any test
is a liability because its behavior and functionality are unknown.

The amount and extent of code coverage depends on the safety integrity level. The
higher the integrity level, the higher the rigor used, and inevitably the number and
complexity of test cases.

The following table shows the recommendations for types of code coverage at each
ISO 26262 ASIL.

Figure 8-1:
ISO 26262 Part 6,
9.4.5:2011

Statement coverage requires that each program statement be executed at least
once and is recommended at the lower ASIL levels. Branch and MC/DC coverage
encompass statement coverage.

Branch coverage ensures that each decision branch (if-then-else constructs) is
executed.

Modified condition/decision coverage (MC/DC) requires the most complete code
coverage to ensure test cases execute each decision branch and all the possible
combinations of inputs that affect the outcome of decision logic. For complex logic, the
number of test cases can explode, so the modified condition restrictions are used to
limit test cases to those that result in standalone logical expressions changing. See this
tutorial from NASA.

Advanced unit test automation tools such as Parasoft C/++test provide all these code
coverage metrics. C/C++test automates this data collection on host and target testing
and accumulates test coverage history over time. This code coverage history can span
unit, integration, and system testing to ensure coverage is complete and traceable at all
levels of testing.

METHODS
B C DA

++ ++

++ +++ ++

+ +

+ + + ++

ASIL

1a
1b
1c

Statement coverage
Branch coverage

MC/DC (Modified Condition/Decision Coverage

Table 12 - Structural coverage metrics at the software level

ISO 26262 Software Compliance in the Automotive Industry

47

INCREASING CODE COVERAGE WITH AUTOMATED UNIT TEST CASE CREATION

The creation of productive unit tests has always been a challenge. Functional safety
standards compliance demands high-quality software, which drives a need for test
suites that affect and produce high code coverage statistics. Teams require unit test
cases that help them achieve 100% code coverage.

This is easier said than done. Analyzing branches in the code and trying to find
reasons why certain code sections are not covered continues to steal cycles from
development teams.

Parasoft Coverage Advisor

Parasoft C/C++test resolves the coverage gaps in test suites. Parasoft discovered how
to use advanced static code analysis (data and control flow analysis) to find values for
the input parameters required to execute specific lines of uncovered code.

In complex code, there are always those elusive code statements of which it is
exceedingly difficult to obtain coverage. It’s likely there are multiple input values
with various permutations and possible paths that make it mind twisting and time
consuming to decipher. But only one combination can get you the coverage you need.
Parasoft makes it easy to obtain coverage of those difficult to reach lines of code.

Select the line of code you want to cover, and the Coverage Advisor will tell you what
input values, global variables, and external calls you need to stimulate the code and
obtain coverage.

Figure 8-2:
Invoking Coverage Advisor
by right-clicking on the
line of code.

ISO 26262 Software Compliance in the Automotive Industry

48

The figure below shows an analysis report providing the user with a solution. The Pre-
conditions field expresses:

	» The range and input values for mainSensorSignal and coSensorSignal

	» The expected outputs from the external calls

Upon creating the unit test case with these set parameter values and stubs for
external calls, the user will obtain coverage of the line selected, plus the additional
lines expressed in the Expected Coverage field.

Figure 8-3:
Two test case solutions
provided by Coverage
Advisor.

ISO 26262 Software Compliance in the Automotive Industry

49

REQUIREMENTS AND THE TRACEABILITY MATRIX
In ISO 26262, requirements management is a mandatory part of the software
development process and the traceability of those requirements to implementation—
and subsequently, proof of correct implementation need to be ensured.

Requirements traceability is defined as “the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction (i.e., from its origins, through
its development and specification, to its subsequent deployment and use, and through
periods of on-going refinement and iteration in any of these phases).”1

In the simplest sense, requirements traceability is needed to keep track of exactly what
you’re building when writing software. This means making sure the software does
what it’s supposed to and that you’re only building what is needed.

