
ISO 26262 Software
Compliance in the

Automotive Industry

Table of Contents

3 Overview
3	 Automotive	Industry	Outlook

7	 What	Is	ISO	26262?	

14	 Requirements	for	Compliance	in	Testing
14	 Static	Analysis	

18	 MISRA	C	2023

20	 AUTOSAR	C++14

24	 SEI	CERT	

28	 CWE	-	Common	Weakness	Enumeration	

32	 Unit	Testing		

38	 Regression	Testing		

41	 Software	Integration	Testing		

48	 Software	System	Testing		

51	 Structural	Code	Coverage		

54	 Requirements	and	the	Traceability	Matrix		

59	 A	Unified,	Fully	Integated	Testing	Solution	for	C/C++	
Software	Development	
59	 Tool	Qualification	for	Safety-Critical	Automotive	Systems	

65	 Reporting	and	Analytics	for	Automotive	Software	

71 More Resources
71	 Safety-Critical	Automotive	Software	Development	Assets	

for	Download

2

Overview
Automotive Industry Outlook
The	automotive	industry	continues	to	rapidly	evolve	and	grow	into	technical	areas	where	
other	industries	have	operated	for	many	years.	For	example,	NASA’s	Jet	Propulsion	
Laboratory	releases	code	fixes	and	new	functionality	currently	in	development	for	
a	spacecraft	millions	of	miles	away,	en	route	to	its	destination.	Similarly,	we	find	the	
automotive	industry	providing	software	updates	on	cars	that	have	been	sold	and	are	
being	driven	by	their	consumers	all	around	the	world.	

The	future	of	self-driving	cars	also	looks	promising,	with	potential	for	widespread	
adoption	in	the	next	few	decades.	Several	companies,	including	Waymo,	Tesla,	Uber,	
and	traditional	car	manufacturers	like	GM	and	Ford,	are	at	the	forefront	of	developing	
self-driving	technology.	Many	are	conducting	extensive	testing,	and	some	have	deployed	
pilot	programs	in	select	cities.	As	the	technology	matures,	it	is	expected	to	revolutionize	
transportation,	making	it	safer,	more	efficient,	and	accessible.

Safety	&	Security	Challenges
This	type	of	evolution—particularly	that	of	advanced	driver-assistance	systems	(ADAS)—
comes	with	a	new	set	of	challenges	in	safety	and	security.	Standards	like	ISO	26262	
address	functional	safety	of	the	development	of	electric	and	electronic	systems	(E/E),	
which	include	propulsion,	dynamic	control	systems,	and	driver	assistance.		

Additionally,	platforms	like	AUTOSAR	provide	an	open	standardized	software	layer	
architecture	that	further	improves	safety.	They	include	guidelines	for	the	use	of	the	
C++14	language	in	development	of	critical	and	safety-related	systems.	However,	
manufacturers	have	realized	that	due	to	the	increased	complexity	and	unknowns	of	
modern	technologies	working	together,	along	with	changes	in	the	internal	and	external	
environment,	safety	and	security	concerns	have	arisen	that	these	standards	don’t	address.		

When	addressing	ISO	21434,	it’s	important	to	understand	that	the	recommended	
security	consideration	for	cybersecurity	should	be	integrated	into	your	existing	
development	processes.	ISO	21434	references	ISO	26262	in	consideration	of	having	
these	two	disciplines	take	an	interdisciplinary	exchange	of	strategies,	coordination	and	
even	tools	used.	This	means	that	your	organization	should	have	your	system	engineers	
work	with	your	security	engineers	through	the	requirements	analysis	phase	for	safety	
and	security.	

ISO 26262 Software Compliance in the Automotive Industry

3

In	 parallel,	perform	hazard	analysis	and	
risk	assessment	(HARA)	for	safety,	and	
threat	analysis	and	risk	assessment	
(TARA)	for	security.	Nonetheless,	a	strong	
collaborative	environment	is	needed	to	
ensure	a	safe	and	secure	result.

Ensuring	security	at	the	software	
implementation	phase	starts	by	applying	
static	code	analysis.	The	MISRA	coding	
standard	incorporates	security	guidelines,	
but	you	can	also	augment	and	strengthen	
code	security	by	adopting	CERT.		

Continuing	up	the	right	side	of	the	V,	perform	unit	testing	of	all	your	low-level	
security	requirements.	In	the	next	phase,	create	test	cases	that	incorporate	additional	
functionality.	These	test	cases	ensure	that	your	high-level	requirements	are	satisfied.		

Moving	to	system	testing,	create	system	tests	to	ensure	that	the	system	requirements	
are	verified.	Confirm	that	all	the	test	cases	trace	back	to	your	requirements.	This	
guarantees	that	no	requirement	goes	untested.	However,	to	safeguard	that	each	
requirement	is	fully	tested,	incorporate	structural	code	coverage	as	recommended	by	
ISO	21434	and	ISO	26262.	Code	coverage	ensures	that	your	security	test	cases	fully	cover	
every	possible	path	of	execution	through	its	security	functionality	remediation	measures.	

To	overcome	safety	and	security	challenges,	teams	can	turn	to	solutions	like	Parasoft	
C/C++test,	which	has	been	certified	for	use	in	safety-critical	applications	per	ISO	26262	
and	is	TÜV	SÜD	certified	to	satisfy	ISO	21434.	Both	of	these	standards	recommend	
performing	static	analysis,	dynamic	analysis—which	includes	unit,	integration,	and	system	
testing—code	coverage,	and	requirements	traceability.	Offering	exactly	what	ISO	26262	
and	ISO	21434	recommend	for	software	verification	in	safety	and	security,	Parasoft	also	
provides	the	documentation	required	to	prove	compliance	with	both	standards.

UNECE	WP.29	Regulatory	Requirements
The	United	Nations	Economic	Commission	for	Europe	(UNECE)	released	regulatory	
requirements	on	June	23,	2020,	where	they	outlined	new	processes	and	technologies	
that	automotive	manufacturers	must	incorporate	into	both	their	organization	and	
vehicles.	These	regulations	also	apply	to	Tier	1	and	Tier	2	suppliers	of	software	and	
hardware	components,	including	mobile	services.		

Figure 1-1:
V process model
for software safety
and security

ISO 26262 Software Compliance in the Automotive Industry

4

Vehicle	manufacturers	are	required	to	put	into	the	organizational	structure	a	risk-based	
management	framework	for	discovering,	analyzing,	and	protecting	against	relevant	
threats,	vulnerabilities,	and	cyberattacks.		

The	following	categories	require	cybersecurity	testing	and	passing	inspections.	

 » Category	M	covers	standard	four	wheel	cars.			

 » Category	N	is	for	pickup	trucks	and	vans.			

 » Categories	L6	and	L7	include	electric	cars	and	autonomous	capabilities.		

A	passing	grade	on	both	organizational	and	vehicle	WP.29	key	requirements	means	
that	the	manufacturer	receives	a	certificate	of	compliance.	New	vehicles	without	this	
certificate	cannot	be	sold	in	the	EU	after	July	2024.	Be	aware	that	the	United	States	does	
not	participate	or	have	its	own	similar	regulations.	However,	the	writing	is	on	the	wall.	

Automotive	SPICE
Automotive	Software	Process	Improvement	and	Capability	Determination	(ASPICE)	
provides	a	measurement	framework	for	independent	assessors	to	evaluate	an	
organization’s	capability	for	software	development.	Ensuring	software	safety	and	
cybersecurity	does	not	only	lie	within	the	technical	engineering	aspects	of	the	
development	of	the	electronic	system,	but	also	requires	the	organization	to	incorporate	
processes	and	checks.			

These	processes	and	checks	must	include	ways	to	track	and	monitor	progress	within	all	
practices	of	the	organization	to	ensure:	

1. Safety	and	cybersecurity	practices	have	been	adopted.	

2. Safety	and	cybersecurity	requirements	are	being	satisfied.		

This	is	also	one	of	the	two	key	certification	criteria	for	UNECE	WP.29	on	organizational	
cybersecurity	capability.	

Unsafe	Scenarios
It's	brought	to	fruition	other	outgrowths	from	ISO	26262,	like	ISO/PAS	21448	more	
commonly	referred	to	as	SOTIF	(safety	of	the	intended	functionality).	SOTIF	helps	you	
analyze	and	prevent	the	misuse	of	the	intended	functionality	where	it	creates	an	unsafe	
scenario.	For	example,	your	vehicle	inadvertently	shuts	down	while	you're	driving	it,	
due	to	an	initiated	software	update.		

ISO 26262 Software Compliance in the Automotive Industry

5

Security	vulnerabilities	also	pose	unsafe	scenarios.	An	attacker	could	use	the	car’s	
Wi-Fi	connection	to	remotely	exploit	an	exposed	port.	They	could	somehow	work	
their	way	from	the	advanced	in-vehicle	infotainment	(IVI)	into	taking	control	of,	or	
influencing,	safety-critical	components	like	braking	or	steering	due	to	sharing	the	
same	communications	infrastructure.	

The	Role	of	Standards	
Standards	like	SAE	J3061,	superseded	by	ISO/SAE	21434,	specify	that	an	initial	Threat	
Analysis	and	Risk	Assessment	(TARA)	be	completed	to	assess	potential	threats	related	
to	operation,	privacy,	and	other	factors	where	a	road	user/driver	can	be	impacted.	If	the	
risk	for	any	threat	is	sufficiently	high,	then	a	cybersecurity	process	is	necessary.	There	are	
various	approaches	to	flushing	out	security	vulnerabilities	and	requirements	that	mitigate	
the	risks.	Learn	more	about	TARA	and	why	your	development	team	needs	TARA.		

Standards	like	UL	4600	now	exist	specifically	for	fully	autonomous	vehicle	operation.	
This	means	that	there	is	no	human	supervision,	and	the	autonomy	assumes	full	
responsibility.	This	standard	focuses	on	building	a	safety	case	for	the	deployment	of	
SAE	Level	4/5	vehicles,	not	on	how	to	test	safety	of	autonomous	vehicles	on	public	
roads.	That	would	involve	a	different	standard.	

These	standards	and	others	play	a	crucial	role	in	safety	and	security	for	the	automotive	
industry.	OEMs	carry	the	liability	costs	for	delivering	unsafe	and	insecure	vehicles	
to	the	masses.	To	mitigate	these	risks,	OEMs	need	to	adopt	and	adhere	to	these	
standards.	However,	OEMs	should	mandate	the	same	quality	and	adherence	by	their	
suppliers.	A	weakness	in	one	component	can	undermine	the	safety	and	security	of	the	
entire	system.	

Building	Custom	Coding	Standards	
Working	with	some	of	its	automotive	OEMs,	Parasoft	has	built	custom	coding	standards	
that	incorporate	MISRA,	AUTOSAR	C++14,	CERT,	CWE,	and	other	custom	rules	to	be	
used	by	their	suppliers.	This	ensures	that	the	same	level	of	quality	software	exists	across	
the	entire	supply	chain.		

Parasoft	C/C++test	is	a	unified	testing	solution	that	includes	unit	testing	and	structural	
code	coverage	as	part	of	its	functionality.	This	solution	for	C/C++	software	development	
supports	a	comprehensive	set	of	hardware	targets	and	development	ecosystems	that	
suppliers	and	OEMs	can	use	with	varying	development	infrastructures.	Parasoft	C/
C++test	has	been	certified	by	TÜV	SÜD	for	use	on	safety-	and	security-critical	systems.	
For	ADAS	and	secure	connected	cards,	C/C++test’s	seamless	integration	with	Parasoft	
SOAtest	and	Parasoft	Virtualize	combines	API	testing	with	runtime	application	coverage	
and	simulated	virtual	test	beds.	

ISO 26262 Software Compliance in the Automotive Industry

6

https://www.parasoft.com/blog/why-your-development-team-needs-tara/

What Is ISO 26262?
ISO	26262	is	a	functional	safety	standard	that	covers	the	entire	automotive	product	
development	process.	It	includes	activities	such	as	requirements	specification,	design,	
implementation,	integration,	verification,	validation,	and	configuration.	

The	standard	provides	guidance	on	automotive	safety	lifecycle	activities	by	specifying	
the	following	requirements:		

 » Functional	safety	management	for	automotive	applications		

 » The	concept	phase	for	automotive	applications		

 » Product	development	at	the	system	level	for	automotive	applications	software	
architectural		design		

 » Product	development	at	the	hardware	level	for	automotive	applications	software	
unit	testing		

 » Product	development	at	the	software	level	for	automotive	applications		

 » Production,	operation,	service,	and	decommissioning		

 » Supporting	processes:	interfaces	within	distributed	developments,	safety	
management	requirements,	change	and	configuration	management,	verification,	
documentation,	use	of	software	tools,	qualification	of	software	components,	
qualification	of	hardware	components,	and	proven-in-use	argument	

 » Automotive	Safety	Integrity	Level	(ASIL)	oriented	and	safety-oriented	analyses		

ISO	26262	is	an	adaptation	of	IEC	61508	for	the	automotive	industry.	IEC	61508	is	a	
basic	functional	industrial	safety	standard	for	electrical,	electronic,	and	programmable	
electronic	devices,	and	applicable	to	all	kinds	of	industries.	Other	sectors	like	Medical	
IEC	62304	and	Railway	EN	50128/EN	50716	have	also	been	derived	from	IEC	61508.	

Since	ISO	26262	has	been	extracted	and	expanded	from	IEC	61508	for	the	automotive	
industry,	by	inheritance	it	is	a	functional	safety	standard	that	provides	guidance	for	
regulating	the	entire	product	lifecycle	process,	at	the	software	and	hardware	level	
from	conceptual	development	through	to	decommissioning.	It	covers	electrical	and	
electronic	automotive	systems	and	their	development	process,	including	requirements	
specification,	design,	implementation,	integration,	verification,	validation,	and	
configuration.	

The	latest	release,	ISO	26262:2018	is	subdivided	into	12	parts.	The	standard	has	been	
evolving	since	its	first	edition,	released	back	in	2011.	

ISO 26262 Software Compliance in the Automotive Industry

7

Part 1	is	the	vocabulary	section	for	the	standard.	Terms,	definitions,	and	abbreviations	
are	found	here.		

Part 2	is	the	management	of	functional	safety,	which	defines	an	internal	functional	safety	
process	for	the	team	or	company.	This	includes	having	a	safety	organization	that	oversees	
the	planning,	coordinating	and	documentation	activities	related	to	functional	safety.	

Functional	safety	is	of	the	utmost	importance	in	the	development	of	safety-critical	
automotive	systems	because	people’s	lives	depend	on	it.	Especially	now	with	the	
introduction	of	driver	assist	and	automated	driving	systems.	The	management	of	
security	could	be	adapted	to	part	2.	Security	is	crucial	in	the	world	we	live	in	today.	

Figure 2-1:
Overview of
ISO 26262

What	Are	the	Parts	of	ISO	26262

ISO 26262 Software Compliance in the Automotive Industry

8

Part 3	is	the	concept	phase	that	takes	in	the	stakeholder	requirements	and	drives	what	
you	are	going	to	build	and	ultimately	deliver.	In	figure	2-1,	notice	on	the	right	side	of	
the	concept	phase	box	the	beginning	of	a	gray-shaded	V	watermark.	The	shaded	Vs	
represent	the	interconnection	among	parts	3,	4,	5,	6,	and	7	of	the	standard.	These	
part	series	are	based	upon	the	V-model	software	development	lifecycle.	You	have	
the	different	phases	of	development	represented	on	the	left	and	the	verification	and	
validation	or	testing	phases	on	the	right.	If	you	are	a	systems	or	software	engineer	in	
the	embedded	industry,	the	V-model	is	well	known.			

Part 4	is	the	beginning	of	product	development	at	the	system	level,	which	includes	
parts	5	and	6	but	looking	at	these	from	a	high	level	of	abstraction.	The	architecture	is	
defined,	including	functional	test	cases	that	verify	and	validate	the	architecture.	To	dive	
in	deeper	into	the	detail	design	and	implementation,	part	5	and	part	6	are	defined.	

