
IMPROVE UNIT TESTING FOR
JAVA WITH AUTOMATION

BEST PRACTICES FOR JAVA DEVELOPERS

03	 Introduction: Improve Unit Testing
	 03	 What Is Unit Testing?

	 03	 Improve Unit Testing With Automated Testing Tools

04	 Best Practices for Developers
	 04	 Unit Testing Best Practices: How to Get the Most
	 	 out of Your Test Automation

	 10	 JUnit Tutorial: Setting Up, Writing, and Running Java Unit Tests

	 17	 Mocking in Java: How to Automate a Java Unit Test,
	 	 Including Mocking and Assertions

	 24	 How to Create JUnit Parameterized Tests

	 34	 Get More Out of Unit Testing and Reduce Maintenance
	 	 Efforts With Runtime Analysis

Table of Contents

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

2

Introduction: Improve Unit Testing
WHAT IS UNIT TESTING?
Unit testing is the practice of testing individual units or components of an
application in order to validate that each of those units is working properly.
Generally, a unit should be a small part of the application — in Java it's often
a single class. Note that there is no strict definition of "unit" here, and it is
up to the developer to decide the scope of tested code for each test.

People sometimes contrast the term "unit testing" with "integration testing"
or "end-to-end testing". The difference is that, generally, unit testing is done to
validate the behavior of an individual testable unit, whereas integration tests are
validating the behavior of multiple components together, or the application as
a whole. As mentioned above, the definition for what constitutes a "unit" is not
strictly defined, and it's up to you to decide the scope for each test. If the scope
is too broad, it may not be possible to determine why a test failure occurred.

With these challenges, unit testing just isn't easy. It requires a lot of
development skill and effort, and it takes commitment and time to maintain
test suites. This ebook provides helpful tips and techniques as well as best
practices to help you improve unit testing with JUnit and Parasoft Jtest.

IMPROVE UNIT TESTING
WITH AUTOMATED TESTING TOOLS
With automated testing tools, developers are able to reduce late-cycle defects
with better unit tests and automated static code analysis. They can focus more
time on new feature development for the business. Developers also benefit
from immediate feedback. They're able to rapidly identify whether their code
changes are breaking functionality in the application and addressing it quickly.

Parasoft has focused on improving automated testing for over 30 years.
Parasoft Jtest is a key enabler of delivering quality at speed for unit testing.
This integrated Java solution enables development teams to be agile and
deliver faster without sacrificing quality, making the business successful.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

3

https://www.parasoft.com/products/parasoft-jtest/

Best Practices for Developers
UNIT TESTING BEST PRACTICES: HOW TO GET
THE MOST OUT OF YOUR TEST AUTOMATION
Unit testing is a well-known practice, but there's lots of room for improvement!
This section will cover the most effective unit testing best practices, including
approaches for maximizing your automation tools along the way. It will also
discuss code coverage, mocking dependencies, and overall testing strategies.

WHY UNIT TEST?
Unit testing is a proven technique for ensuring software quality, with plenty
of benefits. Here are (more than) a few great reasons to unit test:

	» Unit testing validates that each piece of your software not
only works properly today, but continues to work in the future,
providing a solid foundation for future development.

	» Unit testing identifies defects at early stages of the production process, which
reduces the costs of fixing them in later stages of the development cycle.

	» Unit-tested code is generally safer to refactor, since tests can be
re-run quickly to validate that behavior has not changed.

	» Writing unit tests forces developers to consider how well the production
code is designed in order to make it suitable for unit testing, and makes
developers look at their code from a different perspective, encouraging them
to consider corner cases and error conditions in their implementation.

	» Including unit tests in the code review process can reveal how
the modified or new code is supposed to work. Plus, reviewers
can confirm whether the tests are good ones or not.

It's unfortunate that all too often, developers either don't write unit tests at all,
don't write enough tests, or they don't maintain them. Unit tests can sometimes
be tricky to write, or time-consuming to maintain. Sometimes there's a deadline
to meet, and it feels like writing tests will make us miss that deadline. But not
writing enough unit tests or not writing good unit tests is a risky trap to fall into.

So please consider the following best-practice recommendations on
how to write clean, maintainable, automated tests that give you all the
benefits of unit testing, with a minimum amount of time and effort.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

4

https://www.parasoft.com/what-is-shift-left-testing/

UNIT TESTING BEST PRACTICES
Let’s look at some best practices for building, running, and
maintaining unit tests, to achieve the best results.

Unit Tests Should Be Trustworthy
The test must fail if the code is broken and only if the code is broken.
If it doesn't, we cannot trust what the test results are telling us.

Unit Tests Should Be Maintainable and Readable
When production code changes, tests often need to be updated, and
possibly debugged as well. So, it must be easy to read and understand
the test, not only for whoever wrote it, but for other developers as well.
Always organize and name your tests for clarity and readability.

Unit Tests Should Verify a Single Use Case
Good tests validate one thing and one thing only, which means that typically,
they validate a single use-case. Tests that follow this best practice are
simpler and more understandable, and that is good for maintainability and
debugging. Tests that validate more than one thing can easily become
complex and time-consuming to maintain. Don't let this happen.

Another best practice is to use a minimal number of assertions. Some people
recommend just one assertion per test (this may be a little too restrictive); the idea
is to focus on validating only what is needed for the use-case you are testing.

Unit Tests Should Be Isolated
Tests should be runnable on any machine, in any order, without affecting
each other. If possible, tests should have no dependencies on environmental
factors or global/external state. Tests that have these dependencies are
harder to run and usually unstable, making them harder to debug and fix,
and end up costing more time than they save (see trustworthy, above).