Traceability works both to prove you satisfied the requirements and to identify what
doesn’t. If there are architectural elements or source code that can’t be traced to a
requirement, then it’s a risk and shouldn’t be there. The benefits go beyond providing
proof of the implementation. Disciplined traceability is an important visibility into
development progress.

It’s important to realize that many requirements in safety-critical software are derived
from safety analysis and risk management. The system must perform it’s intended
functions, of course, but it must also mitigate risks to greatly reduce the possibility
of injury. Moreover, in order to document and prove that these safety functions are
implemented and tested fully and correctly, traceability is critical.

Tracing requirements isn’t simply linking a paragraph from a document to section of
code or a test. Traceability must be maintained throughout the phases of development
as requirements manifest into design, architecture, and implementation. Consider the
typical V diagram of software.

Figure 9-1:
The classic V diagram
shows how traceability
goes forward and
backward through each
phase of development.

1Gotel O.C.Z and Finklestein A.C.W., "An analysis of the requirements traceability problem", in Proceedings of ICRE94,
1st International Conference on Requirements Engineering, Colorado Springs, Co, IEEE CS Press, 1994

ISO 26262 Software Compliance in the Automotive Industry

50

Figure 9-2:
The other important
part of requirements
traceability is verification
and validation testing to
prove the implementation
of the specification from
the corresponding design
phase. Validation typically
occurs at the end of the
development cycle during
final acceptance testing
with the customer.

Each phase drives the subsequent phase. In turn, the work items in these phases
must satisfy the requirements from the previous phase. System design is driven from
requirements. System design satisfies the requirements, and so on.

Requirements traceability management (RTM) proves that each phase is satisfying the
requirements of each subsequent phase. However, this is only half of the picture. None
of this traceability demonstrates that requirements are being met. That requires testing.

In the V diagram shown above, each testing phase verifies the satisfaction of the
specifications associated with the corresponding design/implementation phase. In the
example, you see:

	» Acceptance testing validates requirements.

	» Integration testing verifies architecture design.

	» Unit testing verifies module design, and so on.

Validation typically occurs at the end of the development lifecycle during acceptance
testing with the customer.

ISO 26262 Software Compliance in the Automotive Industry

51

Figure 9-3:
Requirements traceability
matrix example in Intland
codebeamer.

Requirements traceability needs both the link to implementation and verification, plus
all the associated artifacts from the development process. Software development on
any realistic scale will have many requirements, complex design and architecture, and
possibly thousands of units and unit tests. Automation of RTM in testing is necessary,
especially for safety-critical software that requires documentation of traceability for
certifications and audits.

REQUIREMENTS TRACEABILITY MATRIX

A requirement traceability matrix is a document that illustrates the satisfaction of
requirements with a corresponding work item, like a unit test, module source code,
architecture design element, and so on.

The matrix is often displayed as a table, which shows how each requirement is
“checked off” by a corresponding part of the product. Creation and maintenance of
these matrices are often automated with requirements management tools with the
ability to display them visually in many forms and even hard copy, if required.

Below is a requirements traceability matrix example from Intland codebeamer. It shows
system level requirements decomposed to high-level and low-level requirements, and
the test cases that verify each.

ISO 26262 Software Compliance in the Automotive Industry

52

AUTOMATING BIDIRECTIONAL TRACEABILITY

Maintaining traceability records on any sort of scale requires automation. Application
lifecycle management tools include requirements management capabilities that are
mature and tend to be the hub for traceability. Integrated software testing tools like
Parasoft complete the verification and validation of requirements by providing an
automated bidirectional traceability to the executable test case, which includes the
pass or fail result and traces down to the source code that implements the requirement.

Parasoft integrates with market-leading requirements management and Agile planning
systems such as Intland codebeamer, Polarion from Siemens, Jama Connect, Atlassian
Jira, CollabNet VersionOne, and TeamForge.