Part 5	targets	development	of	hardware,	which	is	out	of	scope	for	this	document.	

Part	6	targets	software	development.	You	can	see	a	smaller	lighter	grey	V	watermark	
for	software	development	and	again	the	left-hand	side	of	the	V	encapsulates	the	
requirements	decomposition,	design,	and	implementation	phases	but	now	a	much	
lower	level	of	granularity.	On	the	right-hand	side	of	the	V,	sections	6.9,	6.10,	and	6.11	
represent	the	testing	or	verification	and	validation	of	the	software.	This	includes	unit	
testing,	static	analysis,	structural	code	coverage,	requirements	traceability	and	more.			

It	also	includes	requirements	for	the	software	development	of	automotive	applications.	
This	includes	obligations	for	initiation	of	product	development,	specification	of	
software	safety	requirements,	software	architectural	design,	software	unit	design	
and	implementation.	On	the	verification	and	validation	of	the	software	component,	
you	have	multiple	methods	recommended	or	mandated	based	on	the	assigned	safety	
integrity	level	(ASIL).	

Part 7 addresses	the	production	and	operation	of	the	product,	once	it’s	out	in	the	
field.	This	means	you	must	consider	things	like	maintenance	and	decommissioning	or	
sunsetting	of	your	product.	

Part 8 specifies	the	various	supporting	processes	and	solutions	needed	in	the	
development	of	the	system	that	help	ensure	functional	safety.	This	includes	having	
a	configuration	management	solution,	a	change	management,	a	documentation	
management,	and	other	solutions	in	place.		

Another	important	aspect	of	Part	8	is	the	qualification	of	the	software	tools	being	used.	
You	don’t	want	to	use	an	open	source	tool	or	an	uncertified	tool	from	a	vendor	that	
undermines	the	safety	or	security	of	your	product	by	introducing	issues.	Use	a	tool	that	
has	been	certified	by	the	Technical	Inspection	Association	(TÜV)	and	has	a	proven	in-
use	history	or	argument.		

ISO 26262 Software Compliance in the Automotive Industry

9

Part 9	is	a	critical	section	to	understand	because	it	pertains	to	assigning	a	risk	
classification	on	the	system	under	development.	This	means	that	you	have	to	take	into	
consideration	the	risk	to	the	passengers	or	pedestrians	if	the	electrical	or	electronic	
system	in	development	were	to	malfunction	or	fail.		

A	hazard	analysis	and	risk	assessment	need	to	be	performed.	ISO	26262	is	a	risk-based	
safety	standard,	where	the	risk	of	hazardous	operational	situations	is	assessed,	and	
safety	measures	are	defined	to	detect	and	to	avoid	or	control	failures,	so	mitigating	
actions	can	take	effect.	

Part 10	basically	provides	an	overview	of	the	ISO	26262	standard	with	additional	
explanations	that	enhance	the	understanding	and	concepts	of	the	other	parts	in	the	
standard,	so	it's	informative.	

Part 11	is	the	adaptation	of	functional	safety	guidelines	to	semiconductors	for	
automotive.	It	offers	guidance	and	information	to	semiconductor	manufacturers	on	
how	to	develop	ISO	26262	compliant	IP.		It	helps	incorporate	functional	safety	because	
users	of	semiconductors	may	not	know	how	to	use	the	semiconductor	safely.	This	came	
about	because	automotive	systems	have	become	very	complex	and	semiconductors	
have	enabled	most	of	the	recent	innovations.	That	includes	vision-based	technology,	
enhanced	graphics	processing	units	(GPUs),	application	processors,	sensors,	DRAM,	and	
other	components	that	empower	advanced	driver-assistance	systems	or	ADAS.	

Part 12	is	the	adaptation	of	the	standard	for	motorcycles,	which	has	been	intentionally	
left	out	of	Figure	2-1	and	this	ebook.

Performing	Hazard	Analysis	and	Risk	Assessment
In	ISO	26262,	a	hazard	analysis	and	risk	assessment	(HARA)	needs	to	be	performed	on	
the	system	under	development.	Upon	completion	of	the	HARA	an	ASIL	is	assigned	to	
the	software	component	and	there	are	levels	A	through	D.	Level	A	represents	the	lowest	
hazard	assignment	and	Level	D	represents	the	highest	hazard	assignment.	Meaning	that	
the	failure	of	a	system	with	ASIL	D	assignment	could	be	catastrophic.		

There	is	also	a	quality	management	(QM)	level	assignment,	which	means	that	there	is	
no	safety	requirement.	ASIL	is	assigned	by	taking	the	severity	of	the	injury	times	the	
probability	of	the	failure	times	the	controllability.	The	following	table	spells	out	each	
level	for	severity,	exposure,	and	controllability.

There	are	several	tables	freely	made	available	that	provide	help	in	determining	the	ASIL	
value.	The	table	below	is	an	example	of	one	that's	much	easier	to	read	and	shows	the	
ASIL	levels	in	colors	based	on	severity,	exposure,	and	controllability.

ISO 26262 Software Compliance in the Automotive Industry

10

CONTROLLABILITY EXPOSURE
SEVERITY

S0 S1 S2 S3
QME1

C1

C2

C3

QM QM QM

QME1 QM QM QM

QME2 QM QM QM
QME3 QM QM A

QM QM QM A

QM QM QM A

QME4

E2
E3
E4
E1
E2
E3
E4

QM A B

QM QM A B

QM QM A B

QM A B C

QM A B C
QM B C D

Active and Passive Safety

Roadside	vehicles	come	with	lots	of	safety	systems	and	some	are	considered	active	
safety	and	others	passive	safety.

Active	safety	is	used	to	refer	to	technology	assisting	in	the	prevention	of	a	crash	
or	accident.	You	have	your	traction	control,	anti-lock	braking	system,	vision	ADAS,	
and	others.

Passive	safety	systems	are	to	keep	the	passengers	safe.	For	example,	in	case	of	a	crash,	
you	have	airbags,	and	seatbelts.	The	electronic	windshield	wiper	and	instrument	cluster	
are	also	passive	safety	systems.

Figure 2-3:
Simplified ASIL
assesment table

Severity = What would be the impact or damage if the failure occurred?
Exposure = The frequency or probability that the failure would occur.
Controllability = The extent to which we can ensure that the event doesn’t happen.

Figure 2-2:
Hazard Analysis and
Risk Assessment

ISO 26262 Software Compliance in the Automotive Industry

11

Performing	Test	Verification	&	Validation	of	Software	Unit	
Design	and	Implementation
Since	the	focus	of	this	ebook	is	software,	it’s	important	to	cover	the	test	verification	
and	validation	methods	recommended	by	the	standard.	For	example,	Table	9	
captures	verification	methods	1a	through	1h	to	be	applied	during	unit	design	and	
implementation.	Method	1f,	“Static	code	analysis”	is	recommended	for	ASIL	level	A	and	
highly	recommended	for	ASIL	levels	B	through	D.

The	columns	in	Table	7	below	show	A	to	D	ASIL	levels.	A	single	“+”	symbol	indicates	
recommended	by	the	standard,	a	double	“++”	indicates	highly	recommended,	and	an	“o”	
indicates	no	recommendation.

Table 7 - Methods for software unification

Figure 2-4:
Active and Passive
Safety

Figure 2-5:
ISO 26262 Part 6,
9.4.2:2018

ISO 26262 Software Compliance in the Automotive Industry

12

Figure 2-6:
ISO 26262 Part 6,
9.4.3:2018

And	Table	9	lists	the	recommended	structural	code	coverage	metrics	to	ensure	test	
coverage,	flush	out	dead	code,	and	hidden	defects.

Table 9 - Structural coverage metrics at the software unit level

Figure 2-7:
ISO 26262 Part 6,
9.4.4:2018

Other	key	methods	of	verification	are	done	through	dynamic	analysis,	for	requirements-
based	testing	and	fault	injection.	Table	11	for	example	has	“Analysis	of	boundary	
values”.		This	is	a	method	for	deriving	test	case	to	flush	out	defects	by	means	of	proving	
inputs	into	the	unit	that	are	not	just	the	min,	mid,	and	max,	but	the	boundaries	outside	
the	scope	of	its	range,	to	see	if	the	unit	is	robust	enough	to	handle	these	outlier	cases.	

Table 8 - Methods for deriving test cases for software unit testing

ISO 26262 Software Compliance in the Automotive Industry

13

Requirements for Compliance
in Testing
Static Analysis
Many	of	the	quality	tasks	specified	in	ISO	26262,	including	data	and	control	flow	
analysis	and	semantic	analysis	are	supported	by	modern	advanced	tools	like	Parasoft	
C/C++test.	In	addition,	static	analysis	tools	include	metrics	and	support	peer	code	
review	with	capabilities	that	assist	unit	testing	and	runtime	error	detection.	

The	Role	of	Static	Analysis	in	ISO	26262	Software	Verification	
Verification	methods	like	static	analysis	provide	teams	with	a	practical	way	to	
expose,	prevent,	and	correct	errors	in	automotive	software	systems.	The	real	power	
of	advanced	static	analysis	tools	comes	from	the	ability	to	analyze	the	code	based	
on	industry	coding	compliance	standards	like	MISRA	C/C++,	CERT	C/C++,	and	
AUTOSAR	C++14.			

The	analysis	reports	code	rule	and	directive	violations,	along	with	code	complexity	and	
quality	metrics.	This	data	can	be	source-controlled	for	historical	and	auditing	purposes.	
Equally	important	is	the	use	of	a	defect	tracking	and	managing	system	to	provide	
meaningful	analytical	views	and	prioritization	with	the	intent	of	solving	the	highest	
risk	issues	down	to	the	lowest.

Table 7 - Methods for software unit verification

Figure 3-1:
ISO 26262 Part 6,
9.4.2:2018

ISO 26262 Software Compliance in the Automotive Industry

14

The	specific	sections	of	ISO	26262,	part	6:	Product	development:	software	level	that	is	
addressed	by	static	analysis	tools	are	described	below.	

Walkthroughs and Inspections

Informal	methods	used	to	verify	design	and	implementation.	Static	analysis	tools	
automate	much	of	the	tedious	aspects	of	code	inspection	such	as	coding	standards	
compliance	while	flagging	errors	and	possible	software	weaknesses.

Control Flow Analysis

A	static	code	analysis	technique	for	determining	the	control	flow	of	a	program.	Modern	
advanced	static	analysis	tools,	such	Parasoft	C/C++test,	use	sophisticated	control	and	
data	flow	analysis	to	detect	complex	defects	and	security	vulnerabilities.	

Data Flow Analysis

A	technique	for	gathering	information	about	the	possible	set	of	values	calculated	at	
various	points	in	a	computer	program.	Data	flow	analysis	is	a	critical	aspect	of	advanced	
static	analysis	tools	that	helps	detect	complex	errors	such	as	tainted	data	vulnerabilities.

Static Code Analysis

The	general	term	used	to	describe	the	analysis	of	code	that	is	performed	without	actual	
code	execution.	This	includes	the	terms	used	above.			

The	Role	of	Static	Analysis	Tools	in	Support	of	ISO	
26262	Design	Principles	for	Software	Unit	Design	and	
Implementation
Coding	standards	embody	the	best	practices	learned	from	years	of	experience	and	
aim	to	harden	code	by	avoiding	bad	practices	that	result	in	inadequate	quality	and	
security	while	promoting	good	practices	that	create	more	resilient	code.	In	the	case	of	
automotive	standards,	they	are	based	on	best	practices	plus	guidance	on	preventing	
the	types	of	software	failures	that	have	been	observed	over	the	years.	

Coding	standards	usually	define	a	subset	of	a	programming	language	deemed	safer	and	
more	secure	to	use.	The	aim	of	this	is	to	prevent	unpredictable	behavior	in	the	first	
place,	limiting	the	risky	language	features	that	make	them	possible.	

The	only	practical,	objective,	and	sustainable	way	to	enforce	coding	standards	is	with	
static	code	analysis	tools,	which	can	automatically	analyze	enormous	amounts	of	
source	code	at	a	time.	These	tools	integrate	into	software	builds	in	a	CI/CD	pipeline	
and	are	available	directly	in	a	developer’s	IDE.	And	they	provide	reports	indicating	the	
conformance	of	analyzed	software	to	the	standard	selected.	

ISO 26262 Software Compliance in the Automotive Industry

15

Different	Types	of	Static	Code	Analysis	
One	of	the	most	common	types	of	static	code	analysis	is	SAST	or	static	application	
security	testing.	This	is	also	considered	a	best	practice	for	application	security	testing	
but	can	be	applied	elsewhere.		To									identify	all	error	classes,	multiple	coding	standards	
(MISRA,	AUTOSAR,	CERT,	CWE)	may	need	to	be	used.	

As	such,	it’s	best	to	familiarize	yourself	with	various	types	of	static	code	analysis	and	
the	errors	they’re	meant	to	detect.	

Performance

These	tests	identify	errors	that	will	reduce	overall	performance.	They	can	also	be	used	
to	ensure	that	developers	stay	up-to-date	with	current	best	practices.	

Security

Certainly	a	critical	test,	security-		related	source	code	analysis	finds	security	risks	
like	weak	cryptography,	configuration	problems,	and	framework-specific	command	
injection	errors.	

Reliability

These	tests	help	prevent	issues	with	functionality.	No	developer	wants	to	deal	with	an	
emergency	unresponsive	service	message	at	4	a.m.	This	type	of	static	code	analysis	is	
useful	for	finding	memory	leaks	or	threading	problems.	

Style

This	type	of	static	analysis	encourages	teams	to	adopt	uniform	coding	styles	for	ease	of	
use,	understanding,	and	bug	fixing.	Since	it	identifies	style	violations,	developers	don’t	
have	to	waste	time	looking	for	them	

What	Errors	Can	Static	Code	Analysis	Detect?	
Each	static	analysis	rule	or	guideline	tackles	different	issues.	Some	issues	that	affect	
reliability	might	be	resource	leaks	for	C	or	null	pointer	exceptions	in	C++.	MISRA	
C:2023	Directive	4.12	exists	to	prevent	the	use	of	dynamic	memory	that	can	lead	
to	out-of-storage	run-time	failures,	which	is	undesirable.	

		The	guideline	states,	“The	identifiers	‘calloc’,	‘malloc’,	‘realloc’,	‘aligned_alloc’	and	‘free’	
shall	not	be	used	and	no	macro	with	one	of	these	names	shall	be	expanded.”					

ISO 26262 Software Compliance in the Automotive Industry

16

Therefore,	the	following	code	will	produce	a	violation.	

int* p1 = (int*)malloc(10); /* Violation */

free(p1); /* Violation */

The	recommended	solution	is	to	pre-allocate	a	block	of	memory	and	manage	it	as	
needed	via	your	defined	equivalent	of	“malloc”	and	“free”.	Similarly	in	C++,	the	common	
solution	is	to	overload	the	“new”	and	“delete”	operators.	

The	intent	of	the	software,	the	language,	and	the	platform	all	affect	the	kinds	of	errors	
static	code	analysis	can	detect.	

Static	Code	Analysis	Deviations	
Static	code	analysis	identifies	errors	based	on	given	rulesets.	That	means	that,	if	any	
line	defies	a	rule,	it	will	be	flagged.	Of	course,	as	in	real	life,	there	are	some	exceptions	
to	these	rules	across	different	software	types.	

In	situations	like	these,	developers	allow	for	deviations.	The	rules	can	adjust	to	the	
circumstances	and	allow	for	special	issues.	A	team	can	decide	yes	or	no	whether	or	not	
that	deviation	is	acceptable.	This	also	gets	documented	as	it	violates	the	original	rules.	