Martin Fowler, a few years ago, wrote about "solitary" vs "sociable" code, to
describe dependency usage in application code, and how tests need to be
designed accordingly. In his article, "solitary" code doesn't depend on other
units (it's more self-contained), whereas "sociable" code does interact with other
components. If the application code is solitary, then the test is simple, but for
sociable code under test, you can either build a "solitary" or "sociable" test. A
"sociable test" would rely on real dependencies in order to validate behavior,
whereas a "Solitary test" isolates the code under test from dependencies. This is
visually shown in Figure 1. You can use mocks to isolate the code under test and
build a "solitary" test for "sociable" code. We'll look at how to do that below.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

5

In general, using mocks for dependencies makes our life easier as testers, because we
can generate "solitary tests" for sociable code. A sociable test for complex code may
require a lot of set up and may violate the principles of being isolated and repeatable.
But since the mock is created and configured in the test, it is self-contained, and we
have more control over the behavior of dependencies. Plus, we can test more code
paths. For instance, you can return custom values or throw exceptions from the mock,
in order to cover boundary or error conditions.

Unit Tests Should Be Automated
Make sure tests are being run in an automated process. This can be daily, or every
hour, or in a Continuous Integration or Delivery process. The reports need to be
accessible to and reviewed by everyone on the team. As a team, talk about which
metrics you care about: code coverage, modified code coverage, number of tests being
run, performance, etc. A lot can be learned by looking at these numbers, and a big shift
in those numbers often indicates regressions that can be addressed immediately.

Use a Good Mixture of Unit and Integration Tests
Michael Cohn's book, Succeeding with Agile: Software Development Using Scrum,
addresses this using a testing pyramid model (see illustration in Figure 2). This is a
commonly used model to describe the ideal distribution of testing resources. The
idea is that as you go up the pyramid, tests are usually more complex to build, more
fragile, slower to run, and slower to debug. Lower levels are more isolated and more
integrated, faster, and simpler to build and debug. Therefore, automated unit tests
should make up the bulk of your tests.

Figure 1:
Comparison of Sociable
and Solitary Tests.
Source: Martin Fowler,
2014, "UnitTest"

Figure 2:
Testing Pyramid Model

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

6

https://www.goodreads.com/book/show/6707987-succeeding-with-agile
https://www.martinfowler.com/bliki/UnitTest.html

Unit tests should validate all of the details, the corner cases and boundary conditions,
etc. Component, integration, UI, and functional tests should be used more sparingly,
to validate the behavior of the APIs or application as a whole. Manual tests should be
a minimal percentage of the overall pyramid structure but are still useful for release
acceptance and exploratory testing. This model provides organizations with a high level
of automation and test coverage, so that they can scale up their testing efforts and
keep the costs associated with building, running, and maintaining tests at a minimum.

Unit Tests Should Be Executed Within an Organized Test Practice
In order to drive the success of your testing at all levels, and make the unit
testing process scalable and sustainable, you will need some additional practices
in place. First of all, this means writing unit tests as you write your application code.
Some organizations write the tests before the application code (test-driven
or behavior-driven programming). The important thing is that tests go hand-in-hand
with the application code. The tests and application code should even be reviewed
together in the code review process. Reviews help you understand the code being
written (because they can see the expected behavior) and improve tests too!

Writing tests along with code isn't just for new behavior or planned changes, it’s
critical for bug fixes too. Every bug you fix should have a test that verifies the bug
is fixed. This ensures that the bug stays fixed in the future.

Adopt a zero-tolerance policy for failing tests. If your team is ignoring test results,
then why have tests at all? Test failures should indicate real issues so address
those issues right away — before they waste QA's time, or worse, they get into the
released product.

The longer it takes to address failures, the more time and money those failures will
ultimately cost your organization. So, you should run tests during refactoring, run tests
right before you commit code, and don't let a task be considered "done" until the tests
are passing too.

Finally, maintain those tests. As mentioned previously, if you're not keeping those
tests up to date when the application changes, they lose their value. Especially if they
are failing, failing tests are costing time and money to investigate each time they fail.
Refactor the tests as needed, when the code changes.

As you can see, maximizing your returns on money and time invested in your unit tests
requires some investment in applying best practices. But in the end, the rewards are
worth the initial investment.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

7

https://www.parasoft.com/4-tips-for-adopting-test-driven-development-tdd-in-your-organization/
https://www.parasoft.com/how-and-why-to-adopt-bdd-in-software-development/

WHAT ABOUT CODE COVERAGE?
In general, code coverage is a measurement of how much of the production code
is executed while your automated tests are running. By running a suite of tests and
looking at code coverage data, you can get a general sense of how much of your
application is being tested.

There are many kinds of code coverage — the most common ones are line coverage
and branch coverage. Most tools focus online coverage, which just tells you if a specific
line was covered. Branch is more granular, as it tells you if each path through the code
is covered.

Code coverage is an important metric but remember that increasing it is a means to
an end. It’s great for finding gaps in testing, but it's not the only thing to focus on. Be
careful not to spend too much effort trying to achieve 100% coverage – it may not
even be possible or feasible, and really the quality of your tests is the important thing.
That being said, achieving at least 60% coverage for your projects is a good starting
point, and 80% or more is a good goal to set. Obviously, it's up to you to decide what
that goal should be.

It's also valuable if you have automated tools that not only measure code coverage but
also keep track how much modified code is being covered by tests, because this can
provide visibility into whether enough tests are being written along with changes in
production code.

Figure 3 shows an example code coverage report from Parasoft DTP, the reporting
and analytics hub, that you can navigate through if you are using Parasoft Jtest for
your unit testing:

Figure 3:
Example Code
Coverage Report

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

8

https://www.parasoft.com/products/parasoft-dtp/
https://www.parasoft.com/products/parasoft-jtest/
https://www.parasoft.com/products/parasoft-jtest/java-unit-testing/

Another thing to keep in mind is that, when writing new tests, be careful of focusing
online coverage alone, as single lines of code can result in multiple code paths, so make
sure your tests validate these code paths. Line coverage is a useful quick indicator, but
it isn't the only thing to look for.

The most obvious way to increase coverage is simply to add more tests for more
code paths, and more usecases of the method under test. A powerful way to increase
coverage is to use parameterized tests. For JUnit 4, there was the built in JUnit 4
Parameterized functionality and third-party libraries like JunitParams. JUnit 5 has
built-in parameterization.

Finally, if you aren't already tracking test coverage, we highly recommend you start.
There are plenty of tools that can help, like Parasoft Jtest. Start by measuring your
current coverage numbers, then set goals for where it should be, address important
gaps first, and then work from there.