As shown in the image below, each of Parasoft’s test automation tools, C/C++test,
Jtest, dotTEST, SOAtest, and Selenic, support the association of tests with work items
defined in these systems (such as requirements, stories, defects, test case definitions).
Traceability is managed through the central reporting and analytics dashboard,
Parasoft DTP.

Figure 9-4:
Parasoft provides
bidirectional traceability
from work items to test
cases and test results,
displaying traceability
reports with Parasoft
DTP and reporting results
back to the requirements
management system.

Parasoft DTP correlates the unique identifiers from the management system with
static analysis findings, code coverage, and test results from unit, integration, and
functional tests. Results are displayed within Parasoft DTP’s traceability reports and
sent back to the requirements management system. They provide full bidirectional
traceability and reporting as part of the system’s traceability matrix.

The traceability reporting in Parasoft DTP is highly customizable. The following image
shows a requirements traceability matrix template with requirements authored in
Polarion that trace to the test cases, static analysis findings, the source code files, and
the manual code reviews.

ISO 26262 Software Compliance in the Automotive Industry

53

Figure 9-5:
Parasoft DTP integrated
with Jira for requirements
traceability

The bidirectional correlation between test results and work items provides the basis
of requirements traceability. Parasoft DTP adds test and code coverage analysis
to evaluate test completeness. Maintaining this bidirectional correlation between
requirements, tests, and the artifacts that implement them is an essential component
of traceability.

Bidirectional traceability is important so that requirement management tools and other
lifecycle tools can correlate results and align them with requirements and associated
work items.

The complexity of modern software projects requires automation to scale
requirements traceability. Parasoft tools are built to integrate with best-of-breed
requirement management tools to aid traceability into test automation results and
complete the software test verification and validation of requirements.

ISO 26262 Software Compliance in the Automotive Industry

54

A Unified, Fully Integated Testing
Solution for C/C++ Software
Development
TOOL QUALIFICATION FOR SAFETY-CRITICAL
AUTOMOTIVE SYSTEMS
Safety-critical software development standards like ISO 26262 require that
manufacturers prove that the tools they're using to develop software provide correct
and predictable results. The process of providing such evidence is known as tool
qualification. While it’s a necessary process, tool qualification is often a tedious and
time-consuming activity that many organizations fail to plan for.

The end deliverable is proof in the form of documentation, but there is more to
the qualification process than just delivering a big pile of static documentation.
Parasoft’s Qualification Kits for C/C++test, which include a convenient tool wizard
that brings automation into the picture and reduces the time and effort required for
tool qualification.

PRE-CERTIFIED TOOLS

Tool qualification needs to start with tool selection, ensuring you are using a
development tool that is certified by an organization, such as TÜV SÜD. This will
significantly reduce the effort when it comes to tool qualification.

Parasoft C/C++test is certified by TÜV SÜD for functional safety according to
IEC 61508 and ISO 26262 standards for both host based and embedded target
applications. The fully integrated testing solution for C/C++ software development
paves the way for a streamlined qualification of static analysis, unit testing, and
coverage requirements for the safety-critical standards.

Pre-certified tools are often enough for lower safety integrity levels such as ASIL A
and B. However, for ASIL C and D, tool qualification requires further validation, usually
requiring verification and validation of the tool itself on target system hardware.

TOOL QUALIFICATION REQUIRES MORE TESTING

Traditionally, tool qualification has meant significant amounts of manual labor, testing,
and documenting to satisfy a certification audit. But this documentation-heavy
process requires manual interpretation and completion. As a result, it's time consuming
and adds to an organization's already heavy testing schedule and budget.

Parasoft leverages its own software test automation tool qualification with
Qualification Kits, which include a documented workflow to dramatically reduce the
amount of effort required.

ISO 26262 Software Compliance in the Automotive Industry

55

https://www.parasoft.com/solutions/qualification-kits
https://www.parasoft.com/products/ctest

Figure 10-1:
Functional compliance
selection with additional
use case settings

Benefits of Using the Qualification Kits

	» Automatically reduce the scope of qualification to only the parts of the tool in use.