How	to	Choose	a	Static	Code	Analysis	Tool	
Parasoft’s	suite	of	tools	to	automate	software	testing	works	across	diverse	workflows	
and	team	compositions.	When	it	comes	to	static	code	analysis,	that	rings	just	as	true.	
It	speeds	up	the	development	cycle,	reduce	s		defect	rates,	and	provide	s		continuous	
improvement.	Identifying	which	tool	might	work	best	for	your	needs	starts	simply	
with	the	base	language	of	the	source	code.	In	addition	to	C	and	C++	solutions,	Parasoft	
also	provides	solutions	for	Java	testing	with	Jtest	as	well	as	testing	C#	and	VB.NET	
languages	with	dotTEST.	

Static	code	analysis	can	be	performed	either	in	the	IDE	(Eclipse,	VS	Code,	Visual	
Studio)	or	using	the	command-line	interface	for	automation	and	continuous	integration	
pipelines.	The	results	of	the	analysis	can	be	accessed	immediately	within	the	IDE	and	
from	generated	reports	(HTML,	PDF,	XML)	,		as	well	as	aggregated	for	further	post-
processing,	reporting,	and	analytics	from	the	award-winning	Parasoft	DTP	reporting	
and	analytics	dashboard.

ISO 26262 Software Compliance in the Automotive Industry

17

MISRA C 2023
MISRA	C	is	a	set	of	coding	guidelines	for	the	C	programming	language.	The	focus	of	the	
standard	is	increasing	the	safety	of	software	by	pre-emptively	preventing	programmers	
from	making	coding	mistakes	that	can	lead	to	runtime	failures	(and	possible	safety	
concerns)	by	avoiding	known	problem	constructs	in	the	C	language.	

Over	the	years,	many	developers	of	embedded	systems	were	(and	still	are)	complaining	
that	MISRA	C	was	too	stringent	of	a	standard	and	that	the	cost	of	writing	fully	
compliant	code	was	difficult	to	justify.	Realistically,	given	that	MISRA	C	is	applied	in	
safety-critical	software,	the	value	of	applying	the	standard	to	a	project	depends	on	
factors	such	as:	

 » Risk	of	a	system	malfunction	because	of	a	software	failure	

 » Cost	of	a	system	failure	to	the	business	

 » Development	tools	and	target	platform	

 » Level	of	developer’s	expertise	

Programmers	must	find	a	practical	middle	ground	that	satisfies	the	spirit	of	the	
standard	and	still	claim	MISRA	compliance	without	wasting	effort	on	non-value	added	
activities.	

MISRA	C	Compliance
In	the	document,	"MISRA	Compliance:2020,"	the	MISRA	Consortium	provides	the	
response	needed	by	the	community	with	a	well-defined	framework	of	what	the	
statement,	“MISRA	Compliant,”	truly	means.	

The	document	helps	organizations	use	a	common	language	articulating	the	compliance	
requirements	by	defining	the	following	artifacts:	

The Guideline Enforcement Plan

Demonstrates	how	each	MISRA	guideline	is	verified.	

The Guideline Re-Categorization Plan

Communicates	the	agreed-upon	severity	of	individual	rules	in	the	guidelines	as	part	of	
the	vendor/client	relationship.	

ISO 26262 Software Compliance in the Automotive Industry

18

Figure 4-1:
MISRA Compliance
Report

The	"MISRA	C	2023"	compliance	document	recommends	against	re-categorizations	
from	a	less	stringent	to	a	more	stringent	classification.	In	addition,	it	is	possible	to	
disapply	advisory	rules	altogether	after	reviewing	the	types	of	violations	with	the	team.	

The	requirement	to	document	deviations	is	only	necessary	for	all	required	rules.	Any	
violations	in	adopted	code	should	be	reviewed.	Deviations	need	to	clearly	state	that	
violations	do	not	compromise	safety	and	security.	Regardless	of	recategorization,	if	
there	is	a	finding	that	compromises	the	safety	or	security	of	the	system,	the	issue	must	
be	fixed.	Also,	modifications	to	the	existing	code	may	introduce	other	issues	not	clearly	
seen	by	the	developer.	

The Deviations Report

Documents	the	violations	of	guidelines	with	appropriate	rationale.	

The Guidelines Compliance Summary

This	is	the	primary	record	of	overall	project	compliance.	

When	first	introducing	MISRA	C	into	a	project,	commonly	where	code	already	exists,	
the	key	document	is	the	guideline	re-categorization	plan.	This	document	captures	all	
directives,	rules,	and	identifies	which	categories	have	been	re-categorized.	However,	it’s	
important	to	have	the	same	rational	categorization	for	newly	developed	code	as	well.	
For	example,	the	following	diagram	shows	part	of	a	re-categorization	plan.	

ISO 26262 Software Compliance in the Automotive Industry

19

AUTOSAR C++14
AUTOSAR	(AUTomotive	Open	System	ARchitecture)	is	a	worldwide	development	
partnership	of	OEM	manufacturers,	Tier	1	automotive	suppliers,	semiconductor	
manufacturers,	software	suppliers,	tool	suppliers,	and	others	that	focus	on	establishing	
and	standardizing	automotive	software	architecture.	

Adaptive	AUTOSAR	defines	a	platform	for	developing	automotive	control	units,	which	
provide	sophisticated	functionalities	like	advanced	driving	assistance	systems,	media	
streaming,	or	software	updates	via	the	internet.	The	platform	contains	the	specification	
of	interfaces	that	define	services	and	APIs	for	building	modern	automotive	systems.	

A	key	component	of	the	AUTOSAR	Adaptive	Platform	is	the	AUTOSAR	C++14	coding	
standard,	which	defines	guidelines	for	the	use	of	modern	C++	in	critical	and	safety-
related	systems.	While	AUTOSAR	C++14	remains	foundational,	the	automotive	
industry	increasingly	aligns	with	MISRA	C++	2023,	the	latest	standard	from	the	MISRA	
consortium.		

MISRA	C++	2023	modernizes	and	replaces	MISRA	C++	2008,	integrating	support	for	
C++17	and	C++20	while	maintaining	backward	compatibility	with	AUTOSAR	C++14.	

Recognized	as	complementary	standards,	MISRA	C++	2023	and	AUTOSAR	C++14	
share	safety,	reliability,	and	compliance	goals.	Both	standards	provide	traceability	to	
widely	adopted	C++	guidelines,	including:	

 » HIC++	4.0	

 » JSF	AV	C++	

 » SEI	CERT	C++	

 » C++	Core	Guidelines	

 » ISO/IEC	TS	17961	

The	collaboration	between	AUTOSAR	and	MISRA	ensures	harmonization	for	
developers	working	in	safety-critical	domains	like	automotive,	aerospace,	and	
industrial	systems.	

ISO 26262 Software Compliance in the Automotive Industry

20

Parasoft	C/C++test,	a	unified	testing	tool	for	C/C++	development,	and	Parasoft	DTP,	
a	reporting	and	analytics	dashboard,	deliver	comprehensive	support	for	AUTOSAR	
C++14	and	MISRA	C++	2023.	This	dual	coverage	enables	organizations	to:	

 » Enforce	MISRA	rules	with	industry-leading	static	analysis	checkers.	

 » Streamline	compliance	reporting	for	ISO	26262,	ASPICE,	and	other	automotive	
safety	standards.	

 » Address	challenges	in	software	quality,	security,	and	regulatory	adherence	across	
evolving	C++17/C++20	codebases.	

By	integrating	AUTOSAR	C++14’s	robustness	with	MISRA	C++	2023’s	modern	language	
support,	Parasoft	provides	a	future-proof	solution	for	automotive	software	teams	
navigating	the	transition	to	advanced	C++	ecosystems.	

AUTOSAR	C++14	Compliance
AUTOSAR	C++14	does	not	provide	explicit	guidance	on	the	process	of	achieving	
compliance.	However,	given	that	AUTOSAR	guidelines	are	based	on	MISRA	C++	
2008	(superseded	by	MISRA	C++	2023),	it's	reasonable	to	refer	to	the	MISRA	
Compliance:2020	document	for	claiming	compliance.

The	desired	situation	is	to	have	a	static	analysis	tool	that	covers	as	many	guidelines	
as	possible.	The	rules	that	cannot	be	enforced	with	static	analysis	will	require	manual	
reviews,	which	are	expensive.	

As	with	MISRA	C	or	C++	compliance,	a	deviation	handling	procedure	needs	to	be	
established.	The	deviation	procedure	formalizes	the	steps	that	need	to	be	taken	
when	development	needs	to	deviate	from	a	specific	guideline.	As	MISRA	prescribes,	
it's	expected	that	“…the	procedure	will	be	based	around	obtaining	a	sign-off	for	every	
deviation	or	class	of	deviations.”

This	is	a	particularly	important	piece	of	the	puzzle.	It	prevents	abusing	the	deviation	
concept	by	developers	deviating	at	will.	Effectively,	you'll	need	formal	tickets	stored	in	
your	system	that	document	every	deviation	in	the	source	code.	At	the	end	of	a	project,	
an	AUTOSAR	Compliance	Report	must	be	created	to	document	the	overall	level	of	
compliance	achieved.	This	summary	includes	an	entry	for	each	guideline	outlined	in	The	
Guidelines	and	specifies	the	compliance	level	attained.	

ISO 26262 Software Compliance in the Automotive Industry

21

Figure 5-1:
AUTOSAR
Compliance Report

The	possible	compliance	levels	for	a	guideline	are:	

 » Compliant.	No	violations	of	the	guideline	exist	within	the	project.	

 » Deviations.	All	violations	of	the	guideline	within	the	project	are	justified	by	
approved	deviations.	

 » Violations.	The	project	contains	violations	of	the	guideline	that	are	not	covered	by	
deviations.	

 » Disapplied.	Compliance	with	the	guideline	has	not	been	assessed.

A	formal	process	for	handling	deviations	must	document	enforcement	methods	for	
every	applicable	guideline.	This	document	is	called	the	Guidelines	Enforcement	Plan	
(GEP).	Also,	a	Guidelines	Recategorization	Plan	(GRP)	is	needed,	which	documents	in	
a	formal	way	any	changes	that	are	introduced	to	rule	categories.	And	the	Guidelines	
Compliance	Summary	(GCS)	is	a	final	artifact	from	the	compliance	process	that	presents	
the	level	of	compliance	that	was	achieved	for	every	guideline.

ISO 26262 Software Compliance in the Automotive Industry

22

Figure 5-2:
Parasoft covers 100%
of all required and
automated AUTOSAR
C++14 rules.

With	the	100%	coverage	for	Required	&	Automated	rules,	Parasoft	testing	tool	suite	
ensures	AUTOSAR	compliance	throughout	the	software	development	life	cycle,	
improves	code	quality,	and	reduces	cost	associated	with	resources	and	time	to	market.	

Parasoft	provides	comprehensive	support	for	CERT	C	and	CERT	C++	secure	coding	
standards	with	complete	coverage	of	all	the	CERT	C/C++	guidelines	including	both	
rules	and	recommendations	that	are	detectable	by	static	analysis.	Checker	names,	
dashboards,	and	reports	use	the	CERT	naming	convention	to	make	conformance	and	
auditing	easier.	A	CERT	conformance	dashboard,	which	includes	the	CERT	risk	score,	
helps	developers	focus	on	the	most	critical	violations.	

Support	for	AUTOSAR	C++14	in	Parasoft	C/C++test	
The	only	practical	way	to	enforce	compliance	with	a	coding	standard	like	
AUTOSAR	C++14	is	with	a	static	analysis	tool,	like	Parasoft	C/C++test,	a	code	
quality	tool	supporting	multiple	testing	technologies.	Parasoft	C/C++test	support	for	
AUTOSAR	C++14,	provides	a	set	of	built-in	checkers	(rules)	for	verifying	compliance	
with	standards	including	MISRA	C	2023,	MISRA	C++	2023,	JSF	AV	C++,	SEI	CERT	
C/C++,	HIC++,	CWE	Top	25,	CWE	On	the	Cusp,	OWASP,	and	more.	

Parasoft	compliance	packs	provide	users	with	standard	specific	configurations,	
automatic	generation	of	compliance	documentation,	risk	assessment	framework,	and	
dynamic	compliance	reporting	dashboards	(DTP)	to	help	stakeholders	easily	aggregate,	
correlate,	and	apply	analytics	to	centralize	reporting	for	each	step	along	the	complex	
software	supply	chain.	

ISO 26262 Software Compliance in the Automotive Industry

23

SEI CERT
The	Software	Engineering	Institute	(SEI)	Computer	Emergency	Response	Team	(CERT)	
has	a	set	of	guidelines	to	help	developers	create	safer,	more	secure,	and	more	reliable	
software.	Started	in	2006	at	a	meeting	of	the	C	Standard	Committee,	the	first	CERT	C	
standard	was	published	in	2008,	and	is	constantly	developing	and	evolving.	

There's	a	book	form	version	published	in	2016,	but	it	doesn't	include	the	latest	updates.	
This	standard	doesn’t	have	specific	frozen	releases	like	CWE	Top	25	and	OWASP	Top	
10.	The	standard	arose	from	a	large	community	of	over	3,000	people	with	a	focus	on	
engineering	and	prevention.	The	CERT	secure	coding	standards	focus	on	prevention	
of	the	root	causes	of	security	vulnerabilities	rather	than	treating	or	managing	the	
symptoms	by	searching	for	vulnerabilities.	

The	CERT	coding	guidelines	are	available	for	C,	C++,	Java,	Perl,	and	Android.	They	fall	
into	two	main	categories:	rules	and	recommendations.	

Rules	are	guidelines	that	are	detectable	by	static	analysis	tools	and	require	strict	
enforcement,	while	recommendations	are	guidelines	that	have	a	lower	impact	and	are	
sometimes	difficult	to	analyze	automatically.	

CERT	includes	a	risk	assessment	system	that	combines	the	likelihood	of	occurrence,	
severity,	and	relative	difficulty	of	mitigation.	This	helps	developers	prioritize	which	
guideline	violations	are	the	most	important	to	investigate.	The	inclusion	of	mitigation	
efforts	to	the	guideline	priority	is	an	important	addition	to	the	CERT	secure	coding	
standards,	which	many	other	standards	lack.	

The	CERT	bullseye	diagram	reflects	the	cost	factor.	The	center	of	the	bullseye	
represents	the	highest	severity	guidelines,	which	are	more	difficult	to	fix.	The	benefit	
of	this	prioritization	is	focusing	on	the	most	critical	violations	that	provide	the	biggest	
bang	for	the	buck	in	security	improvement	while	helping	the	development	team	filter	
out	less	important	warnings.	

ISO 26262 Software Compliance in the Automotive Industry

24

SEI	CERT	C/C++	Conformance
According	the	SEI	CERT	C	documentation,	conformance	"requires	that	the	code	not	
contain	any	violations	of	the	rules	specified	in	this	standard.	If	an	exceptional	condition	
is	claimed,	the	exception	must	correspond	to	a	predefined	exceptional	condition,	and	
the	application	of	this	exception	must	be	documented	in	the	source	code.”	

Although	conformance	is	less	specific	than	standards	such	as	MISRA,	the	principles	
remain	similar.	Rules	should	be	followed,	and	deviations	are	rare	and	well	documented.	
Recommendations	should	be	used	when	possible	and	those	that	aren’t	needed	to	
be	documented.	

Violations	that	persist	in	the	source	code	need	to	be	documented.	However,	no	
deviation	is	acceptable	for	performance	or	usability	and	the	onus	is	on	the	developer	
to	demonstrate	that	the	deviation	will	not	lead	to	a	vulnerability.	

Parasoft	C/C++test	provides	a	comprehensive	CERT	compliance	dashboard	and	reports.	
Individual	compliance	reports	are	available	on	demand	based	on	the	latest	build	of	the	
software	or	any	previous	build.	

These	reports	can	be	sorted	and	navigated	to	investigate	violations	in	more	detail.	
Also,	a	conformance	test	plan	is	available	to	correlate	the	CERT	guideline	with	the	
appropriate	Parasoft	static	analysis	checker	is	an	important	tool	if	conformance	
documentation	is	needed	for	audit	purposes.	In	addition,	all	the	interesting	reports	as	
specified	by	the	team	are	available	in	a	single	PDF	available	for	download	for	auditors.