SUMMARY OF UNIT TESTING BEST PRACTICES
Although unit testing is a proven technique for ensuring software quality, it’s still
considered a burden to developers and many teams are still struggling with it. In order
to get the most out of testing and automated testing tools, tests must be trustworthy,
maintainable, readable, self-contained, and be used to verify a single use case.
Automation is key to making unit testing workable and scalable.

In addition, software teams need to practice good testing techniques, such as writing
and reviewing tests alongside application code, maintaining tests, and ensuring that
failed tests are tracked and remediated immediately. Adopting these unit testing best
practices can quickly improve your unit testing outcomes.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

9

JUNIT TUTORIAL: SETTING UP, WRITING,
AND RUNNING JAVA UNIT TESTS
This tutorial will help you understand the basics and scale your unit testing practice
like a pro.

Before we go into JUnits, let's talk a little bit about unit testing and regression testing
and why they matter in general. We'll get into some good examples as we go on.

UNIT TESTING
Unit testing is a form of white box testing, in which test cases are based on internal
structure. The tester chooses inputs to explore particular paths and determines
the appropriate output. The purpose of unit testing is to examine the individual
components or piece of methods/classes to verify functionality, ensuring the behavior
is as expected.

The exact scope of a “unit” is often left to interpretation, but a nice rule of thumb is
for a unit to contain the least amount of code that performs a standalone task (e.g. a
single method or class). There is a good reason that we limit scope when unit testing
-- if we construct a test that incorporates multiple aspects of a project, we have shifted
focus, from functionality of a single method, to interaction between different portions
of the code. If the test fails, we don't know why it failed, and we are left wondering
whether the point of failure was within the method we were interested in, or in the
dependencies associated with that method.

REGRESSION TESTING
Complementing unit testing, regression testing makes certain that the latest fix,
enhancement, or patch did not break existing functionality, by testing the changes
you've made to your code. Changes to code are inevitable, whether they are
modifications of existing code or adding packages for new functionality -- your code
will certainly change. It is in this change that the most danger lies, so with that in mind,
regression testing is a must.

WHAT IS JUNIT?
JUnit is a unit testing framework for the Java programming language that plays a
big role in regression testing. An open-source framework, it is used to write and run
repeatable automated tests.

As with anything else, the JUnit framework has evolved over time. The major change
to make note of is the introduction of annotations that came along with the release of
JUnit 4, which provided an increase in organization and readability of JUnits. The rest
of this blog post will be written from usages of JUnit 4 and 5.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

10

HOW TO SET UP JUNIT
The more common IDEs, such as Eclipse and IntelliJ, will already have JUnit
functionality installed by default. If one is not using an IDE and perhaps relying solely
on a build system such as Maven or Gradle, the installation of JUnit 4/5 is handled via
the pom.xml or build.gradle, respectively. It is important to note that JUnit 5 was split
into three modules, one of those being a vintage module that supports annotation/
syntax of JUnit 4.

JUNIT 4
To add JUnit 4 to your Maven, build the following to the pom.xml.
Be mindful of version:

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>
</dependency>

For Gradle, add the following to the build.gradle:

apply plugin: 'java'

dependencies {
testCompile 'junit:junit:4.12'
}

JUNIT 5
Adding JUnit 5 is a bit different. Because of the modular fashion of JUnit 5, a BOM is
used to import all aspects. If only particular classes are needed, individual groups or
artifacts can be specified.

To add JUnit 5 to Maven, add the following to pom.xml:

<dependency>
<groupId>org.junit</groupId>
<artifactId>junit-bom</artifactId>
<version>5.2.0</version>
<scope>test</scope>
</dependency>

For Gradle, add the following to the build.gradle:

apply plugin: 'java'

dependencies {
implementation 'org.junit:junit-bom:5.2.0'
}

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

11

Although not typically needed, the raw .jar file, which allows one to use the JUnit
framework, is also accessible to manually put on the class path. Git houses the code for
JUnit. JUnit 4 has the .jar available to download directly. It is most common to include
the JUnit 5 .jar files using a build management system, like Maven or Gradle. See the
JUnit 5 docs online for specifics.

WRITING UNIT TESTS: THE ANATOMY OF A JUNIT
Now that we talked a little about unit testing and setup, let's move on to actual
construction and execution of these tests. To best illustrate the creation of JUnits,
we want to start with something basic. In the example image below, we have a
simple method (left) that converts Fahrenheit to Celsius, and the JUnit (right)
associated with our method. The JUnits are numbered in sections below and we'll
discuss each in detail.

Sections 1 and 2
These are imports for the JUnit libraries needed to leverage the testing framework.
The imported libraries can be specified down to a particular functionality of JUnit but
are commonly imported with asterisks to have access to all functionality.

Section 3
This has the start of our test class, and the important thing to take note of here is the
naming convention for the class, which follows ClassNameTest.

Section 4
Here, we see our first JUnit-specific syntax, an annotation. Annotations are extremely
important when creating JUnits. This is how JUnit knows what to do with the
processing section of code. In our example case, we have an @Test annotation, which
tells JUnit that the public void method to which it is attached can be run as a test case.

Figure 4:
Example Code With
Example Unit Test

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

12

https://github.com/junit-team/junit5/

There are many other annotations, but the more common are @Before (which runs
some statement/precondition before @Test, public void), @After (which runs some
statement after @Test, public void e.g. resetting variables, deleting temporary files,
variables, etc.), and @Ignore (which ignores some statement during test execution --
note that @BeforeClass and @AfterClass are used for running statements before and
after all test cases, public static void, respectively).

Section 5
The takeaway here is again naming convention. Note the structure, testMethodName.

Section 6
Here we construct a new instance of our class object. This is necessary so we can call
the method we are testing on something. Without this object instance, we cannot test
the method.

Section 7
Variables associated with the method need to be established, so here we declare
variables corresponding to our method. These should be given meaningful values
(note: if a parameter is an object, one can instantiate it, or mock it), so that our test
has meaning.

Section 8
This variable declaration could be argued as optional, but it's worthwhile for the sake
of organization and readability. We assign the results of our method being tested to
this variable, using it as needed for assertions and such.