	» Automate tests required for qualification as much as possible.

	» Manage any manual tests as eloquently as possible and integrate results alongside
automated tests.

	» Automatically generate audit-ready documentation that reports on exactly what’s
being qualified — not more, not less!

QUALIFY ONLY THE TOOLS USED

There should be no need to do any extra work for qualifying capabilities not used
during development. Reducing the scope of testing, reporting, and documentation is a
key way to reduce the qualification workload.

The example below shows the use case of C/C++ static code analysis being used to
check compliance to the MISRA C 2012 standard, as part of ISO 26262 qualification.
The tool then selects only the parts of the qualification suite needed for this function.

ISO 26262 Software Compliance in the Automotive Industry

56

Figure 10-2:
Parasoft Qualification
Kits allow users to select
the options required
for their project. Upon
selection, only tests and
documentation is used
and provided from this
point forward.

LEVERAGE TEST AUTOMATION AND ANALYTICS

A unique advantage to qualifying test automation tools is that the tools can be used to
automate their own testing. Automating this as much as possible is key to making it as
painless as possible. Even manual tests, which are inevitable for any development tool,
are handled as efficiently as possible. Step by step instructions are provided and results
are entered and stored as part of the qualification record.

Parasoft C/C++test collects and stores all test results from each build, and tests run as
they do for any type of project. These results are brought into the test status wizard in
the Parasoft Qualification Kits to provide a comprehensive overview of the results like
those shown below.

ISO 26262 Software Compliance in the Automotive Industry

57

Figure 10-3:
Leveraging centralized
data collection and
automating the
qualification process
greatly reduces manual
tracking of compliance
progress.

MANAGING KNOWN DEFECTS

Every development tool has known bugs and any vendor selling products for safety-
critical development must have these documented. There's more to dealing with
known defects than just documenting them. Tool qualification requires proof that
these defects are not affecting the results used for verification and validation. For each
known defect, the manufacturer must provide a mitigation for each one and document
it to the satisfaction of the certifying auditor.

It’s incumbent on the tool vendor to automate the handling of known defects as
much as possible. After all, the vendor is expecting customers to deal with third-party
software bugs as part of their workload! The Parasoft C/C++test qualification kits
include a wizard to automate the recording of mitigation for known defects as shown
in the example below.

ISO 26262 Software Compliance in the Automotive Industry

58

Figure 10-4:
Known defects are
managed directly in
Parasoft C/C++test.

AUTOMATION OF TOOL QUALIFICATION DOCUMENTATION

The end result of tool qualification is documentation, and lots of it. Every test executed
with results, every known defect with mitigation, manual test results, and exceptions
are all recorded and reported. Qualification kits from other vendors can be just
documentation alone, and without automation, documenting compliance is tedious.

Instead, using the Qualification Kits for C/C++test, the critical documents are
generated automatically as part of the workflow.

	» Tool Classification Report determines the qualification needed, and presents the
maximum safety level classification for C/C++test based on the use cases selected
by the user.

	» Tool Qualification Plan describes how C/C++test is going to be qualified for use in a
safety relevant development project.

	» Tool Qualification Report demonstrates that C/C++test has been qualified
according to the tool qualification plan.

	» Tool Safety Manual describes how C/C++test should be used safely, for example
compliant to safety standards, like ISO 26262 and IEC 61508, in safety-critical
projects.

In each of these documents, only the documentation required for the tool features
in use is generated because the scope of the qualification was narrowed down at the
beginning of the project. Automation and narrowing the scope of qualification greatly
reduces the documentation burden.

ISO 26262 Software Compliance in the Automotive Industry

59

REPORTING AND ANALYTICS FOR AUTOMOTIVE
SOFTWARE
Parasoft’s extensive reporting capabilities bring the results of Parasoft C/C++test into
context. Test results can quickly be accessed within the IDE or exported into the web-
based reporting system, DTP.