Figure 6-1:
SEI CERT severity bullseye
diagram

ISO 26262 Software Compliance in the Automotive Industry

25

Figure 6-3:
Auto-generated CERT
Compliance Report

Figure 6-2:
CERT compliance
dashboard

ISO 26262 Software Compliance in the Automotive Industry

26

Support	for	CERT	C/C++	in	Parasoft	C/C++test	
Parasoft	provides	comprehensive	support	for	CERT	C	and	CERT	C++	secure	coding	
standards	with	complete	coverage	of	all	the	CERT	C/C++	guidelines	including	both	
rules	and	recommendations	that	are	detectable	by	static	analysis.	Checker	names,	
dashboards,	and	reports	use	the	CERT	naming	convention	to	make	conformance	and	
auditing	easier.	A	CERT	conformance	dashboard,	which	includes	the	CERT	risk	score,	
helps	developers	focus	on	the	most	critical	violations.

ISO 26262 Software Compliance in the Automotive Industry

27

CWE - Common Weakness Enumeration
CWE	is	a	list	of	discovered	software	weaknesses	based	on	the	analysis	of	reported	
vulnerabilities	(CVEs).	The	collection	of	CVEs	and	CWEs	is	a	U.S.	government-
funded	initiative	developed	by	the	software	community	and	managed	by	the	MITRE	
organization.	In	its	entirety,	the	CWE	list	contains	over	800	items.	

These	800+	items	are	organized	in	more	usable	lists	such	as	the	well-known	CWE	Top	
25.	The	Top	25	lists	the	most	common	and	dangerous	security	weaknesses,	which	
are	all	exploits	that	have	a	high	chance	of	occurring	and	the	impact	of	exploiting	the	
weakness	is	large.	The	software	weaknesses	documented	by	a	CWE	are	the	software	
implicated	in	a	set	of	discovered	vulnerabilities	(documented	as	CVEs)	when	analysis	
was	performed	to	discover	the	root	cause.	CVEs	are	specific	observed	vulnerabilities	
in	software	products	that	have	an	exact	definition	of	how	to	exploit	them.	

The	current	version	of	CWE	Top	25	is	from	2024.	An	updated	Top	25	is	currently	in	
process	with	improved	linking	to	CVEs	and	the	NVD.	Ranking	considers	real	world	
information	so	that	it	truly	represents	the	Top	25	application	security	issues	today.	
As	soon	as	it	is	released,	Parasoft	will	have	updated	support	for	the	latest	version.	

The	current	CWE	Top	25	is	listed	below.

Table 7-1:
CWE Top 25

ISO 26262 Software Compliance in the Automotive Industry

28

For	software	teams	that	have	a	good	handle	on	the	Top	25,	there	is	another	grouping	
of	the	next	most	common	and	impactful	vulnerabilities	called	the	CWE	CUSP.	Another	
way	to	think	of	these	are	the	top	25	honorable	mentions.	

The	CWE	uses	a	risk	scoring	method	to	rank	the	Top	25	(and	on	the	CUSP).	This	score	
takes	into	consideration	the	technical	impact	of	a	software	weakness	(how	dangerous	
an	exploit	of	the	weakness	is	in	the	real	world)	as	measured	by	the	CWSS	(common	
weakness	scoring	system).	Examples	of	technical	impacts	from	vulnerabilities	may	
include	denial	of	service	(DoS),	distributed	denial	of	service	(DDoS),	read	or	write	
access	to	protected	information,	unauthorized	access,	and	so	on.	

The	details	of	these	methods	aren’t	too	important,	but	the	sorted	list	is	useful	in	
understanding	which	vulnerabilities	to	be	concerned	about	the	most.	As	an	example,	
it’s	possible	that	your	application	is	purely	internal	and	DoS	issues	aren’t	critical	for	you.	
Being	able	to	prioritize	the	most	important	weaknesses	of	your	application	can	help	
overcome	overwhelm	with	static	analysis	violations.	

CWE	Top	25	and	On	the	Cusp	Compliance
Introducing	the	coding	standard	compliance	process	into	the	team	development	
workflow	is	not	an	easy	task.	As	such,	it's	important	to	select	a	tool	that	will	help	
in	achieving	compliance	without	imposing	too	much	overhead	and	without	the	
requirement	for	additional	manual	procedures.	The	following	points	are	important	
decision-making	factors	when	selecting	the	solution	for	static	analysis.	

The	CWE	Top	25	and	its	lesser	known	sibling,	On	the	Cusp,	are	not	coding	standards	
per	se,	but	a	list	of	weaknesses	to	avoid,	improving	security.	To	be	CWE	compliant,	a	
project	should	be	able	to	prove	that	it	has	made	reasonable	efforts	to	detect	and	avoid	
these	common	weaknesses.	

ISO 26262 Software Compliance in the Automotive Industry

29

Figure 7-2:
CWE 4.4 - .NET
compliance
dashboard

Parasoft’s	advanced	static	analysis	tools	for	C,	C++,	Java,	and	.NET	are	officially	
compatible	with	CWE,	providing	automated	detection	of	both	Top	25	and	On	the	
Cusp	weaknesses	(and	many	more).	CWE-centric	dashboards	give	users	quick	access	to	
standards	violations	and	current	project	status.	A	built-in	CWE	Top	25	configuration	is	
available	for	C,	C++,	.NET,	and	Java	and	has	full	coverage	of	all	the		
25	common	weaknesses.	

The	Parasoft	tools	include	information	from	the	CWRAF	risk	analysis	framework,	such	
as	technical	impact,	so	you	can	benefit	from	the	same	type	of	prioritization	based	on	
risk	and	technical	impact	and	weaknesses	found	in	your	code.	

The	On	the	Cusp	guidelines	are	also	available.	When	enabled,	they're	treated	the	
same	way	as	the	Top	25	and	reports	provide	the	same	level	of	detail.	This	is	useful	
since	the	UL	2900	(formerly	Underwriters	Laboratory)	and	FDA	recommends	the	full	
list	of	guidelines	(Top	25	+	On	the	Cusp	+	OWASP	Top	10).	It’s	possible	to	integrate	
other	guidelines	from	CWE	lists	or	other	standards	and	guidelines	using	Parasoft’s	
custom	checker	configurations	as	needed.	

ISO 26262 Software Compliance in the Automotive Industry

30

Figure 7-3:
CWE Compliance
Report

Parasoft	also	supports	detailed	compliance	reporting	to	streamline	audit	processes.	
The	web	dashboards	provide	the	link	to	compliance	reports	that	provide	a	complete	
picture	of	where	a	project	stands.	In	addition,	the	CWE	Weakness	Detection	Plan	
maps	the	CWE	entry	against	the	checkers	that	are	used	to	detect	the	weakness.	This	
helps	illustrate	how	compliance	was	achieved	by	an	auditor,	and	the	audit	reports	are	
available	to	download	as	PDFs	for	easy	reporting.	

ISO 26262 Software Compliance in the Automotive Industry

31

Unit Testing
Software	verification	and	validation	is	an	inherent	part	of	automotive	software	
development	and	testing	is	a	key	way	to	demonstrate	correct	software	behavior.	
Unit	testing	is	the	verification	of	module	design.	It	ensures	that	each	software	unit	
does	what	it's	required	to	do.	

In	addition,	safety	and	security	requirements	may	require	that	software	units	don’t	
behave	in	unexpected	ways	and	are	not	susceptible	to	manipulation	with	unexpected	
data	inputs.

Figure 8-1:
The V-model of
software development
showing the
relationship between
each phase and the
validation inferred at
each stage of testing.

In	terms	of	the	classic	V	model	of	development,	unit	test	execution	is	a	validation	
practice	to	ensure	module	design	is	correct.	ISO	26262	has	specific	guidelines	for	what	
needs	to	be	tested	for	unit	testing.	

ISO	26262	has	specific	guidelines	for	testing	in	accordance	with	safety	integrity	levels	
where	requirements-based	testing,	interface	testing,	and	resource	usage	evaluation	
are	highly	recommended	for	all	levels.	Fault	injection	is	recommended	at	lower	ASIL	
(Automotive	Safety	Integrity	Levels)	A	and	B,	and	highly	recommended	at	ASIL	C	and	D.	
Similarly,	the	method	of	driving	test	cases	is	also	specified	with	recommended	practices.

ISO 26262 Software Compliance in the Automotive Industry

32

Figure 8-2:
ISO 26262 Part 6,
10.4.2:2018

Figure 8-3:
ISO 26262 Part 6,
10.4.3:2018

Table 10 - Methods for verification of software integration

Table 11 - Methods for deriving test cases for software integration
testing

Breaking	these	down	individually,	consider	how	each	unit	test	requirement	from	
ISO	26262	can	be	satisfied	and	accelerated	with	test	automation	tools	like	
Parasoft	C/C++test.	By	the	way,	if	you’re	already	using	a	unit	testing	framework	like	
GoogleTest,	Cppunit,	Boost.Test,	or	a	homegrown	one,	consider	plugging	in	
C/C++test	CT.		It	adds	code	coverage,	requirements	traceability,	and	report	
generation	to	these	popular	open	testing	frameworks.

Unit	Test	Methods

Requirement-Based Test

These	tests	directly	test	functionality	as	specified	in	each	requirement.	Test	automation	
tools	need	to	support	bidirectional	traceability	of	requirements	to	their	tests	and	the	
requirements	testing	coverage	reports	to	show	compliance.	

ISO 26262 Software Compliance in the Automotive Industry

33

Interface Test

These	tests	ensure	programming	interfaces	behave	and	perform	as	specified.	Test	tools	
need	to	create	function	stubs	and	data	sources	to	emulate	the	behavior	of	external	
components	for	automatic	unit	test	execution.

Fault Injection Test

These	tests	use	unexpected	inputs	and	introduce	failures	in	the	execution	of	code	to	
examine	failure	handling	or	lack	thereof.	Test	automation	tools	must	support	injection	
of	fault	conditions	using	function	stubs	and	automatic	unit	test	generation	using	a	
diverse	set	of	preconditions,	such	as	min,	max,	and	heuristic	values.	

Resource Usage Evaluation

These	tests	evaluate	the	amount	of	memory,	file	space,	CPU	execution	or	other	target	
hardware	resources	used	by	the	application.	

Test	Case	Drivers

Analysis of Requirements

Every	requirement	drives	at	minimum	a	single	unit	test	case.	Although	test	automation	
tools	do	not	generate	tests	directly	from	requirements,	they	must	support	two-way	
traceability	from	requirements	to	code	and	requirements	to	tests.	And	maintain	
requirements,	tests,	and	code	coverage	information.

Generation & Analysis of Equivalence Classes

Test	cases	must	ensure	that	units	behave	in	the	same	manner	for	a	range	of	inputs,	
not	just	cherry-picked	inputs	for	each	unit.	Test	automation	tools	must	support	test	
case	generation	using	data	sources	to	efficiently	use	a	wide	range	of	input	values.	
Parasoft	C/C++test	uses	factory	functions	to	prepare	sets	of	input	parameter	values	
for	automated	unit	test	generation.	

Analysis of Boundary Values

Automatically	generated	test	cases,	such	as	heuristic	values,	boundary	values,	employ	
data	sources	to	use	a	wide	range	of	input	values	in	tests.

ISO 26262 Software Compliance in the Automotive Industry

34

Error Guessing

This	method	uses	the	function	stubs	mechanism	to	inject	fault	conditions	into	tested	
code	flow	analysis	results	and	can	be	used	to	write	additional	tests.

Automated	Test	Execution	and	Test	Case	Generation
Test	automation	provides	large	benefits	to	embedded	automotive	software.	Moving	
away	from	test	suites	that	require	a	lot	of	manual	intervention	means	that	testing	can	
be	done	quicker,	easier,	and	more	often.	

Offloading	this	manual	testing	effort	frees	up	time	for	better	test	coverage	and	other	
safety	and	quality	objectives.	An	important	requirement	for	automated	test	suite	
execution	is	being	able	to	run	these	tests	on	both	host	and	target	environments.	

Target-Based Testing for Automotive Systems

Automating	testing	for	automotive	software	is	more	challenging	due	to	the	complexity	
of	initiating	and	observing	tests	on	embedded	targets—not	to	mention	the	limited	
access	to	target	hardware	that	software	teams	have.	

Software	test	automation	is	essential	to	make	embedded	testing	workable	on	a	
continuous	basis	from	host	development	system	to	target	system.	Testing	embedded	
software	is	particularly	time	consuming.	Automating	the	regression	test	suite	provides	
considerable	time	and	cost	savings.	In	addition,	test	results	and	code	coverage	data	
collection	from	the	target	system	are	essential	for	validation	and	standards	compliance.	

Traceability	between	test	cases,	test	results,	source	code,	and	requirements	must	be	
recorded	and	maintained.	So	data	collection	is	critical	in	test	execution.

Parasoft	C/C++test	is	offered	with	its	test	harness	optimized	to	take	minimal	additional	
overhead	for	the	binary	footprint	and	provides	it	in	the	form	of	source	code,	where	it	
can	be	customized	if	platform-specific	modifications	are	required.		

ISO 26262 Software Compliance in the Automotive Industry

35

Figure 8-4:
A high-level view of
deploying, executing,
and observing tests
from host to target.

One	huge	benefit	that	the	Parasoft	C/C++test	solution	offers	is	its	dedicated	
integrations	with	embedded	IDEs	and	debuggers	that	make	the	process	of	executing	
test	cases	smooth	and	automated.	Supported	IDE	environments	include	eclipse,	
VS	Code,	Green	Hills	Multi,	Wind	River	Workbench,	IAR	EW,	ARM	MDK,	ARM	DS-5,	
TI	CCS,	Visual	Studio,	and	many	others.

Listening Agent

Download/Test

Parasoft Runtime Library
Jtag, Serial, Ethernet…

Communication

Instrumented Application

Automated	Test	Case	Generation
Unit	test	automation	tools	universally	support	some	sort	of	test	framework,	which	
provides	the	harness	infrastructure	to	execute	units	in	isolation	while	satisfying	
dependencies	via	stubs.	Parasoft	C/C++test	is	no	exception.	Part	of	its	unit	test	
capability	is	the	automated	generation	of	test	harnesses	and	the	executable	
components	needed	for	host	and	target-based	testing.	

Test	data	generation	and	management	is	by	far	the	biggest	challenge	in	unit	testing.	
Test	cases	are	particularly	important	in	safety-critical	software	development	because	
they	must	ensure	functional	requirements	and	test	for	unpredictable	behavior,	security,	
and	safety	requirements.	All	while	satisfying	test	coverage	criteria.

Parasoft	C/C++test	automatically	generates	test	cases	like	the	popular	CppUnit	format.	
By	default,	C/C++test	generates	one	test	suite	per	source/header	file.	It	can	also	be	
configured	to	generate	one	test	suite	per	function	or	one	test	suite	per	source	file.	

ISO 26262 Software Compliance in the Automotive Industry

36

Figure 8-5:
Parasoft C/C++
automated test case
generation, in this
case, one test suite
per function.

Safe	stub	definitions	are	automatically	generated	to	replace	"dangerous"	functions,	
which	include	system	I/O	routines	such	as	rmdir(),	remove(),	rename(),	and	so	on.	
In	addition,	stubs	can	be	automatically	generated	for	missing	function	and	variable	
definitions.	User-defined	stubs	can	be	added	as	needed.

ISO 26262 Software Compliance in the Automotive Industry

37

Regression Testing
As	part	of	most	C	and	C++	software	development	processes,	regression	testing	is	done	
after	changes	are	made	to	software.	These	tests	determine	if	the	new	changes	impact	
the	existing	operation	of	the	software.	