Section 9
The assert methods (which are part of the org.junit.Assert class) are used in
determining pass/fail status of test cases. Only failed assertions are recorded. Like
with annotations, there are many assert options. In our example JUnit above, we use
assertEquals(expected, actual, delta). This takes in the expected outcome, which the
user defines, the actual, which is the result of the method being called, and the delta,
which allows for implementing an allowed deviation between expected and actual
values. The purpose of an assertion is validation. Although not required to run your
JUnit, failing to add assertions arguably defeats the purpose of your test. Without
assertions, you have no verification and at most a smoke test, which gives feedback
only when a test errors out.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

13

HOW TO RUN A JUNIT
Choose your own adventure! Here, we will look at three ways to run JUnits: straight
from the command line, from the IDE (Eclipse and IntelliJ), and using build systems
(Maven and Gradle).

How to Run a JUnit From the Command Line
To run a JUnit directly from the command line, you need a few things: JDK on your
path, raw Junit jar file, and the test cases. The command is as follows (this example is
for JUnit 4):

java -cp /path/to/junit.jar org.junit.runner.JUnitCore <test
class name>

NOTE: it is unlikely in a professional setting that one would be running a test manually from the
command line, without some build system, but the ability is there.

How to Run a JUnit From the IDE
Eclipse
To run from Eclipse, from your Package Explorer locate your JUnit test, in whichever
folder you have designated it to. Right-click, and move down to Run As JUnit Test. This
will execute your test and open a new JUnit window if not already open.

Figure 5:
Eclipse Menu to Run
as JUnit Test

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

14

IntelliJ
Running a test in IntelliJ is very similar to Eclipse. From the Project window, locate test,
right-click, and select Run ‘testName’. Like Eclipse, a JUnit window will open with the
results of the test.

Figure 6:
IntelliJ Menu to Run
a Unit Test

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

15

How to Run a JUnit Using Build Systems

Maven
Maven made running tests simple. Ensure you are in the proper location from your
command line, and the project pom.xml is properly configured. Then you can run the
following to execute your JUnits:

To run entire test suite:

mvn test

To run single/specific test(s):

mvn -Dtest=TestName test

Gradle
Gradle, like Maven, made running tests simple.

To run entire test suite:

gradlew test

To run single/specific test(s):

gradlew -Dtest.single=testName test

NOTE: Maven and Gradle are their own monster -- what is shown here is minimal to cover the basics.

CONTINUING WITH UNIT TESTING
Our example ran through a very simple snippet of code, and of course, this is just the
start of unit testing. More complex methods call databases or other methods, but to
reassure functionality we need isolation, which we achieve through mocking. Mocking
helps us isolate units of code to focus our validation. Frameworks commonly used for
mocking are Mockito and PowerMock.

The benefits of unit testing are clear:

	» Identify defects with isolation and focused testing.

	» Assure behavior of individual methods or pieces of methods.

	» Helps to ensure addition or modification of code does not break the application.

	» Boundary analysis makes it easier to check for invalid/bad input.

	» Test every aspect of the method to increase code coverage.

It's helpful to deploy powerful unit testing tools like Parasoft Jtest that can remedy
much of the pain associated with JUnits and save developers valuable time.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

16

https://www.parasoft.com/products/parasoft-jtest/

MOCKING IN JAVA: HOW TO AUTOMATE
A JAVA UNIT TEST, INCLUDING MOCKING
AND ASSERTIONS
What is mocking in Java? You can auto-generate a unit test with a single button click,
including all of the mocking and validations.

Good unit tests are a great way to make sure that your code works today and
continues to work in the future. A comprehensive suite of tests, with good code-based
and behavior-based coverage, can save an organization a lot of time and headaches.
And yet, it is not uncommon to see projects where not enough tests are written. In
fact, some developers have even been arguing against their use completely.

WHAT MAKES A GOOD UNIT TEST?
There are many reasons why developers don’t write enough unit tests. One of the
biggest reasons is the amount of time they take to build and maintain, especially in
large, complex projects. In complex projects, often a unit test needs to instantiate and
configure a lot of objects. This takes a lot of time to set up and can make the test as
complex (or more complex) than the code it is testing, itself.

Let’s look at an example in Java:

public LoanResponse requestLoan(LoanRequest loanRequest,
LoanStrategy strategy)
{
 LoanResponse response = new LoanResponse();
 response.setApproved(true);
if (loanRequest.getDownPayment().compareTo(loanRequest.
getAvailableFunds()) > 0)
{
 response.setApproved(false);
 response.setMessage("error.insufficient.funds.for.down.
payment");
 return response;
}
 if (strategy.getQualifier(loanRequest)
< strategy.getThreshold(adminManager))
{
 response.setApproved(false);
 response.setMessage(getErrorMessage());
}
 return response;
}

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

17

Here we have a method that processes a LoanRequest, generating a LoanResponse.
Note the LoanStrategy argument, which is used to process the LoanRequest. The
strategy object may be complex – it may access a database, an external system, or throw a
RuntimeException. To write a test for requestLoan(), we need to be aware of which
type of LoanStrategy we're testing with and we probably need to test the method with
a variety of LoanStrategy implementations and LoanRequest configurations.

A unit test for requestLoan() may look like this:

As you can see, there’s a whole section of our test which just creates objects and
configures parameters. It wasn’t obvious looking at the requestLoan() method what
objects and parameters need to be set up. To create this example, we had to run the
test, add some configuration, then re-run again and repeat the process over and over.
We spent too much time figuring out how to configure the AdminManager and the
LoanStrategy instead of focusing on our method and what needed to be tested
there. And I still need to expand our test to cover more LoanRequest cases, more
strategies, and more parameters for AdminDao.

Additionally, by using real objects to test with, this test is actually validating more
than just the behavior of requestLoan() — we're depending on the behavior of
AvailableFundsLoanStrategy, AdminManagerImpl, and AdminDao in order
for our test to run. Effectively, we're testing those classes too. In some cases, this is
desirable, but in other cases it is not. Plus, if one of those other classes changes, the
test may start failing even though the behavior of requestLoan() didn’t change. For
this test, we would rather isolate the class under test from its dependencies.