In DTP, reports can be automatically generated as part of CI builds and printed
for code audits in safety-critical organizations. Results from across builds can be
aggregated to give the team a detailed view without requiring access to the code
within their IDE.

In the reporting dashboard, Parasoft’s Process Intelligence Engine (PIE) helps managers
understand the quality of a project over time. It illustrates the impact of change after
each new code change. Integrating with the overall toolchain, PIE provides advanced
analytics that pinpoint areas of risk.

DEVELOPER’S VIEW IN THE IDE

Parasoft C/C++test helps teams efficiently understand results from software testing by
reporting and analyzing results in multiple ways. Directly in the developer’s IDE, users
can view:

	» Static analysis findings: warnings and coding standard violations

	» Unit testing details: passed/failed assertions, exceptions with stack traces, info/
debug messages

	» Runtime analysis failures with allocation stack traces

	» Code coverage details: percentage values, code highlights, including coverage test
case correlation

The Quality Tasks view in the IDE makes it easy for developers to sort and filter the
results, for example group per file, per rule, or per project. Developers can make
annotations directly in the source code editors to correlate issues with the source
code. This provides context and more details about reported issues and how to apply
a fix. Code coverage information is presented with visual green and red highlights
displayed in the code editor, together with percentage values (for project, file, and
function) in a dedicated Coverage view.

Analysis results for both IDE and command line workflows can also be exported to
standard HTML and PDF reports for local reporting. For safety-critical software
development, C/C++test provides an additional dedicated report format. It details
unit test case configuration and includes the log of results from test execution. Users
get a complete report of how the test case was constructed and what happened
during runtime.

ISO 26262 Software Compliance in the Automotive Industry

60

Figure 11-1:
Parasoft C/C++test IDE
unified code coverage and
unit testing view.

TEAM WEB-BASED REPORTING

For team collaboration, Parasoft C/C++test publishes analysis results to DTP, a
centralized server. Developers can access test results from automated runs and project
managers can quickly assess the quality of the project. Reported results are stored
with a build identifier for full traceability between the results and the build. Those
results include:

	» Static analysis findings

	» 	Metric analysis details

	» 	Unit testing details

	» 	Code coverage details

	» 	Source code details

When integrating into CI/CD workflows, Parasoft users benefit from a centralized and
flexible web-based interface for browsing results. The dynamic web-based reporting
dashboard includes customizable reporting widgets, source code navigation, advanced
filtering, and advanced analytics from Parasoft’s Process Intelligence Engine. Users
can access historical data and trends, apply baselining and test impact analysis, and
integrate with external systems like those for test requirements traceability.

ISO 26262 Software Compliance in the Automotive Industry

61

Figure 11-2: Centralized
web based dashboard for
test impact analysis and
more.

TEST IMPACT ANALYSIS

Each and every test performed, including manual, system level, and UI-based, is
recorded for recorded as a pass/fail result, including the coverage impact on the code
base. Each additional test is overlaid on this existing information, creating a complete
picture of test success and coverage.

As code is changed, the impact is clearly visible on the underlying record, highlighting
tests that now fail or code that is now untested. Raising this information in various
degrees of detail allows developers and testers to quickly identify what needs to be
altered or fixed for the next test run.

RISK-BASED ASSESSMENT

In addition to change impact analysis, static analysis can be used to highlight areas of
the code that appear riskier than others. Risk can take a variety of forms including:

	» 	Highly complex code

	» 	Unusually high number of coding standard violations

	» 	High number of reported static analysis warnings

These are areas of code that may require additional test coverage and even
refactoring.

ISO 26262 Software Compliance in the Automotive Industry

62

FUNCTIONAL SAFETY REPORTING

Parasoft C/C++test provides specific reporting capabilities suited to functional safety
development. Here are two report examples:

	» 	Unit Testing Execution Details Tests to Requirements Traceability

	» 	Test to Code Coverage Traceability

The ISO26262 Compliance Pack provides a dedicated, standard-driven report template
to help teams comply with industry standards and provide automatically generated
reports required for code audits.