Regression	tests	are	necessary,	but	they	only	indicate	that	recent	code	changes	have	
not	caused	tests	to	fail.	There's	no	assurance	that	these	changes	will	work.	In	addition,	
the	nature	of	the	changes	that	motivate	the	need	to	do	regression	testing	can	go	
beyond	the	current	application	and	include	changes	in	hardware,	operating	system,	
and	operating	environment.	

Regression	Testing	in	Safety-Critical	Software
In	safety-critical	C	and	C++	software	development,	validation	is	critical	in	proving	
correct	functionality,	safety,	and	security.	Tests	are	needed	to	confirm	any	changes	to	
the	application	to	ensure	functionality	and	to	verify	there	are	no	unforeseen	impacts	
the	rest	of	the	system.	

If	a	test	case	that	previously	passed	now	fails,	then	a	potential	regression	has	been	
identified.	New	functionality	could	be	the	cause	of	the	failure.	If	so,	the	test	case	may	
need	to	be	updated	with	consideration	to	those	changes	in	input	and	output	values.

Regression	testing	of	embedded	systems	also	includes	the	execution	of:

 » Integration	test	cases

 » System	test	cases

 » Performance	test	cases

 » Stress	test	cases	and	more

All	previously	created	test	cases	may	need	to	be	executed	to	ensure	that	no	regressions	
exist	and	that	a	new	dependable	software	version	release	is	constructed.	This	is	critical	
because	each	new	software	system	or	subsystem	release	is	built	or	developed	upon.	If	
you	do	not	have	a	solid	foundation	the	whole	thing	can	collapse.

Parasoft	DTP	supports	the	creation	of	regression	testing	baselines	as	an	organized	
collection	of	tests	and	will	automatically	verify	all	outcomes.	These	tests	automatically	
run	regularly	to	verify	whether	code	modifications	change	or	break	the	functionality	
captured	in	the	regression	tests.	

ISO 26262 Software Compliance in the Automotive Industry

38

If	any	changes	are	introduced,	these	test	cases	will	fail	and	alert	the	team	to	the	
problem.	During	subsequent	tests,	DTP	will	report	tasks	if	it	detects	changes	to	the	
behavior	captured	in	the	initial	test.

How	to	Decide	What	to	Regression	Test
The	key	challenge	with	regression	testing	is	determining	what	parts	of	an	application	
to	test.	It	is	common	to	default	to	executing	all	regression	tests	when	there’s	doubt	on	
what	impacts	recent	code	changes	have	had—the	all-or-nothing	approach.	

For	large	C	and	C++	software	projects,	this	becomes	a	huge	undertaking	and	drags	
down	the	productivity	of	the	team.	This	inability	to	focus	testing	hinders	much	of	the	
benefits	of	iterative	and	continuous	processes,	potentially	exacerbated	in	embedded	
software	where	test	targets	are	a	limited	resource.

A	couple	of	tasks	are	required	here.

 » Identify	which	tests	need	to	be	re-executed.

 » Focus	the	testing	efforts	(unit	testing,	automated	functional	testing,	and	manual	
testing)	on	validating	the	features	and	related	code	that	are	impacted	by	the	most	
recent	changes.	

Understand	the	Impact	of	Code	Changes	on	Testing	With	Test	
Impact	Analysis
Test	impact	analysis	uses	data	collected	during	test	runs	and	changes	in	code	between	
builds	to	determine	which	files	have	changed	and	which	specific	tests	touched	those	
files.	Parasoft’s	analysis	engine	can	analyze	the	delta	between	two	builds	and	identify	
the	subset	of	regression	tests	that	need	to	be	executed.	It	also	understands	the	
dependencies	on	the	modified	units	to	determine	the	ripple	effect	the	changes	have	
made	on	other	units.	

Parasoft’s	Jtest	for	Java	testing	and	dotTEST	for	C#	and	VB.NET	software	testing	
solutions	provide	insight	into	the	impact	of	software	changes.	Each	solution	
recommends	where	to	add	tests	and	where	further	regression	testing	is	needed.	
See	the	example	change	based	testing	report	below.

ISO 26262 Software Compliance in the Automotive Industry

39

Developers	and	testers	can	get	a	clear	understanding	of	the	changes	in	the	codebase	
between	builds	using	the	Process	Intelligence	Engine	(PIE)	within	Parasoft	DTP	
combined	with	our	proprietary	coverage	analysis	engines:

 » Jtest	for	Java

 » dotTEST	for	C#	and	VB.NET

With	this	combination,	teams	can	improve	efficiency	and	achieve	the	promise	of	Agile.	

This	form	of	smart	test	execution	is	called	test	impact	analysis.	It's	sometimes	referred	
to	as	change	based	testing.

Figure 9-1:
An example Change
Based Testing report
from Parasoft DTP
shows tested and not
tested areas of the
code.

Change Based Testing - Files
Filter: Parabank-v3 Baseline Build: PARABANK3-20170503 Target Build: PARABANK3-21170619 Coverage Tag: Parabank-All

Totals -- Pass: 172 Fail: 7 Incomplete: 10 Retest: 6

File Name

ParaBankBeanPostProcessor.java

Transaction.java

HistoryPoint.java

Position.java

Customer.java

Account.java

BankManagerImpl.java

JdbcAdminDao.java

AbstractLoanProcessor.java

LoanRequest.java

JdbcTransactionDao.java

AdminManagerImpl.java

AvailableFundsLoanProcessor.java

LoanResponse.java

CombinedLoanProcessor.java

ConfigurableLoanProvider.java

LocalLoanProvider.java

Pass

171

19

13

25

58

34

34

102

6

9

14

40

4

5

1

13

2

Fail Incomplete Retest

7

6

5

5

4

4

4

3

2

2

1

1

1

1

1

1

1

10

10

0

1

5

9

9

9

0

2

10

4

0

2

0

2

0

1

5

0

0

6

6

6

2

1

1

5

1

1

1

0

1

0

admin

ISO 26262 Software Compliance in the Automotive Industry

40

Software Integration Testing
Integration	testing	follows	unit	testing	with	the	goal	of	validating	the	architectural	
design.	Integration	testing	can	be	done	bottom-up	and	top-down	with	a	combination	of	
approaches	likely	in	many	software	organizations.

Bottom-Up	Integration
This	testing	begins	with	unit	testing,	followed	by	tests	of	progressively	higher-level	
combinations	of	units	called	modules	or	builds.	The	approach	follows	a	version	of	the	
testing	pyramid	where	unit	testing	forms	the	foundation	of	a	thorough	testing	regime.	
Integration	tests	follow	the	integration	of	units	into	larger	architectural	blocks.

Top-Down	Integration	
In	this	testing,	the	highest	level	modules	are	tested	first.	Progressively,	testing	of	lower-
level	modules	follows.	This	approach	assumes	significant	subsystems	are	complete	
enough	to	include	and	test	as	a	whole.

The	V-model	is	good	for	illustrating	the	relationship	between	the	stages	of	
development	and	stages	of	validation.	At	each	testing	stage,	more	complete	portions	of	
the	software	are	validated	against	the	phase	that	defines	it.	

The	V-model	might	imply	a	waterfall	development	method.	However,	there	are	ways	to	
incorporate	Agile,	DevOps,	and	CI/CD	into	this	type	of	product	development	while	still	
being	standards-compliant.

Figure 10-1:
The V-model of
software development
showing the
relationship between
each phase and the
validation inferred at
each stage of testing.

ISO 26262 Software Compliance in the Automotive Industry

41

While	the	act	of	performing	tests	is	considered	software	validation,	it’s	supported	by	a	
parallel	verification	process	that	involves	the	following	activities	to	make	sure	teams	are	
building	the	process	and	the	product	correctly:	

 » Reviews

 » Walkthroughs

 » Analysis

 » Traceability

 » Test

 » Code	coverage	and	more

The	key	role	of	verification	is	to	ensure	building	delivered	artifacts	from	the	previous	
stage	to	specification	in	compliance	with	company	and	industry	guidelines.

Integration	and	System	Testing	as	Part	of	a	Continuous	
Testing	Process
Performing	some	level	of	test	automation	is	foundational	for	continuous	testing.	Many	
organizations	start	by	simply	automating	manual	integration	and	system	testing	(top-
down)	or	unit	testing	(bottom-up).

To	enable	continuous	testing,	organizations	need	to	focus	on	creating	a	scalable	test	
automation	practice	that	builds	on	a	foundation	of	unit	tests,	which	are	isolated	and	
faster	to	execute.	Once	unit	testing	is	fully	automated,	the	next	step	is	integration	
testing	and	eventually	system	testing.	

Continuous	testing	leverages	automation	and	data	derived	from	testing	to	provide	
real-time,	objective	assessment	of	the	risks	associated	with	a	system	under	
development.	Applied	uniformly,	it	allows	both	business	and	technical	managers	
to	make	better	trade-off	decisions	between	release	scope,	time,	and	quality.

Continuous	testing	isn’t	just	more	automation.	It’s	a	larger	reassessment	of	software	
quality	practices	that	are	driven	by	an	organization’s	cost	of	quality	and	balanced	
for	speed	and	agility.	Even	within	the	V-model	used	in	safety-critical	software	
development,	continuous	testing	is	still	a	viable	approach,	particularly	during	phases	
of	testing,	for	example,	during	unit	testing	and	integration	testing.	

The	diagram	below	illustrates	how	different	phases	of	testing	are	part	of	a	continuous	
process	that	relies	on	a	feedback	loop	of	test	results	and	analysis.

ISO 26262 Software Compliance in the Automotive Industry

42

Figure 10-2:
A continuous
testing cycle Parasoft	Analysis	and	Reporting	in	Support	of	Integration	and	

System	Testing

Parasoft	test	automation	tools	support	the	validation	(actual	testing	activities)	in	terms	
of	test	automation	and	continuous	testing.	These	tools	also	support	the	verification	
of	these	activities,	which	means	supporting	the	process	and	standards	requirements.	
Key	aspects	of	safety-critical	automotive	software	development	are	requirements	
traceability	and	code	coverage.	

Two Way Traceability

Requirements	in	safety-critical	software	are	the	key	driver	for	product	design	and	
development.	These	requirements	include	functional	safety,	application	requirements,	
and	nonfunctional	requirements	that	fully	define	the	product.	This	reliance	on	
documented	requirements	is	a	mixed	blessing	because	poor	requirements	are	one	of	
the	critical	causes	of	safety	incidents	in	software.	In	other	words,	the	implementation	
wasn’t	at	fault,	but	poor	or	missing	requirements	were.

Automating Bidirectional Traceability

Maintaining	traceability	records	on	any	sort	of	scale	requires	automation.	Application	
lifecycle	management	tools	include	requirements	management	capabilities	that	are	
mature	and	tend	to	be	the	hub	for	traceability.	Integrated	software	testing	tools	like	
Parasoft	complete	the	verification	and	validation	of	requirements	by	providing	an	
automated	bidirectional	traceability	to	the	executable	test	case.	This	includes	the	pass	
or	fail	result	and	traces	down	to	the	source	code	that	implements	the	requirement.

ISO 26262 Software Compliance in the Automotive Industry

43

Parasoft	integrates	with	market-leading	requirements	management	tools	or	ALM	
systems	such	as	IBM	DOORS	Next,	PTC	Codebeamer,	Polarion	from	Siemens,	Atlassian	
Jira,	Jama	Connect,	and	others.	As	shown	in	the	image	below,	each	of	Parasoft’s	test	
automation	solutions,	C/C++test,	Jtest,	dotTEST,	SOAtest,	and	Selenic,	used	within	the	
development	life	cycle	support	the	association	of	tests	with	work	items	defined	in	these	
systems,	such	as	requirements,	defects,	test	case/test	runs.	Traceability	is	managed	
through	Parasoft	DTP's	central	reporting	and	analytics	dashboard.

Figure 10-3:
Requirements
traceability and
reporting

Figure 10-4:
Parasoft provides a
reporting dashboard
that capture the
project’s testing
status, correlation
to requirements and
progress toward
completion.

Parasoft	DTP	correlates	the	unique	identifiers	from	the	management	system	with:	

 » Static	analysis	findings

 » Code	coverage

 » Results	from	unit,	integration,	and	functional	tests

Results	are	displayed	within	Parasoft	DTP’s	traceability	reports	and	sent	back	to	the	
requirements	management	system.	They	provide	full	bidirectional	traceability	and	
reporting	as	part	of	the	system’s	traceability	matrix.

ISO 26262 Software Compliance in the Automotive Industry

44

The	traceability	reporting	in	Parasoft	DTP	is	highly	customizable.	The	following	image	
shows	a	requirements	traceability	matrix	template	for	requirements	authored	in	
Polarion	that	trace	to	the	test	cases,	static	analysis	findings,	the	source	code	files,	and	
the	manual	code	reviews.

Figure 10-6:
Requirements
traceability matrix
template from
Parasoft DTP
integrated with
Siemens Polarion.

Figure 10-5:
codebeamer
traceability matrix.
System requirements
to high-level
requirements to
low-level requirement
to test cases and test
results.

The	bidirectional	correlation	between	test	results	and	work	items	provides	the	basis	
of	requirements	traceability.	Parasoft	DTP	adds	test	and	code	coverage	analysis	
to	evaluate	test	completeness.	Maintaining	this	bidirectional	correlation	between	
requirements,	tests,	and	the	artifacts	that	implement	them	is	an	essential	component	
of	traceability.

ISO 26262 Software Compliance in the Automotive Industry

45

Code	Coverage
Code	coverage	expresses	the	degree	to	which	the	application’s	source	code	is	exercised	
by	all	testing	practices,	including	unit,	integration,	and	system	testing	—	both	automated	
and	manual.	

Collecting	coverage	data	throughout	the	life	cycle	enables	more	accurate	quality	and	
coverage	metrics,	while	exposing	untested	or	under	tested	parts	of	the	application.	
Depending	on	the	safety	integrity	level	(ASIL	in	ISO	26262),	the	depth	and	
completeness	of	the	code	coverage	will	vary.	

Application	coverage	can	also	help	organizations	focus	testing	efforts	when	time	
constraints	limit	their	ability	to	run	the	full	suite	of	manual	regression	tests.	Capturing	
coverage	data	on	the	running	system	on	its	target	hardware	during	integration	and	
system	testing	completes	code	coverage	from	unit	testing.	

Benefits of Aggregate Code Coverage

Captured	coverage	data	is	leveraged	as	part	of	the	continuous	integration	(CI)	process,	
as	well	as	part	of	the	tester’s	workflow.	Parasoft	DTP	performs	advanced	analytics	
on	code	coverage	from	all	tests,	source	code	changes,	static	analysis	results,	and	test	
results.	The	results	help	identify	untested	and	undertested	code	and	other	high	risk	
areas	in	the	software.

Analyzing	code,	executing	tests,	tracking	coverage,	and	reporting	the	data	in	a	
dashboard	or	chart	is	a	useful	first	step	toward	assessing	risk,	but	teams	must	still	
dedicate	significant	time	and	resources	to	reading	the	tea	leaves	and	hope	that	they’ve	
interpreted	the	data	correctly.	

Understanding	the	potential	risks	in	the	application	requires	advanced	analytics	
processes	that	merge	and	correlate	the	data.	This	provides	greater	visibility	into	the	
true	code	coverage	and	helps	identify	testing	gaps	and	overlapping	tests.	For	example,	
what	is	the	true	coverage	for	the	application	under	test	when	your	tools	report	
different	coverage	values	for	unit	tests,	automated	functional	tests,	and	manual	tests?	

The	percentages	cannot	simply	be	added	together	because	the	tests	overlap.	This	is	
a	critical	step	for	understanding	the	level	of	risk	associated	with	the	application	under	
development.

ISO 26262 Software Compliance in the Automotive Industry

46

Figure 10-7:
Parasoft DTP
reporting and
analytics dashboard

Accelerating	Integration	and	System	Testing	With	Parasoft	
Test	Automation	Tools
Parasoft’s	software	test	automation	tools	accelerate	verification	by	automating	the	many	
tedious	aspects	of	record	keeping,	documentation,	reporting,	analysis,	and	reporting.