@Test public void testRequestLoan() throws Throwable
{
 // Set up objects
DownPaymentLoanProcessor processor = new
DownPaymentLoanProcessor();

LoanRequest loanRequest = LoanRequestFactory.create(1000, 100, 10000);
LoanStrategy strategy = new AvailableFundsLoanStrategy();

AdminManager adminManager = new AdminManagerImpl();
underTest.setAdminManager(adminManager);
Map<String, String> parameters = new HashMap<>();
parameters.put("loanProcessorThreshold", "20");

AdminDao adminDao = new InMemoryAdminDao(parameters);
adminManager.setAdminDao(adminDao);

 // Call the method under test
LoanResponse response = processor.requestLoan(loanRequest, strategy);

 // Assertions and other validations
}

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

18

MOCKING IN JAVA
One solution for the complexity problem is to mock those complex objects. For this
example, let's start by using a mock for the LoanStrategy parameter:

@Test
public void testRequestLoan() throws Throwable
{
 // Set up objects
 DownPaymentLoanProcessor processor = new
DownPaymentLoanProcessor();
 LoanRequest loanRequest = LoanRequestFactory.create(1000,
100, 10000);
 LoanStrategy strategy = Mockito.mock(LoanStrategy.class);

 Mockito.when(strategy.getQualifier(any(LoanRequest.class))).
thenReturn(20.0d);

 Mockito.when(strategy.getThreshold(any(AdminManager.
class))).thenReturn(20.0d);

 // Call the method under test
 LoanResponse response = processor.
requestLoan(loanRequest, strategy);

 // Assertions and other validations
}

Let’s look at what’s happening here. We create a mocked instance of LoanStrategy
using Mockito.mock(). Since we know that getQualifier() and getThreshold()
will be called on the strategy, we define the return values for those calls using
Mockito.when(…).thenReturn(). For this the test, we don’t care what the
LoanRequest instance’s values are, nor do we need a real AdminManager anymore
because AdminManager was only used by the real LoanStrategy.

Additionally, since we aren't using a real LoanStrategy, we don’t care what the
concrete implementations of LoanStrategy might do. We don’t need to set up
test environments, dependencies, or complex objects. We are focused on testing
requestLoan() – not LoanStrategy or AdminManager. The code-flow of the method
under test is directly controlled by the mock.

This test is a lot easier to write with Mockito than having to create a complex
LoanStrategy instance. But there are still some challenges.

	» For complex applications, tests may require lots of mocks.

	» If you are new to Mockito, you need to learn its syntax and patterns.

	» You may not know which methods need to be mocked.

	» When the application changes, the tests (and mocks) need to be updated too.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

19

SOLVING MOCKING CHALLENGES WITH A JAVA UNIT TEST GENERATOR
We designed Parasoft Jtest to help address the challenges above and manage the risks
of Java software development.

On the unit testing side of things, Parasoft Jtest helps you automate some of the
most difficult parts of creating and maintaining unit tests with mocks. For the above
example, it can auto-generate a test for requestLoan() with a single button-click,
including all of the mocking and validations you see in the example test.

Below, the “Regular” action in the Parasoft Jtest Unit Test Assistant Toolbar generates
the following test:

@Test public void testRequestLoan() throws Throwable
{
 // Given DownPaymentLoanProcessor underTest = new
DownPaymentLoanProcessor();
 // When
double availableFunds = 0.0d; // UTA: default value
double downPayment = 0.0d; // UTA: default value
double loanAmount = 0.0d; // UTA: default value

LoanRequest loanRequest =
LoanRequestFactory.create(availableFunds, downPayment,
loanAmount);
LoanStrategy strategy = mockLoanStrategy();
LoanResponse result = underTest.requestLoan(loanRequest,
strategy);
 // Then
 // assertNotNull(result);
}

All the mocking for this test happens in a helper method:

private static LoanStrategy mockLoanStrategy() throws
Throwable
{
 LoanStrategy strategy = mock(LoanStrategy.class);
 double getQualifierResult = 0.0d; // UTA: default value
 when(strategy.getQualifier(any(LoanRequest.class))).
thenReturn(getQualifierResult);

 double getThresholdResult = 0.0d; // UTA: default value

Figure 7:
Test Generation
With Parasoft Jtest

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

20

https://www.parasoft.com/products/parasoft-jtest/

 when(strategy.getThreshold(any(AdminManager.class))).
thenReturn(getThresholdResult);

 return strategy;
}

All the necessary mocking is set up for us — Parasoft Jtest detected the method
calls to getQualifier() and getThreshold() and mocked the methods. Once we
configure values in the unit test for availableFunds, downPayment, etc, the test is
ready to run (we could also generate a parameterized test for better coverage!). Note
also that the assistant provides some guidance as to which values to change by its
comments, “UTA: default value”, making testing easier.

This saves a lot of time in generating tests, especially if we don’t know what needs to
be mocked or how to use the Mockito API.

HANDLING CODE CHANGES
When the application logic changes, the tests often need to change also. If the test is
well-written, it should fail if you update the code without updating the test. Often, the
biggest challenge in updating the test is understanding what needs to be updated, and
how exactly to perform that update. If there are lots of mocks and values, it can be
difficult to track down what the necessary changes are.

To illustrate this, let’s make some changes to the code under test:

public LoanResponse requestLoan(LoanRequest loanRequest,
LoanStrategy strategy)
{
 ...
 String result = strategy.validate(loanRequest);
 if (result != null && !result.isEmpty()) {
 response.setApproved(false);
 response.setMessage(result);
 return response;
 }
 ...
 return response;
}

We have added a new method to LoanStrategy – validate(), and are now
calling it from requestLoan(). The test may need to be updated to specify what
validate() should return.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

21

Without changing the generated test, let’s run it within the Parasoft Jtest Unit
Test Assistant:

Parasoft Jtest detected that validate() was called on the mocked LoanStrategy
argument during our test run. Since the method has not been set up for the mock, the
assistant recommends that we mock the validate() method. The “Mock it” quick-fix
action updates the test automatically. This is a simple example – but for complex code
where it isn’t easy to find the missing mock, the recommendation and quick-fix can
save us a lot of debugging time.