CODE COVERAGE METRICS

There are various coverage metrics to consider. Knowing which specific type to apply
depends on the software integrity level (ASIL) as defined in ISO 26262.

For automotive systems, the control metrics referenced are statements, branch,
modified condition decision coverage (MC/DC). For the strictest requirements,
there's object/assembly code. Parasoft supports gathering all these coverage metrics,
including terms other industries use like block, call, function, path, decision, and more.

Figure 11-3: Individual
code coverage metrics
available within reporting
dashboard.

ISO 26262 Software Compliance in the Automotive Industry

63

CUSTOM ANALYTICS, REPORTS AND DASHBOARDS

Parasoft DTP is highly customizable and supports user configured custom processor
for project-specific analysis, custom widgets, and dashboards.

Benefits From Centralized, Aggregated Data Analysis and Reporting

Manage Compliance With Efficiency, Visibility, and Ease

Instead of just providing static analysis checkers with basic reporting and trends
visualization, Parasoft’s solution for coding standards compliance provides a complete
framework for building a stable and sustainable compliance process.

In addition to standard reporting, Parasoft provides a dedicated compliance reporting
module that gives users a dynamic view into the compliance process. Users can
see results grouped according to categorizations from the original coding standard,
manage the deviations process, and generate compliance documents required for code
audits and certification as defined by the MISRA Compliance:2020 specification.

Reduce the Overhead of Testing

With a unified reporting framework, Parasoft C/C++test efficiently provides multiple
testing methodologies required by the functional safety standards including static
analysis, unit testing, and code coverage.

By presenting cumulative results from the multiple testing techniques, Parasoft
provides consistent reporting that reduces the overhead of testing activities. The
analytics, reports, and dashboards:

	» 	Simplify code audits and the certification process.

	» 	Eliminate the need for users to manually process reporting to build documentation
for the certification process.

	» 	Focus testing efforts where needed by eliminating extraneous testing and
guesswork from test management.

	» 	Reduce the costs of testing while improving test outcomes with better tests, more
coverage, and streamlined test execution.

	» 	Minimize the impact of changes by efficiently managing the change itself.

Pinpoint Priority and Risk Between New and Legacy Code

Parasoft’s Process Intelligence Engine enables users to look at the changes between
two builds to understand, for example, the level of code coverage or static analysis
violations on the code that has been modified between development iterations,
different releases, or an incremental development step from the baseline set on the
legacy code.

ISO 26262 Software Compliance in the Automotive Industry

64

Teams can converge on better quality over time by improving test coverage but by
reducing the potential risky code. The technical debt due to untested code, missed
coding guidelines and potential bugs and security vulnerabilities can be reduced
gradually build by build. Using the information provided by Parasoft tools, teams can
focus in on the riskiest code for better testing and maintenance.

TAKE THE NEXT STEP
Learn how your embedded software development team can accelerate the delivery
of high-quality and compliant software. Contact one of our experts today to
request a demo.

ABOUT PARASOFT

Parasoft helps organizations continuously deliver quality software with its market-
proven, integrated suite of automated software testing tools. Supporting the
embedded, enterprise, and IoT markets, Parasoft’s technologies reduce the time,
effort, and cost of delivering secure, reliable, and compliant software by integrating
everything from deep code analysis and unit testing to web UI and API testing, plus
service virtualization and complete code coverage, into the delivery pipeline. Bringing
all this together, Parasoft’s award winning reporting and analytics dashboard delivers
a centralized view of quality enabling organizations to deliver with confidence and
succeed in today’s most strategic ecosystems and development initiatives — security,
safety-critical, Agile, DevOps, and continuous testing.

“MISRA”, “MISRA C” and the triangle logo are registered trademarks of The MISRA Consortium Limited.
©The MISRA Consortium Limited, 2021. All rights reserved.