 » Two-way	traceability	for	all	artifacts	ensures	requirements	have	code	and	tests	to	
prove	they	are	being	fulfilled.	Metrics,	test	results,	and	static	analysis	results	are	
traced	to	components	and	vice	versa.

 » Code	and	test	coverage	verifies	all	requirements	are	implemented	and	makes	sure	
the	implementation	is	tested	as	required.

 » Target	and	host-based	test	execution	supports	different	validation	techniques	as	
required.

 » Smart	test	execution	manages	change	with	a	focus	on	tests	for	only	code	that	
changed	and	any	impacted	dependents.

 » Reporting	and	analytics	provides	insight	to	make	important	decisions	and	keeps	
track	of	progress.	Decision	making	needs	to	be	based	on	data	collected	from	the	
automated	processes.

 » Automated	documentation	generation	from	analytics	and	test	results	support	
process	and	standards	compliance.

 » Standards	compliance	automation	reduces	the	overhead	and	complexity	by	
automating	the	most	repetitive	and	tedious	processes.	The	tools	can	keep	track	of	
the	project	history	and	relating	results	against	requirements,	software	components,	
tests,	and	recorded	deviations.

ISO 26262 Software Compliance in the Automotive Industry

47

Software System Testing
System	testing	tests	the	system	as	a	whole.	Once	all	the	components	are	integrated,	
the	entire	system	is	tested	rigorously	to	verify	it	meets	the	specified	functional,	safety,	
security,	and	other	nonfunctional	requirements.	

Specialized	testing	teams	perform	this	type	of	testing	in	safety-critical	software.	
System	testing	falls	within	the	scope	of	black	box	testing.	As	such,	it	shouldn't	require	
any	knowledge	of	the	inner	design	of	the	code	or	logic.	

An	important	distinction	with	system	level	testing	is	the	system	is	tested	in	an	
environment	that	is	close	to	the	production	environment	where	the	application	will	
be	deployed.	At	this	stage,	specific	safety	functions	are	validated	and	system	wide	
security	testing	is	run.	

Automotive	System	Testing	at	the	Service	Level
Individual	systems	within	an	automobile	may	not	be	considered	part	of	a	service.	
However,	connectivity	into	larger	systems	means	they	should	be.	For	example,	in	
an	automobile,	the	role	of	the	engine	control	unit	(ECU)	alone	is	to	ensure	proper	
combustion	and	emissions	in	the	engine,	but	the	car	is	tracking	fuel	economy,	using	
the	ECU,	and	reporting	it	to	a	central	server	over	a	wireless	connection.	

This	mileage	data	is	then	used	to	plan	routes	and	estimate	operating	costs.	Suddenly,	
the	ECU	is	a	critical	leaf	node	in	a	business	decision	making	process.

Figure 11-1:
Engine Control
Unit (ECU) and user
services all connected
to the cloud

ISO 26262 Software Compliance in the Automotive Industry

48

Instead	of	viewing	system	quality	in	terms	of	meeting	individual	device	requirements,	
the	scope	is	broadened	to	consider	the	quality	of	the	services	provided.	Testing	at	the	
service	level	ensures	nonfunctional	requirements	are	met.	For	example,	performance	
and	reliability	are	difficult	to	assess	at	the	device	level	or	during	software	unit	testing.	
Service	based	testing	can	simulate	the	operational	environment	of	a	device	to	provide	
realistic	loads.	In	the	HVAC	example,	the	new	temperature	sensor	can	be	tested	with	
varying	request	rates	to	see	if	it	meets	performance	requirements.

Security	is	a	significant	concern	in	automotive	systems.	Cyber	attacks	most	likely	
originate	from	the	network	itself	by	attacking	the	exposed	APIs.	Service	based	testing	
can	create	simulated	environments	for	robust	security	testing,	either	through	fuzzing	
(random	and	erroneous	data	inputs)	or	denial-of-service	attacks.	A	new	temperature	
sensor	in	the	HVAC	example	might	operate	correctly	with	expected	requests,	but	crash	
when	overloaded.	An	attacker	might	be	able	to	exploit	this	to	overload	the	system	and	
cause	an	outage.

Virtual	Test	Environment	and	Service	Level	Testing
A	real	test	lab	requires	the	closest	physical	manifestation	of	the	environment	in	which	
an	automobile	is	planned	to	work.	Even	in	the	most	sophisticated	lab,	it’s	difficult	to	
scale	to	a	realistic	environment.	A	virtual	lab	fixes	this	problem.	

Virtual	labs	evolve	past	the	need	for	hard-to-find	(or	non-existent)	hardware	
dependencies.	They	use	sophisticated	service	virtualization	with	other	key	test	
automation	tools.

Service Virtualization

Simulates	all	the	dependencies	needed	by	the	device	under	test	to	perform	full	
system	testing.	This	includes	all	connections	and	protocols	used	by	the	device	with	
realistic	responses	to	communication.	For	example,	service	virtualization	can	simulate	
an	enterprise	server	backend	that	an	automobile	communicates	with.	Similarly,	
virtualization	can	simulate	a	dependent	system,	like	traffic	or	weather	data,	in	a	
realistic	manner.

Service and API Testing

Provide	a	way	to	drive	the	system	under	test	in	a	manner	that	ensures	the	services	it	
provides	(and	APIs	provided)	are	performing	flawlessly.	These	tests	can	be	manipulated	
via	the	automation	platform	to	perform	performance	and	security	tests	as	needed.

ISO 26262 Software Compliance in the Automotive Industry

49

Runtime Monitoring

Detects	errors	in	real	time	on	the	system	under	test	and	captures	important	trace	
information.	

Test Lab Management and Analytics

Provide	the	overarching	control	of	the	virtual	labs.	Once	virtualized,	the	entire	lab	setup	
can	be	replicated	as	needed	and	test	runs	can	be	automated	and	repeated.	Analytics	
provide	the	necessary	summary	of	activities	and	outcomes.

Parasoft	SOAtest	and	Virtualize	for	Service	Level	Testing	of	
Automotive	Software
Developers	can	build	integrations	earlier,	stabilize	dependencies,	and	gain	full	control	
of	their	test	data	with	Parasoft	Virtualize.	Teams	can	move	forward	quickly	without	
waiting	for	access	to	dependent	services	that	are	either	incomplete	or	unavailable.	
Companies	can	enable	partners	to	test	against	their	applications	with	a	dedicated	
sandbox	environment.	These	Parasoft	solutions	are	particularly	valuable	in	the	
development	and	testing	of	software-defined	vehicles	(SDVs).

Parasoft	SOAtest	delivers	fully	integrated	API	and	web	service	testing	tools	that	
automate	end-to-end	functional	API	testing.	Teams	can	streamline	automated	testing	
with	advanced	functional	test	creation	capabilities	for	applications	with	multiple	
interfaces	and	protocols.	

SOAtest	and	Virtualize	are	well	suited	for	network	based	system-level	testing	of	various	
types,	including	the	following:

 » Comprehensive	protocol	stack	that	supports	HTTP,	MQTT,	RabbitMQ,	JMS,	XML,	
JSON,	REST,	SOAP,	and	more.

 » Security	and	performance	testing	during	integration	and	system	testing	with	
integration	into	the	existing	CI/CD	process.	

 » End-to-end	testing	that	combines	API,	web,	mobile,	and	database	interactions	into	
virtual	test	environments.

ISO 26262 Software Compliance in the Automotive Industry

50

Structural Code Coverage
Collecting	and	analyzing	code	coverage	metrics	is	an	important	aspect	of	safety-critical	
automotive	software	development.	Code	coverage	measures	the	completion	of	test	
cases	and	executed	tests.	It	provides	evidence	that	validation	is	complete,	at	least	as	
specified	by	the	software	design.	

It	also	identifies	dead	code.	This	is	code	that	can	logically	never	be	reached.	It	
demonstrates	the	absence	of	unintended	behavior.	Code	that	isn’t	covered	by	any	test	
is	a	liability	because	its	behavior	and	functionality	are	unknown.	

The	amount	and	extent	of	code	coverage	depend	on	the	safety	integrity	level.	
The	higher	the	integrity	level,	the	higher	the	rigor,	and,	inevitably,	the	number	and	
complexity	of	test	cases.	

The	following	table	shows	the	recommendations	for	types	of	code	coverage	at	each	
ISO	26262	ASIL.	

Table 9 - Structural coverage metrics at the software level

Figure 12-1:
ISO 26262 Part 6,
9.4.4:2018

Statement	coverage	requires	that	each	program	statement	be	executed	at	least	once	
and	is	recommended	at	the	lower	ASIL	levels.	Branch	and	MC/DC	coverage	encompass	
statement	coverage.

Branch	coverage	ensures	that	each	decision	branch	(if-then-else	constructs)	is	
executed.	

Modified	condition/decision	coverage	(MC/DC)	requires	the	most	complete	code	
coverage	to	ensure	test	cases	execute	each	decision	branch	and	all	the	possible	
combinations	of	inputs	that	affect	the	outcome	of	decision	logic.	For	complex	logic,	
the	number	of	test	cases	can	explode,	so	the	modified	condition	restrictions	are	used	
to	limit	test	cases	to	those	that	result	in	standalone	logical	expressions	changing.	See	
this	tutorial	from	NASA.

ISO 26262 Software Compliance in the Automotive Industry

51

Advanced	unit	test	automation	tools	such	as	Parasoft	C/++test	provide	all	these	code	
coverage	metrics.	C/C++test	automates	this	data	collection	on	host	and	target	testing	
and	accumulates	test	coverage	history	over	time.	This	code	coverage	history	can	span	
unit,	integration,	and	system	testing	to	ensure	coverage	is	complete	and	traceable	at	all	
levels	of	testing.

Increasing	Code	Coverage	With	Automated	Unit	Test	Case	
Creation
The	creation	of	productive	unit	tests	has	always	been	a	challenge.	Functional	safety	
standards	compliance	demands	high-quality	software,	which	drives	a	need	for	test	
suites	that	affect	and	produce	high	code	coverage	statistics.	Teams	require	unit	test	
cases	that	help	them	achieve	100%	code	coverage.

This	is	easier	said	than	done.	Analyzing	branches	in	the	code	and	trying	to	find	
reasons	why	certain	code	sections	are	not	covered	continues	to	steal	cycles	from	
development	teams.

Parasoft Coverage Advisor

Parasoft	C/C++test	resolves	the	coverage	gaps	in	test	suites.	Parasoft	discovered	how	
to	use	advanced	static	code	analysis	(data	and	control	flow	analysis)	to	find	values	for	
the	input	parameters	required	to	execute	specific	lines	of	uncovered	code.	

In	complex	code,	there	are	always	those	elusive	code	statements	of	which	it	is	
exceedingly	difficult	to	obtain	coverage.	It’s	likely	there	are	multiple	input	values	with	
various	permutations	and	possible	paths	that	make	it	mind	twisting	and	time	consuming	
to	decipher.	But	only	one	combination	can	get	you	the	coverage	you	need.	Parasoft	
makes	it	easy	to	obtain	coverage	of	those	difficult	to	reach	lines	of	code.

Select	the	line	of	code	you	want	to	cover,	and	the	Coverage	Advisor	will	tell	you	what	
input	values,	global	variables,	and	external	calls	you	need	to	stimulate	the	code	and	
obtain	coverage.

ISO 26262 Software Compliance in the Automotive Industry

52

Figure 12-2:
Invoking Coverage
Advisor by right-
clicking on the line of
code.

The	figure	below	shows	an	analysis	report	providing	the	user	with	a	solution.	
The	Pre-conditions	field	expresses:

 » The	range	and	input	values	for	mainSensorSignal	and	coSensorSignal

 » The	expected	outputs	from	the	external	calls

Upon	creating	the	unit	test	case	with	these	set	parameter	values	and	stubs	for	external	
calls,	the	user	will	obtain	coverage	of	the	line	selected,	plus	the	additional	lines	
expressed	in	the	Expected	Coverage	field.

Figure 12-3:
Two test case
solutions provided by
Coverage Advisor.

ISO 26262 Software Compliance in the Automotive Industry

53

Requirements and the Traceability Matrix
In	ISO	26262,	requirements	management	is	a	mandatory	part	of	the	software	
development	process	and	the	traceability	of	those	requirements	to	implementation—
and	subsequently,	proof	of	correct	implementation	need	to	be	ensured.

Requirements	traceability	is	defined	as	“the	ability	to	describe	and	follow	the	life	of	a	
requirement,	in	both	a	forwards	and	backwards	direction	(i.e.,	from	its	origins,	through	
its	development	and	specification,	to	its	subsequent	deployment	and	use,	and	through	
periods	of	on-going	refinement	and	iteration	in	any	of	these	phases).”1

In	the	simplest	sense,	requirements	traceability	is	needed	to	keep	track	of	exactly	what	
you’re	building	when	writing	software.	It	is	used	to	verify	requirements,	which	means	
checking	documentation	and	design	specifications	against	requirements	to	ensure	the	
software	does	what	it’s	supposed	to	and	that	you’re	only	building	what	is	needed.	

Traceability	works	both	to	prove	you	satisfied	the	requirements	and	to	identify	what	
doesn’t.	If	there	are	architectural	elements	or	source	code	that	can’t	be	traced	to	a	
requirement,	then	it’s	a	risk	and	shouldn’t	be	there.	The	benefits	go	beyond	providing	
proof	of	the	implementation.	Disciplined	traceability	is	an	important	visibility	into	
development	progress.	

It’s	important	to	realize	that	many	requirements	in	safety-critical	software	are	derived	
from	safety	analysis	and	risk	management.	The	system	must	perform	its	intended	
functions,	of	course,	but	it	must	also	mitigate	risks	to	greatly	reduce	the	possibility	
of	injury.	Moreover,	in	order	to	document	and	prove	that	these	safety	functions	are	
implemented	and	tested	fully	and	correctly,	traceability	is	critical.	

Tracing	requirements	isn’t	simply	linking	a	paragraph	from	a	document	to	a	section	of	
code	or	a	test.	Traceability	must	be	maintained	throughout	the	phases	of	development	
as	requirements	manifest	into	design,	architecture,	and	implementation.	Consider	the	
typical	V	diagram	of	software.	

Figure 13-1:
The classic V
diagram shows how
traceability goes
forward and backward
through each phase of
development.

1Gotel	O.C.Z	and	Finklestein	A.C.W.,	"An	analysis	of	the	requirements	traceability	problem",	in	Proceedings	of	ICRE94,	
1st	International	Conference	on	Requirements	Engineering,	Colorado	Springs,	Co,	IEEE	CS	Press,	1994

ISO 26262 Software Compliance in the Automotive Industry

54

Figure 13-2:
Various levels
of requirements
are validated at
various phases
of development
using different test
methods.

Each	phase	drives	the	subsequent	phase.	In	turn,	the	work	items	in	these	phases	
must	satisfy	the	requirements	from	the	previous	phase.	System	design	is	driven	by	
requirements.	System	design	satisfies	the	requirements,	and	so	on.	

Requirements	traceability	management	(RTM)	proves	that	each	phase	is	satisfying	the	
requirements	of	each	subsequent	phase.	However,	this	is	only	half	of	the	picture.	None	
of	this	traceability	demonstrates	that	requirements	are	being	met.	That	requires	testing.	

In	the	V	diagram	shown	above,	each	testing	phase	verifies	the	satisfaction	of	the	
specifications	associated	with	the	corresponding	design/implementation	phase.	In	the	
example,	you	see:

 » Acceptance	testing	validates	requirements.

 » System	testing	validates	system	requirements.

 » Integration	testing	verifies	architecture	design.

 » Unit	testing	verifies	module	design,	and	so	on.	