After updating the test using the quick fix, we can see the new mock and set the
desired value for validateResult:

private static LoanStrategy mockLoanStrategy() throws
Throwable {

 LoanStrategy strategy = mock(LoanStrategy.class);
 String validateResult = ""; // UTA: default value

 when(strategy.validate(any(LoanRequest.class))).
thenReturn(validateResult);
 double getQualifierResult = 20.0d;

 when(strategy.getQualifier(any(LoanRequest.class))).
thenReturn(getQualifierResult);
 double getThresholdResult = 20.0d;

 when(strategy.getThreshold(any(AdminManager.class))).
thenReturn(getThresholdResult);
 return strategy;
}

We can configure validateResult with a non-empty value to test the use case where
the method enters the new block of code, or we can use an empty value (or null) to
validate behavior when the new block is not entered.

Figure 8:
Example of Mocking
in Parasoft Jtest

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

22

ANALYZING THE TEST FLOW
The assistant also provides some useful tools for analyzing the test flow. For instance,
here is the flow tree for our test run:

SUMMARY OF MOCKING IN JAVA
You can automate many aspects of unit testing. Parasoft Jtest helps you generate
unit tests with less time and effort, reducing the complexity associated with mocking.
It also makes many other recommendations to improve existing tests based on
runtime data, and has support for parameterized tests, Spring Application tests, and
PowerMock (for mocking static methods and constructors).

Figure 9:
The Parasoft Jtest Unit
Test Assistant’s Flow Tree,
showing calls made during
test execution.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

23

https://www.parasoft.com/products/parasoft-jtest/

HOW TO CREATE JUNIT PARAMETERIZED TESTS
Parameterized tests are a good way to define and run multiple test cases, where the
only difference between them is the data. Here, we look at three different frameworks
commonly used with JUnit tests.

When writing unit tests, it is common to initialize method input parameters and
expected results in the test method itself. In some cases, using a small set of inputs
is enough; however, there are cases in which we need to use a large set of values
to verify all of the functionality in our code. Parameterized tests are a good way to
define and run multiple test cases, where the only difference between them is the
data. They can validate code behavior for a variety of values, including border cases.
Parameterizing tests can increase code coverage and provide confidence that the code
is working as expected.

There are a number of good parameterization frameworks for Java. In this article,
we will look at three different frameworks commonly used with JUnit tests, with a
comparison between them and examples of how the tests are structured for each.
Finally, we will explore how to simplify and expedite the creation of parameterized tests.

JUNIT PARAMETERIZED TEST FRAMEWORKS
Let’s compare the 3 most common frameworks: JUnit 4, JunitParams, and JUnit 5.
Each JUnit parameterization framework has its own strengths and weaknesses.

JUnit 4
Pros
»	 This is the parameterization framework built into JUnit 4, so it requires no additional
	 external dependencies.
»	 It supports older versions of Java (JDK 7 and older).

Cons
»	 Test classes use fields and constructors to define parameters, which make tests
	 more verbose.
»	 It requires a separate test class for each method being tested.

JunitParams
Pros
»	 Simplifies parameter syntax by allowing parameters to be passed directly
	 to a test method.
»	 Allows multiple test methods (each with their own data) per test class.
»	 Supports CSV data sources, as well as annotation-based values
	 (no method required).

Cons
»	 Requires the project to be configured with the JunitParams dependency.
»	 When running and debugging tests, all tests within the class must be run — it
	 is not possible to run a single test method within a test class.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

24

JUnit 5
Pros
»	 This parameterization framework is built into JUnit 5 and improves what was
	 included with JUnit 4.
»	 Has a simplified parameter syntax like JunitParams.
»	 Supports multiple data-set source types, including CSV and annotation
	 (no method required).
»	 Even though no extra dependencies are required, more than one .jar is needed.

Consideration
»	 Requires newer versions of Java and your preferred build system (e.g. Gradle
	 or Maven Surefire). Check the JUnit 5 specifications for details.

EXAMPLE OF A JUNIT PARAMETERIZED TEST
As an example, suppose that we have a method that processes loan requests for
a bank. We might write a unit test that specifies the loan request amount, down
payment amount, and other values. We would then create assertions that validate the
response — the loan may be approved or rejected, and the response may specify the
terms of the loan.

public LoanResponse requestLoan(float loanAmount, float
downPayment, float availableFunds)

{
LoanResponse response = new LoanResponse();
response.setApproved(true); 	

if (availableFunds < downPayment) {
response.setApproved(false);
response.setMessage("error.insufficient.funds.for.down.
payment");

return response;
}

if (downPayment / loanAmount < 0.1) {
response.setApproved(false);
response.setMessage("error.insufficient.down.payment");
}

return response;
}

View raw.
View parameterized test example.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

25

https://gist.githubusercontent.com/ParasoftExamples/8b28da81e3a3717041169fbf880cb26b/raw/7af7a49d6a82b6e958772f95814ff4cd3f1e9250/parameterized_test_example_1.java
https://gist.github.com/ParasoftExamples/8b28da81e3a3717041169fbf880cb26b#file-parameterized_test_example_1-java

First, let’s look at a regular test for the above method:

@Test
public void testRequestLoan() throws Throwable
{

// Given|
LoanProcessor underTest = new LoanProcessor();

// When
LoanResponse result = underTest.requestLoan(1000f, 200f,
250f);

// Then
assertNotNull(result);
assertTrue(result.isApproved());
assertNull(result.getMessage());
}

View raw.
View parameterized test example 2.

In this example, we are testing our method by requesting a $1000 loan, with a
$200 down payment and indicating that the requestor has $250 in available funds.
The test then validates that the loan was approved and didn’t provide a message in
the response.

In order to make sure that our requestLoan() method is tested thoroughly, we need
to test with a variety of down payments, requested loan amounts, and available funds.
For instance, let’s test a $1 million loan request with zero down payment, which should
be rejected. We could simply duplicate the existing test with different values, but since
the test logic would be the same, it is more efficient to parameterize the test instead.