ISO 26262 Software Compliance in the Automotive Industry

65

https://www.parasoft.com/products/parasoft-c-ctest/c-c-request-a-demo/
https://www.parasoft.com/products/parasoft-c-ctest/c-c-request-a-demo/
https://www.parasoft.com/

More Resources
SAFETY-CRITICAL AUTOMOTIVE SOFTWARE
DEVELOPMENT ASSETS FOR DOWNLOAD

CASE STUDY

	» Renovo - Overcoming the Challenges of Safety & Security in the Renovo
Automotive Data Platform

WEBSITE

	» 	Automotive Software Testing That Drives Success

	» Easily Automate the Tool Qualification Process

	» 	Conquer Cumbersome Functional Safety Compliance Standards

	» AUTOSAR Compliance With Parasoft

	» 	ISO 26262 Compliance With Parasoft

	» 	MISRA Compliance With Parasoft

	» Integrate Codebeamer and Parasoft

	» Integrate Siemens and Parasoft

WHITEPAPERS

	» 	ISO 26262 Software Compliance: Achieving Functional Safety in the Automotive
Industry

	» 	Satisfying ASIL Requirements With Parasoft C/C++test – Achieving Functional
Safety in the Automotive Industry

	» A Practical Guide to Accelerate MISRA C 2023 Compliance With Test Automation

	» 	A Practical Guide to Accelerating MISRA C 2012 Compliance With Test Automation

	» 	Accelerating MISRA C & SEI CERT C Compliance With Dedicated Reporting and
Workflow Management

	» 	Using AUTOSAR C++ Coding Guidelines to Streamline ISO 26262 Compliance

ISO 26262 Software Compliance in the Automotive Industry

66

https://www.parasoft.com/wp-content/uploads/2020/09/Cutomer-Journey-Renovo.pdf
https://www.parasoft.com/wp-content/uploads/2020/09/Cutomer-Journey-Renovo.pdf
https://www.parasoft.com/industries/embedded/automotive/
https://www.parasoft.com/solutions/compliance/tool-qualification/
https://www.parasoft.com/solutions/development-testing/functional-safety-compliance/
https://www.parasoft.com/solutions/compliance/autosar/
https://www.parasoft.com/solutions/compliance/iso-26262/
https://www.parasoft.com/solutions/compliance/misra/
https://www.parasoft.com/integrations/codebeamer/
https://www.parasoft.com/integrations/siemens/
https://alm.parasoft.com/iso-26262-software-compliance-with-parasoft
https://alm.parasoft.com/iso-26262-software-compliance-with-parasoft
https://alm.parasoft.com/satisfying-asil-requirements-with-parasoft-c-test
https://alm.parasoft.com/satisfying-asil-requirements-with-parasoft-c-test
https://www.parasoft.com/white-paper/a-practical-guide-to-accelerating-misra-c-2012-compliance-with-test-automation/
https://alm.parasoft.com/a-practical-guide-to-accelerating-misra-c-2012-compliance-with-test-automation
https://alm.parasoft.com/accelerating-misra-c-and-cert-c-compliance-with-dedicated-reporting-and-workflow-management-parasoft
https://alm.parasoft.com/accelerating-misra-c-and-cert-c-compliance-with-dedicated-reporting-and-workflow-management-parasoft
https://alm.parasoft.com/using-autosar-c-coding-guidelines-to-streamline-iso-26262-compliance

	» 	Streamlining Unit Testing for Embedded and Safety critical systems

	» 	Embedded Cybersecurity Through Secure Coding Standards CWE and CERT

BLOG POSTS

	» 	Expedite Your Code Coverage Task With a Coverage Advisor

	» 	Regression Testing of Embedded Systems

	» 	Verification vs Validation in Embedded Software

	» 	Reducing the Risk and Cost of Achieving Compliant Software

	» 	Qualifying a Software Testing Tool With the TÜV Certificate

	» 	Breaking Down the AUTOSAR C++14 Coding Guidelines for Adaptive AUTOSAR

	» 	A Smoother Road to MISRA Compliance

	» 	The Two Big Traps of Code Coverage

	» 	How to Select the Right Tool for AUTOSAR C++ Compliance in Support of ISO
26262