ISO 26262 Software Compliance in the Automotive Industry

55

Figure 13-3:
Requirements
traceability matrix
example in PTC
Codebeamer

Software	development	on	any	realistic	moderate	to	large	scale	will	have	many	
requirements,	complex	design	and	architecture,	and	possibly	thousands	of	units	and	
unit	tests.	Automation	of	RTM	in	testing	is	necessary,	especially	for	safety-critical	
software	that	requires	documentation	of	traceability	for	certifications	and	audits.

Requirements	Traceability	Matrix
A	requirement	traceability	matrix	is	a	document	that	illustrates	the	satisfaction	of	
requirements	with	a	corresponding	work	item,	like	a	unit	test,	module	source	code,	
architecture	design	element,	and	so	on.	

The	matrix	is	often	displayed	as	a	table,	which	shows	how	each	requirement	is	
“checked	off”	by	a	corresponding	part	of	the	product.	Creation	and	maintenance	of	
these	matrices	are	often	automated	with	requirements	management	tools	with	the	
ability	to	display	them	visually	in	many	forms	and	even	hard	copy,	if	required.	

Below	is	a	requirements	traceability	matrix	example	from	Intland	codebeamer.	It	shows	
system	level	requirements	decomposed	to	high-level	and	low-level	requirements,	and	
the	test	cases	that	verify	each.

Automating Bidirectional Traceability

Maintaining	traceability	records	on	any	sort	of	scale	requires	automation.	Application	
lifecycle	management	tools	include	requirements	management	capabilities	that	are	
mature	and	tend	to	be	the	hub	for	traceability.	Integrated	software	testing	tools	like	
Parasoft	complete	the	verification	and	validation	of	requirements	by	providing	an	
automated	bidirectional	traceability	to	the	executable	test	case,	which	includes	the	
pass	or	fail	result	and	traces	down	to	the	source	code	that	implements	the	requirement.	

ISO 26262 Software Compliance in the Automotive Industry

56

Figure 13-4:
Parasoft provides
bidirectional
traceability from
work items to test
cases and test
results, displaying
traceability reports
with Parasoft DTP and
reporting results back
to the requirements
management system.

Parasoft	DTP	correlates	the	unique	identifiers	from	the	management	system	with	static	
analysis	findings,	code	coverage,	and	test	results	from	unit,	integration,	and	functional	
tests.	Results	are	displayed	within	Parasoft	DTP’s	traceability	reports	and	sent	back	to	
the	requirements	management	system.	They	provide	full	bidirectional	traceability	and	
reporting	as	part	of	the	system’s	traceability	matrix.	

The	traceability	reporting	in	Parasoft	DTP	is	highly	customizable.	The	following	image	
shows	a	requirements	traceability	matrix	template	with	requirements	authored	in	
Polarion	that	trace	to	the	test	cases,	static	analysis	findings,	the	source	code	files,	
and	the	manual	code	reviews.

Parasoft	integrates	with	market-leading	requirements	management	and	Agile	planning	
systems	such	as	IBM	DOORS	Next,	PTC	Codebeamer,	Polarion	from	Siemens,	Jama	
Connect,	Atlassian	Jira,	and	Azure	DevOps	Requirements.	

As	shown	in	the	image	below,	each	of	Parasoft’s	test	automation	tools,	C/C++test,	
C/C++test	CT,	Jtest,	dotTEST,	SOAtest,	and	Selenic,	support	the	association	of	tests	
with	work	items	defined	in	these	systems,	such	as	requirements,	stories,	defects,	
and	test	case	definitions.	Traceability	is	managed	through	the	central	reporting	and	
analytics	dashboard,	Parasoft	DTP.

ISO 26262 Software Compliance in the Automotive Industry

57

Figure 13-5:
Requirements
traceability matrix
template from
Parasoft DTP
integrated with
Polarion ALM.

The	bidirectional	correlation	between	test	results	and	work	items	provides	the	basis	
of	requirements	traceability.	Parasoft	DTP	adds	test	and	code	coverage	analysis	
to	evaluate	test	completeness.	Maintaining	this	bidirectional	correlation	between	
requirements,	tests,	and	the	artifacts	that	implement	them	is	an	essential	component	
of	traceability.	

Bidirectional	traceability	is	important	so	that	requirement	management	tools	and	other	
lifecycle	tools	can	correlate	results	and	align	them	with	requirements	and	associated	
work	items.

The	complexity	of	modern	software	projects	requires	automation	to	scale	requirements	
traceability.	Parasoft	tools	are	built	to	integrate	with	best-of-breed	requirement	
management	tools	to	aid	traceability	into	test	automation	results	and	complete	the	
software	test	verification	and	validation	of	requirements.

ISO 26262 Software Compliance in the Automotive Industry

58

A Unified, Fully Integated Testing
Solution for C/C++ Software
Development
Tool Qualification for Safety-Critical Automotive
Systems
Safety-critical	software	development	standards	like	ISO	26262	require	that	
manufacturers	prove	that	the	tools	they're	using	to	develop	software	provide	correct	
and	predictable	results.	The	process	of	providing	such	evidence	is	known	as	tool	
qualification.	While	it’s	a	necessary	process,	tool	qualification	is	often	a	tedious	and	
time-consuming	activity	that	many	organizations	fail	to	plan	for.

The	end	deliverable	is	proof	in	the	form	of	documentation,	but	there	is	more	to	the	
qualification	process	than	just	delivering	a	big	pile	of	static	documentation.	Parasoft’s	
Qualification	Kits	for	C/C++test	include	a	convenient	tool	wizard	that	brings	automation	
into	the	picture	and	reduces	the	time	and	effort	required	for	tool	qualification.

Pre-Certified	Tools
Tool	qualification	needs	to	start	with	tool	selection,	ensuring	you	are	using	a	
development	tool	that	is	certified	by	an	organization,	such	as	TÜV	SÜD.	This	will	
significantly	reduce	the	effort	when	it	comes	to	tool	qualification.	

Parasoft	C/C++test	and	C/C++test	CT	are	certified	by	TÜV	SÜD	for	functional	safety	
according	to	IEC	61508,	IEC	62305,	EN	50128/EN	50716,	and	ISO	26262	standards	for	
both	host	based	and	embedded	target	applications.	The	fully	integrated	testing	solution	
for	
C/C++	software	development	paves	the	way	for	a	streamlined	qualification	of	static	
analysis,	unit	testing,	and	coverage	requirements	for	the	safety-critical	standards.	

Pre-certified	tools	are	often	enough	for	lower	safety	integrity	levels	such	as	ASIL	A	
and	B.	However,	for	ASIL	C	and	D,	tool	qualification	requires	further	validation,	usually	
requiring	verification	and	validation	of	the	tool	itself	on	target	system	hardware.

Tool	Qualification	Requires	More	Testing
Traditionally,	tool	qualification	has	meant	significant	amounts	of	manual	labor,	testing,	
and	documenting	to	satisfy	a	certification	audit.	But	this	documentation-heavy	process	
requires	manual	interpretation	and	completion.	As	a	result,	it's	time	consuming	and	

ISO 26262 Software Compliance in the Automotive Industry

59

https://www.parasoft.com/solutions/qualification-kits
https://www.parasoft.com/products/ctest

Figure 14-1:
Functional
compliance selection
with additional use
case settings

adds	to	an	organization's	already	heavy	testing	schedule	and	budget.

Parasoft	leverages	its	own	software	test	automation	tool	qualification	with	
Qualification	Kits,	which	include	a	documented	workflow	to	dramatically	reduce	the	
amount	of	effort	required.

Benefits of Using the Qualification Kits

 » Automatically	reduce	the	scope	of	qualification	to	only	the	parts	of	the	tool	in	use.

 » Automate	tests	required	for	qualification	as	much	as	possible.

 » Manage	any	manual	tests	as	eloquently	as	possible	and	integrate	results	alongside	
automated	tests.

 » Automatically	generate	audit-ready	documentation	that	reports	on	exactly	what’s	
being	qualified	—	not	more,	not	less!

Qualify	Only	the	Tools	Used
There	should	be	no	need	to	do	any	extra	work	for	qualifying	capabilities	not	used	
during	development.	Reducing	the	scope	of	testing,	reporting,	and	documentation	is	
a	key	way	to	reduce	the	qualification	workload.

The	example	below	shows	the	use	case	of	C/C++	static	code	analysis	being	used	to	
check	compliance	to	the	MISRA	C	2012	standard,	as	part	of	ISO	26262	qualification.	
The	tool	then	selects	only	the	parts	of	the	qualification	suite	needed	for	this	function.

ISO 26262 Software Compliance in the Automotive Industry

60

Figure 14-2:
Parasoft Qualification
Kits allow users to
select the options
required for their
project. Upon
selection, only tests
and documentation
are used and provided
from this point
forward.

Leverage	Test	Automation	and	Analytics
A	unique	advantage	to	qualifying	test	automation	tools	is	that	the	tools	can	be	used	to	
automate	their	own	testing.	Automating	this	as	much	as	possible	is	key	to	making	it	as	
painless	as	possible.	Even	manual	tests,	which	are	inevitable	for	any	development	tool,	
are	handled	as	efficiently	as	possible.	Step	by	step	instructions	are	provided	and	results	
are	entered	and	stored	as	part	of	the	qualification	record.

ISO 26262 Software Compliance in the Automotive Industry

61

Figure 14-3:
Leveraging centralized data collection and automating the
qualification process greatly reduces manual tracking of
compliance progress.

Parasoft	C/C++test	and	C/C++test	CT	collect	and	store	all	test	results	from	each	build,	
and	tests	run	as	they	do	for	any	type	of	project.	These	results	are	brought	into	the	test	
status	wizard	in	the	Parasoft	Qualification	Kits	to	provide	a	comprehensive	overview	of	
the	results	like	those	shown	below.

ISO 26262 Software Compliance in the Automotive Industry

62

Managing	Known	Defects
Every	development	tool	has	known	bugs	and	any	vendor	selling	products	for	safety-
critical	development	must	have	these	documented.	There's	more	to	dealing	with	
known	defects	than	just	documenting	them.	Tool	qualification	requires	proof	that	
these	defects	are	not	affecting	the	results	used	for	verification	and	validation.	For	each	
known	defect,	the	manufacturer	must	provide	a	mitigation	for	each	one	and	document	
it	to	the	satisfaction	of	the	certifying	auditor.

It’s	incumbent	on	the	tool	vendor	to	automate	the	handling	of	known	defects	as	
much	as	possible.	After	all,	the	vendor	is	expecting	customers	to	deal	with	third-party	
software	bugs	as	part	of	their	workload!	The	Parasoft	C/C++test	qualification	kits	
include	a	wizard	to	automate	the	recording	of	mitigation	for	known	defects	as	shown	
in	the	example	below.

Figure 14-4:
Known defects are
managed directly in
Parasoft C/C++test.

ISO 26262 Software Compliance in the Automotive Industry

63

Automation	of	Tool	Qualification	Documentation
The	end	result	of	tool	qualification	is	documentation,	and	lots	of	it.	Every	test	executed	
with	results,	every	known	defect	with	mitigation,	manual	test	results,	and	exceptions	
are	all	recorded	and	reported.	Qualification	kits	from	other	vendors	can	be	just	
documentation	alone,	and	without	automation,	documenting	compliance	is	tedious.

Instead,	using	the	Qualification	Kits	for	C/C++test,	the	critical	documents	are	generated	
automatically	as	part	of	the	workflow.

 » Tool Classification Report	determines	the	qualification	needed,	and	presents	the	
maximum	safety	level	classification	for	C/C++test	based	on	the	use	cases	selected	
by	the	user.

 » Tool Qualification Plan	describes	how	C/C++test	is	going	to	be	qualified	for	use	in	a	
safety	relevant	development	project.

 » Tool Qualification Report	demonstrates	that	C/C++test	has	been	qualified	according	
to	the	tool	qualification	plan.

 » Tool	Safety	Manual	describes	how	C/C++test	should	be	used	safely,	for	example	
compliant	to	safety	standards,	like	ISO	26262	and	IEC	61508,	in	safety-critical	
projects.

In	each	of	these	documents,	only	the	documentation	required	for	the	tool	features	
in	use	is	generated	because	the	scope	of	the	qualification	was	narrowed	down	at	the	
beginning	of	the	project.	Automation	and	narrowing	the	scope	of	qualification	greatly	
reduces	the	documentation	burden.	

ISO 26262 Software Compliance in the Automotive Industry

64

Reporting and Analytics for Automotive Software
Parasoft’s	extensive	reporting	capabilities	bring	the	results	of	Parasoft	C/C++test	into	
context.	Test	results	can	quickly	be	accessed	within	the	IDE	or	exported	into	the	web-
based	reporting	system,	DTP.	

In	DTP,	reports	can	be	automatically	generated	as	part	of	CI	builds	and	printed	for	code	
audits	in	safety-critical	organizations.	Results	from	across	builds	can	be	aggregated	to	
give	the	team	a	detailed	view	without	requiring	access	to	the	code	within	their	IDE.	

In	the	reporting	dashboard,	Parasoft’s	Process	Intelligence	Engine	(PIE)	helps	managers	
understand	the	quality	of	a	project	over	time.	It	illustrates	the	impact	of	change	after	
each	new	code	change.	Integrating	with	the	overall	toolchain,	PIE	provides	advanced	
analytics	that	pinpoint	areas	of	risk.

Developer’s	View	in	the	IDE
Parasoft	C/C++test	helps	teams	efficiently	understand	results	from	software	testing	by	
reporting	and	analyzing	results	in	multiple	ways.	Directly	in	the	developer’s	IDE,	users	
can	view:

 » Static	analysis	findings:	warnings	and	coding	standard	violations

 » Unit	testing	details:	passed/failed	assertions,	exceptions	with	stack	traces,	
info/debug	messages

 » Runtime	analysis	failures	with	allocation	stack	traces

 » Code	coverage	details:	percentage	values,	code	highlights,	including	coverage	test	
case	correlation

The	Quality	Tasks	view	in	the	IDE	makes	it	easy	for	developers	to	sort	and	filter	the	
results,	for	example	group	per	file,	per	rule,	or	per	project.	Developers	can	make	
annotations	directly	in	the	source	code	editors	to	correlate	issues	with	the	source	code.	
This	provides	context	and	more	details	about	reported	issues	and	how	to	apply	a	fix.	
Code	coverage	information	is	presented	with	visual	green	and	red	highlights	displayed	
in	the	code	editor,	together	with	percentage	values	(for	project,	file,	and	function)	in	a	
dedicated	Coverage	view.

Analysis	results	for	both	IDE	and	command-line	workflows	can	also	be	exported	
to	standard	HTML	and	PDF	reports	for	local	reporting.	For	safety-critical	software	
development,	C/C++test	provides	an	additional	dedicated	report	format.	It	details	
unit	test	case	configuration	and	includes	the	log	of	results	from	test	execution.	Users	
get	a	complete	report	of	how	the	test	case	was	constructed	and	what	happened	
during	runtime.

ISO 26262 Software Compliance in the Automotive Industry

65

Figure 15-1:
Parasoft C/C++test
unified testing view Team	Web-Based	Reporting

For	team	collaboration,	Parasoft	C/C++test	and	C/C++test	CT	publish	analysis	results	
to	DTP,	a	centralized	server.	Developers	can	access	test	results	from	automated	runs	
and	project	managers	can	quickly	assess	the	quality	of	the	project.	Reported	results	
are	stored	with	a	build	identifier	for	full	traceability	between	the	results	and	the	build.	
Those	results	include:

 » Static	analysis	findings

 » 	Metric	analysis	details

 » 	Unit	testing	details

 » 	Code	coverage	details

 » 	Source	code	details

When	integrating	into	CI/CD	workflows,	Parasoft	users	benefit	from	a	centralized	and	
flexible	web-based	interface	for	browsing	results.	The	dynamic	web-based	reporting	
dashboard	includes	customizable	reporting	widgets,	source	code	navigation,	advanced	
filtering,	and	advanced	analytics	from	Parasoft’s	Process	Intelligence	Engine.	Users	
can	access	historical	data	and	trends,	apply	baselining	and	test	impact	analysis,	and	
integrate	with	external	systems	like	those	for	test	requirements	traceability.