We will parameterize the requested loan amount, down payment, and available funds,
as well as the expected results: whether the loan was approved, and the message
returned after validation. Each set of request data, along with its expected results,
will become its own test case.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

26

https://gist.githubusercontent.com/ParasoftExamples/5a4210eb830dd8bcda0abcc20ffa3832/raw/5261999e865c88073aa50caa84f0da9a8c7ec387/parameterized_test_example_2.java
https://gist.github.com/ParasoftExamples/5a4210eb830dd8bcda0abcc20ffa3832#file-parameterized_test_example_2-java

AN EXAMPLE OF A PARAMETERIZED TEST USING JUNIT 4 PARAMETERIZED
Let’s start with a JUnit 4 Parameterized example. To create a parameterized
test, we first need to define the variables for the test. We also need to include
a constructor to initialize them:

@RunWith(Parameterized.class)
public class LoanProcessorParameterizedTest { 	

float loanAmount;
float downPayment;
float availableFunds;
boolean expectApproved;
String expectedMessage; 	

public LoanProcessorParameterizedTest(float loanAmount, float
downPayment,

float availableFunds, boolean expectApproved, String
expectedMessage)

{
this.loanAmount = loanAmount;
this.downPayment = downPayment;
this.availableFunds = availableFunds;
this.expectApproved = expectApproved;
this.expectedMessage = expectedMessage;
}

// ...

}

View raw.
View parameterized test example 3.

Here, we see that the test uses the @RunWith annotation to specify that the test will
run with the JUnit 4 Parameterized runner. This runner knows to look for a method
which will provide the value-set for the test (annotated with @Parameters), initialize
the test properly, and run the tests with multiple rows.

Note that each parameter is defined as a field in the test class, and the constructor
initializes these values (you can also inject values into fields using the @Parameter
annotation if you don’t want to create a constructor). For each row in the value-set,
the Parameterized runner will instantiate the test class and run each test in the class.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

27

https://gist.githubusercontent.com/ParasoftExamples/b6f712fc7328d00a175a1b244a9365c4/raw/f7103b147a4a29c715b1a62b326561d93f803f7e/parameterized_test_example_3.java
https://gist.github.com/ParasoftExamples/b6f712fc7328d00a175a1b244a9365c4#file-parameterized_test_example_3-java

Let’s add a method which provides the parameters to the Parameterized runner:

@Parameters(name = "Run {index}: loanAmount={0},
downPayment={1}, availableFunds={2}, expectApproved={3},
expectedMessage={4}")

public static Iterable<Object[]> data() throws Throwable

{
return Arrays.asList(new Object[][] {

{ 1000.0f, 200.0f, 250.0f, true, null }
});
}

View raw.
View parameterized test example 4.

The value-sets are built as a List of Object arrays by the data() method, which is
annotated with @Parameters. Note that @Parameters sets the name of the test
using placeholders, which will be replaced when the test runs. This makes it easier to
see values in test results, as we will see later. Currently, there is only one row of data,
testing a case where the loan should be approved. We can add more rows to increase
coverage of the method under test.

@Parameters(name = "Run {index}: loanAmount={0},
downPayment={1}, availableFunds={2}, expectApproved={3},
expectedMessage={4}")

public static Iterable<Object[]> data() throws Throwable

{
return Arrays.asList(new Object[][] {

{ 1000.0f, 200.0f, 250.0f, true, null },

{ 1000.0f, 50.0f, 250.0f, false, "error.insufficient.down.
payment" },

{ 1000.0f, 200.0f, 150.0f, false, "error.insufficient.funds.for.
down.payment" }
});
}

View raw.
View parameterized test example 5.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

28

https://gist.githubusercontent.com/ParasoftExamples/85f9efae920bae0881b1f1fdfa93ed1e/raw/339b15e40eefe579ba664d42af7bf47dace620bc/parameterized_test_example_4.java
https://gist.github.com/ParasoftExamples/85f9efae920bae0881b1f1fdfa93ed1e#file-parameterized_test_example_4-java
https://gist.githubusercontent.com/ParasoftExamples/7d3ef919eb158feb2ff1b54f3bc1d3b4/raw/1ba4b0edc34771f7ab46c6a039f04d932f21a956/parameterized_test_example_5.java
https://gist.github.com/ParasoftExamples/7d3ef919eb158feb2ff1b54f3bc1d3b4#file-parameterized_test_example_5-java

Here, we have one test case where the loan would be approved, and two cases in
which it should not be approved for different reasons. We may want to add rows in
which zero or negative values are used, as well as test boundary conditions.

We are now ready to create the test method:

@Test

public void testRequestLoan() throws Throwable

 {
// Given
LoanProcessor underTest = new LoanProcessor(); 	

// When
LoanResponse result = underTest.requestLoan(loanAmount,
downPayment, availableFunds); 	

// Then
assertNotNull(result);
assertEquals(expectApproved, result.isApproved());
assertEquals(expectedMessage, result.getMessage());
}

View raw.
Parameterized test example 6.

Here, we reference the fields when invoking the requestLoan() method and
validating the results.

JUNITPARAMS EXAMPLE
The JunitParams library simplifies parameterized test syntax by allowing parameters
to be passed directly to the test method. The parameter values are provided by a
separate method whose name is referenced in the @Parameters annotation.

@RunWith(JUnitParamsRunner.class)
public class LoanProcessorParameterizedTest2 { 	

@Test

@Parameters(method = "testRequestLoan _ Parameters")
public void testRequestLoan(float loanAmount, float
downPayment, float availableFunds,
boolean expectApproved, String expectedMessage) throws
Throwable
{
 ...
}

 	

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

29

https://gist.githubusercontent.com/ParasoftExamples/304155114c112e784753d467b6a5fd02/raw/3eea16f88ed907054c656a81ac6bcf9601c3441d/parameterized_test_example_6.java
https://gist.github.com/ParasoftExamples/304155114c112e784753d467b6a5fd02#file-parameterized_test_example_6-java

@SuppressWarnings("unused")
private static Object[][] testRequestLoan _ Parameters() throws
Throwable {

// Parameters: loanAmount={0}, downPayment={1},
availableFunds={2}, expectApproved={3}, expectedMessage={4}

return new Object[][] {

{ 1000.0f, 200.0f, 250.0f, true, null },
{ 1000.0f, 50.0f, 250.0f, false, "error.insufficient.down.
payment"},
{ 1000.0f, 200.0f, 150.0f, false, "error.insufficient.funds.for.
down.payment" }
}; 	
} 	
}

View raw.
View parameterized test example 7.