	» 	Shift-Left Your Safety-Critical Software Testing With Test Automation

	» 	Automotive Software Engineering Defects on the Rise

	» 	Quantifying the Risk of Automotive Software Failures: The SRR Warranty and
Recall Report

	» 	Requirements Management and the Traceability Matrix

	» 	Static Analysis & Coding Standards Compliance for Autonomous Driving Software

	» 	A Practical Guide to Make Your Legacy Codebase MISRA C 2012 Compliant

WEBINARS

	» 	Addressing ISO 26262 Compliance in Testing Automotive Software

	» 	How Do You Develop Critical ADAS Infrastructure Systems?

	» 	Make Your C/C++ Applications Safe and Secure With MISRA and CERT

	» 	Requirement Traceability for Safety-Critical Applications

ISO 26262 Software Compliance in the Automotive Industry

67

https://alm.parasoft.com/streamlining-unit-testing-for-embedded-and-safety-critical-systems
https://alm.parasoft.com/embedded-cybersecurity-through-secure-coding-standards-cwe-and-cert
https://www.parasoft.com/expedite-your-code-coverage-task-with-a-coverage-advisor/
https://www.parasoft.com/regression-testing-of-embedded-systems/
https://www.parasoft.com/verification-vs-validation-in-embedded-software/
https://www.parasoft.com/reducing-the-risk-and-cost-of-achieving-compliant-software/
https://www.parasoft.com/qualifying-a-software-testing-tool-with-the-tuv-certificate/
https://www.parasoft.com/breaking-down-the-autosar-c14-coding-guidelines-for-adaptive-autosar/
https://www.parasoft.com/a-smoother-road-to-misra-compliance/
https://www.parasoft.com/the-two-big-traps-of-code-coverage/
https://www.parasoft.com/how-to-select-the-right-tool-for-autosar-c-compliance-in-support-of-iso-26262/
https://www.parasoft.com/how-to-select-the-right-tool-for-autosar-c-compliance-in-support-of-iso-26262/
https://www.parasoft.com/shift-left-your-safety-critical-software-testing-with-test-automation/
https://www.parasoft.com/automotive-software-engineering-defects-on-the-rise/
https://www.parasoft.com/quantifying-the-risk-of-automotive-software-failures-the-srr-warranty-and-recall-report
https://www.parasoft.com/quantifying-the-risk-of-automotive-software-failures-the-srr-warranty-and-recall-report
https://www.parasoft.com/requirements-management-and-the-traceability-matrix/
https://www.parasoft.com/compliance-for-autonomous-driving-software/
https://www.parasoft.com/a-practical-guide-to-make-your-legacy-codebase-misra-c-2012-compliant/
https://alm.parasoft.com/addressing-iso-26262-compliance-in-testing-automotive-software
https://alm.parasoft.com/how-do-you-develop-critical-adas-infrastructure-systems
https://alm.parasoft.com/make-your-c/c-applications-safe-and-secure-with-misra-and-cert
https://alm.parasoft.com/requirement-traceability-for-safety-critical-applications

	Overview
	Automotive Industry Outlook
	What Is ISO 26262?

	Requirements for Compliance
in Testing
	Static Analysis
	Unit Testing
	Regression Testing
	Software Integration Testing
	Software System Testing
	Structural Code Coverage
	Requirements and the Traceability Matrix

	A Unified, Fully Integated Testing Solution for C/C++ Software Development
	Tool Qualification for Safety-Critical Automotive Systems
	Reporting and Analytics for Automotive Software

	More Resources
	Safety-Critical Automotive Software Development Assets for Download