ISO 26262 Software Compliance in the Automotive Industry

66

Figure 15-2:
Centralized web-
based reporting and
analytics dashboard.

Test	Impact	Analysis
Each	and	every	test	performed,	including	manual,	system	level,	and	UI-based,	is	
recorded	for	test/fail	results,	along	with	their	coverage	impact	on	the	code	base.	Each	
additional	test	is	overlaid	on	this	existing	information,	creating	a	complete	picture	of	
test	success	and	coverage.	

As	code	is	changed,	the	impact	is	clearly	visible	on	the	underlying	record,	highlighting	
tests	that	now	fail	or	code	that	is	now	untested.	Raising	this	information	in	various	
degrees	of	detail	allows	developers	and	testers	to	quickly	identify	what	needs	to	be	
altered	or	fixed	for	the	next	test	run.

Risk-Based	Assessment
In	addition	to	change	impact	analysis,	static	analysis	can	be	used	to	highlight	areas	of	
the	code	that	appear	riskier	than	others.	Risk	can	take	a	variety	of		forms	including:

 » 	Highly	complex	code

 » 	Unusually	high	number	of	coding	standard	violations	

 » Use	of	libraries	with	known	vulnerabilities

 » 	High	number	of	reported	static	analysis	warnings	

These	are	areas	of	code	that	may	require	additional	test	coverage	and	even	refactoring.

ISO 26262 Software Compliance in the Automotive Industry

67

Functional	Safety	Reporting
Parasoft	C/C++	testing	solutions	provides	specific	reporting	capabilities	suited	to	
functional	safety	development.	Here	are	two	report	examples:	

 » 	Tests	to	Requirements	Traceability

 » 	Test	to	Code	Coverage	Traceability

The	ISO26262	Compliance	Pack	provides	a	dedicated,	standard-driven	report	template	
to	help	teams	comply	with	industry	standards	and	provide	automatically	generated	
reports	required	for	code	audits.

Code	Coverage	Metrics
There	are	various	coverage	metrics	to	consider.	Knowing	which	specific	type	to	apply	
depends	on	the	software	integrity	level	(ASIL)	as	defined	in	ISO	26262.	

For	automotive	systems,	the	control	metrics	referenced	are	statements,	branch,	
modified	condition	decision	coverage	(MC/DC).	For	the	strictest	requirements,	there's	
object/assembly	code.	Parasoft	supports	gathering	all	these	coverage	metrics,	including	
terms	other	industries	use	like	block,	call,	function,	path,	decision,	and	more.

Figure 15-3:
Individual code
coverage metrics are
available within the
reporting dashboard.

ISO 26262 Software Compliance in the Automotive Industry

68

Custom	Analytics,	Reports	and	Dashboards
Parasoft	DTP	is	highly	customizable	and	supports	user-configured	custom	processors	
for	project-specific	analysis,	custom	widgets,	and	dashboards.

Benefits	From	Centralized,	Aggregated	Data	Analysis	and	
Reporting

Manage Compliance With Efficiency, Visibility, and Ease

Instead	of	just	providing	static	analysis	checkers	with	basic	reporting	and	trends	
visualization,	Parasoft’s	solution	for	coding	standards	compliance	provides	a	complete	
framework	for	building	a	stable	and	sustainable	compliance	process.	

In	addition	to	standard	reporting,	Parasoft	provides	a	dedicated	compliance	reporting	
module	that	gives	users	a	dynamic	view	into	the	compliance	process.	Users	can	see	
results	grouped	according	to	categorizations	from	the	original	coding	standard,	manage	
the	deviations	process,	and	generate	compliance	documents	required	for	code	audits	
and	certification	as	defined	by	the	MISRA	Compliance:2020	specification.

Reduce the Overhead of Testing

With	a	unified	reporting	framework,	Parasoft	C/C++test	efficiently	provides	multiple	
testing	methodologies	required	by	the	functional	safety	standards	including	static	
analysis,	unit	testing,	and	code	coverage.	

By	presenting	cumulative	results	from	the	multiple	testing	techniques,	Parasoft	
provides	consistent	reporting	that	reduces	the	overhead	of	testing	activities.	The	
analytics,	reports,	and	dashboards:	

 » 	Simplify	code	audits	and	the	certification	process.

 » 	Eliminate	the	need	for	users	to	manually	process	reporting	to	build	documentation	
for	the	certification	process.	

 » 	Focus	testing	efforts	where	needed	by	eliminating	extraneous	testing	and	
guesswork	from	test	management.	

 » 	Reduce	the	costs	of	testing	while	improving	test	outcomes	with	better	tests,	more	
coverage,	and	streamlined	test	execution.	

 » 	Minimize	the	impact	of	changes	by	efficiently	managing	the	change	itself.

ISO 26262 Software Compliance in the Automotive Industry

69

TAKE THE NEXT STEP
Learn	how	your	embedded	software	development	team	can	accelerate	the	delivery	
of	high-quality	and	compliant	software.	Contact	one	of	our	experts	today	to	
request	a	demo.

ABOUT	PARASOFT

Parasoft	helps	organizations	continuously	deliver	high-quality	software	with	its	AI-
powered	software	testing	platform	and	automated	test	solutions.	Supporting	the	
embedded,	enterprise,	and	IoT	markets,	Parasoft’s	proven	technologies	reduce	the	time,	
effort,	and	cost	of	delivering	secure,	reliable,	and	compliant	software	by	integrating	
everything	from	deep	code	analysis	and	unit	testing	to	web	UI	and	API	testing,	plus	
service	virtualization	and	complete	code	coverage,	into	the	delivery	pipeline.	Bringing	
all	this	together,	Parasoft’s	award-winning	reporting	and	analytics	dashboard	provides	
a	centralized	view	of	quality,	enabling	organizations	to	deliver	with	confidence	and	
succeed	in	today’s	most	strategic	ecosystems	and	development	initiatives—security,	
safety-critical,	Agile,	DevOps,	and	continuous	testing.		

“MISRA”,	“MISRA	C”	and	the	triangle	logo	are	registered	trademarks	of	The	MISRA	Consortium	Limited.	
©The	MISRA	Consortium	Limited,	2021.	All	rights	reserved.

Pinpoint Priority and Risk Between New and Legacy Code

Parasoft’s	Process	Intelligence	Engine	enables	users	to	look	at	the	changes	between	
two	builds	to	understand,	for	example,	the	level	of	code	coverage	or	static	analysis	
violations	on	the	code	that	has	been	modified	between	development	iterations,	
different	releases,	or	an	incremental	development	step	from	the	baseline	set	on	the	
legacy	code.	

Teams	can	converge	on	better	quality	over	time	by	improving	test	coverage,	reducing	
the	potential	risky	code.	The	technical	debt	due	to	untested	code,	missed	coding	
guidelines	and	potential	bugs	and	security	vulnerabilities	can	be	reduced	gradually	build	
by	build.	Using	the	information	provided	by	Parasoft	tools,	teams	can	focus	in	on	the	
riskiest	code	for	better	testing	and	maintenance.	

ISO 26262 Software Compliance in the Automotive Industry

70

https://www.parasoft.com/products/parasoft-c-ctest/c-c-request-a-demo/
https://www.parasoft.com/products/parasoft-c-ctest/c-c-request-a-demo/
https://www.parasoft.com/

More Resources
Safety-Critical Automotive Software Development
Assets for Download

Case	Study
 » Renovo	Balances	Speed	&	Agility	With	Safety	&	Security	in	ADAS	Development

Website
 » Automotive	Software	Testing	That	Drives	Success

 » Easily	Automate	the	Tool	Qualification	Process

 » Software	Compliance	Testing	Solutions

 » AUTOSAR	Compliance	With	Parasoft

 » ISO	26262	Compliance	With	Parasoft

 » MISRA	Compliance	With	Parasoft

 » Integrate	Codebeamer	and	Parasoft

 » Integrate	Jama	Connect	and	Parasoft

 » Integrate	Siemens	and	Parasoft

Whitepapers
 » A	Practical	Guide	to	Accelerate	MISRA	C	2023	Compliance	With	Test	Automation

 » DevOps	Best	Practices	for	Automotive	Development

 » Embedded	Cybersecurity	Through	Secure	Coding	Standards	CWE	and	CERT

 » Guide	to	CI/CD	for	Automotive	DevOps

 » Guide	to	ISO	26262	Software	Compliance:	Achieving	Functional	Safety	in	the	
Automotive	Industry

 » How	to	Accelerate	ISO/SAE	21434	Compliance	With	Automated	Software	Testing

ISO 26262 Software Compliance in the Automotive Industry

71

https://www.parasoft.com/resources/case-studies/renovo-balances-speed-agility-with-safety-security-in-adas-development/
https://www.parasoft.com/industries/embedded/automotive/
https://www.parasoft.com/solutions/compliance/tool-qualification/
https://www.parasoft.com/solutions/development-testing/functional-safety-compliance/
https://www.parasoft.com/solutions/compliance/autosar/
https://www.parasoft.com/solutions/compliance/iso-26262/
https://www.parasoft.com/solutions/compliance/misra/
https://www.parasoft.com/integrations/codebeamer/
https://www.parasoft.com/integrations/jama/
https://www.parasoft.com/integrations/siemens/
https://www.parasoft.com/white-paper/a-practical-guide-to-accelerating-misra-c-2012-compliance-with-test-automation/
https://www.parasoft.com/white-paper/devops-best-practices-for-automotive-software-development/
https://www.parasoft.com/white-paper/embedded-cybersecurity-through-secure-coding-standards-cwe-and-cert/
https://www.parasoft.com/white-paper/guide-to-ci-cd-for-automotive-devops/
https://www.parasoft.com/white-paper/iso-26262-software-compliance-with-parasoft/
https://www.parasoft.com/white-paper/iso-26262-software-compliance-with-parasoft/
https://www.parasoft.com/white-paper/how-to-accelerate-iso-sae-21434-compliance-with-automated-software-testing/

 » How	to	Accelerate	MISRA	C	&	SEI	CERT	C	Compliance

 » How	to	Address	Software-Defined	Vehicle	Challenges	With	Test	Automation

 » How	to	Satisfy	ISO	26262	ASIL	Requirements:	Guide	to	Achieving	Functional	Safety	
in	Automotive

 » How	to	Streamline	Unit	Testing	for	Embedded	and	Safety-Critical	Systems

 » Overcoming	the	Challenges	of	Safety	&	Security	in	the	Renovo	Automotive	Data	
Platform

 » Using	AUTOSAR	C++	Coding	Guidelines	to	Streamline	ISO	26262	Compliance

Blog	Posts
 » 	Achieve	ASIL	D	Compliance	With	Automated	Testing

 » Automotive	CI/CD	DevOps	&	Test	Automation

 » AUTOSAR	Architecture	Requirements	on	Runtime	Environments

 » Breaking	Down	the	AUTOSAR	C++14	Coding	Guidelines

 » Coding	Standards	Compliance	for	Autonomous	Driving	Software	Testing

 » MISRA	C/C++	Code	Checking

 » Reducing	the	Risk	and	Cost	of	Achieving	Compliant	Software

 » Software	Development	Process	for	Safety-Critical	Systems

 » Turn	Software	Requirements	Into	Tested	Solutions

 » Why	Static	Analysis	Is	Key	to	Meeting	ADAS	Safety	Standards

 » Why	Automotive	Cybersecurity	Is	Important

 » Why	Your	Development	Team	Needs	TARA

Webinars
 » Automotive	Software	Testing	for	SDVs

 » General	Motor’s	Journey	to	Adopting	Static	Analysis	With	a	Legacy	Codebase

 » Get	Complete	MISRA	C	2023	Support	in	New	Parasoft	C/C++test	Release

ISO 26262 Software Compliance in the Automotive Industry

72

https://www.parasoft.com/white-paper/accelerating-misra-c-sei-cert-c-compliance-with-dedicated-reporting-and-workflow-management/
https://www.parasoft.com/white-paper/address-sdv-challenges-with-test-automation/
https://www.parasoft.com/white-paper/satisfying-asil-requirements-with-parasoft-c-ctest/
https://www.parasoft.com/white-paper/satisfying-asil-requirements-with-parasoft-c-ctest/
https://www.parasoft.com/white-paper/streamlining-unit-testing-for-embedded-and-safety-critical-systems/
https://www.parasot.com/white-paper/overcoming-the-challenges-of-safety-security-in-the-renovo-automotive-data-platform/
https://www.parasot.com/white-paper/overcoming-the-challenges-of-safety-security-in-the-renovo-automotive-data-platform/
https://www.parasoft.com/white-paper/using-autosar-c-coding-guidelines-to-streamline-iso-26262-compliance/
https://www.parasoft.com/blog/achieve-asil-d-compliance-with-automated-testing/
https://www.parasoft.com/blog/automotive-ci-cd-devops-test-automation/
https://www.parasoft.com/blog/autosar-architecture-requirements-runtime-environment/
https://www.parasoft.com/blog/breaking-down-the-autosar-c14-coding-guidelines-for-adaptive-autosar/
https://www.parasoft.com/blog/compliance-for-autonomous-driving-software/
https://www.parasoft.com/blog/misra-c-c-code-checking/
https://www.parasoft.com/blog/reducing-the-risk-and-cost-of-achieving-compliant-software/
https://www.parasoft.com/blog/safety-critical-software/
https://www.parasoft.com/blog/turn-software-requirements-into-tested-solutions/
https://www.parasoft.com/blog/adas-safety-standards-automated-testing/
https://www.parasoft.com/blog/why-automotive-cybersecurity-is-important/
https://www.parasoft.com/blog/why-your-development-team-needs-tara/
https://www.parasoft.com/webinar/automotive-software-testing-for-sdvs/
https://www.parasoft.com/webinar/general-motors-journey-to-adopting-static-analysis-with-a-legacy-codebase/
https://www.parasoft.com/webinar/get-complete-misra-c-2023-support-in-new-parasoft-c-ctest-release/

 » Is	This	the	Year	of	EVs?

 » MISRA	C:2012	AMD	3:	What	You	Need	to	Know

 » MISRA	C++	2023:	Everything	You	Need	to	Know

 » Qualcomm	Presents:	How	to	Achieve	System	on	Chip	Functional	Safety	Compliance

 » Streamline	ISO	26262	&	ISO	21434	Compliance	With	Automated	Testing

 » Test	Verification	Principles	&	Practices	of	ISO	26262,	Parts	4	&	6

 » Unveiling	Parasoft	C/C++test	CT	for	Continuous	Testing	&	Compliance	Excellence

ISO 26262 Software Compliance in the Automotive Industry

73

https://www.parasoft.com/webinar/is-this-the-year-of-evs/
https://www.parasoft.com/webinar/misra-c2012-amd-3-what-you-need-to-know/
https://www.parasoft.com/webinar/misra-c-2023-everything-you-need-to-know/
https://www.parasoft.com/webinar/qualcomm-presents-how-to-achieve-system-on-chip-functional-safety-compliance/
https://www.parasoft.com/webinar/iso-26262-and-iso-21434-compliance/
https://www.parasoft.com/webinar/test-verification-principles-practices-of-iso-26262-parts-4-6/
https://www.parasoft.com/webinar/cpptest-ct-introduction/

	Overview
	Automotive Industry Outlook
	What Is ISO 26262?

	Requirements for Compliance
in Testing
	Static Analysis
	MISRA C 2023
	AUTOSAR C++14
	SEI CERT
	CWE - Common Weakness Enumeration
	Unit Testing
	Regression Testing
	Software Integration Testing
	Software System Testing
	Structural Code Coverage
	Requirements and the Traceability Matrix

	A Unified, Fully Integated Testing Solution for C/C++ Software Development
	Tool Qualification for Safety-Critical Automotive Systems
	Reporting and Analytics for Automotive Software

	More Resources
	Safety-Critical Automotive Software Development Assets for Download