JunitParams has the additional benefit that it supports using CSV files to provide
values in addition to providing the values in code. This allows the test to be decoupled
from the data and data values to be updated without updating the code.

JUNIT 5 EXAMPLE
JUnit 5 addresses some of the limitations and shortcomings of JUnit 4. Like
JunitParams, JUnit 5 also simplifies the syntax of parameterized tests. The most
important changes in syntax are:

	» The test method is annotated with @ParameterizedTest instead of @Test.

	» The test method accepts parameters directly, instead of using fields
and a constructor.

	» The @RunWith annotation is no longer needed.

Defining the same example in JUnit 5 would look like this:

public class LoanProcessorParameterizedTest { 	

@ParameterizedTest(name="Run {index}: loanAmount={0},
downPayment={1}, availableFunds={2}, expectApproved={3},
expectedMessage={4}")

@MethodSource("testRequestLoan _ Parameters")
public void testRequestLoan(float loanAmount, float
downPayment, float availableFunds,

boolean expectApproved, String expectedMessage) throws
Throwable

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

30

https://gist.githubusercontent.com/ParasoftExamples/a4f09960f5fb3e4addb0f539cf2152c9/raw/505a53e894c3b7311309404f143fd9f512fedc46/parameterized_test_example_7.java
https://gist.github.com/ParasoftExamples/a4f09960f5fb3e4addb0f539cf2152c9#file-parameterized_test_example_7-java

{
...
} 	

static Stream<Arguments> testRequestLoan _ Parameters() throws
Throwable {

return Stream.of(

Arguments.of(1000.0f, 200.0f, 250.0f, true, null),

Arguments.of(1000.0f, 50.0f, 250.0f, false, "error.insufficient.
down.payment"),

Arguments.of(1000.0f, 200.0f, 150.0f, false, "error.insufficient.
funds.for.down.payment")
);
}
}

View raw.
View parameterized test example 8.

EFFICIENTLY CREATE PARAMETERIZED TESTS
As one might imagine, writing the above parameterized test can be a bit of work.
For each parameterized test framework there is some boilerplate code that needs to
be written correctly. It can be hard to remember the correct structure, and it takes
time to write out. To make this much easier, you can use Parasoft Jtest to generate
parameterized tests, automatically, like the ones described above. To do this, simply
select the method you want to generate a test for (in Eclipse or IntelliJ):

The test is generated, using default values and assertions. You can then configure
the test with real input values and assertions and add more data rows to the
data() method.

Figure 10:
Select Parameterized
Test Generation in
Parasoft Jtest

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

31

https://gist.githubusercontent.com/ParasoftExamples/94a71f99d280bfb4f876769e8e87b686/raw/10cbae5901846c383da6e00a5df89322fbe33010/parameterized_test_example_8.java
https://gist.github.com/ParasoftExamples/94a71f99d280bfb4f876769e8e87b686#file-parameterized_test_example_8-java
https://www.parasoft.com/products/parasoft-jtest/

RUNNING THE PARAMETERIZED TEST
Parasoft Jtest can run parameterized tests directly in both Eclipse and IntelliJ.

Note that the name of each test, as shown, includes input values from the dataset and
expected result values. This can make debugging the test much easier when it fails,
since the input parameters and expected outputs are shown for each case.

You can also use the Run All action from Parasoft Jtest:

It analyzes the test flow and provides detailed information about the previous test run.
This allows you to see what happened in the test without needing to rerun the test
with breakpoints or debugging statements. For instance, you can see parameterized
values in the Variables view:

Figure 11:
The JUnit View in Eclipse

Figure 12:
The Flow Tree View
in Parasoft Jtest

Figure 13:
The Variables View
in Parasoft Jtest

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

32

SUMMARY OF CREATING JUNIT PARAMETERIZED TESTS
Each of the three frameworks that we reviewed are fine choices and work well. If using
JUnit 4, JunitParams is preferred over the built-in JUnit 4 Parameterized framework,
due to the cleaner design of the test classes and the ability to define multiple test
methods in the same class. However, if using JUnit 5, we recommend the built-in JUnit
5 framework since it addresses the shortcomings in JUnit 4 and requires no extra
libraries. We also like using Parasoft Jtest’s unit testing capabilities to make creation,
execution, and debugging of parameterized tests more efficient.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

33

GET MORE OUT OF UNIT TESTING AND REDUCE
MAINTENANCE EFFORTS WITH RUNTIME ANALYSIS
To realize the benefits of unit testing, you can observe a unit test during its execution
via runtime analysis. Runtime analysis during unit test execution is critical to improving
test efficiency and effectiveness.

Unit testing is a best practice to test individual units/components of a software, but
it can be tedious and costly for Java developers. It's painstaking to test each unit
for correct behavior with manual assertions, and isolate each method with mocking,
and unit testing itself is open to bugs and misunderstood behavior. To improve this
situation, you can use a runtime analysis tool to detect data and control flow, external
dependencies, and to calculate test code coverage.

With this collected data from the runtime analysis, an enterprise-grade solution
like Parasoft Jtest can prompt the developer about how to improve the tests, by
automatically recommending assertions for correct behavior, and methods for mocking
to improve test isolation. This integration between automatic unit test generation and
runtime analysis reduces the manual intervention required for unit testing for Java.

BENEFITS OF UNIT TESTING
Unit testing is a well-known practice, but its implementation requires improvement in
many projects. Unit testing, done well, improves the agility of agile process, increases
quality and security, and brings long-term cost savings.

Unfortunately, regardless of these benefits, developers can still struggle with unit
testing, despite the desire to achieve better results. The amount of time and effort
needed for test creation and maintenance can be too much to justify increasing
testing efforts. Often, test suites are fragile because of poor unit/object isolation from
dependencies. Proper mocking of dependencies becomes the bane of software testers,
as does creating the assertions needed to determine correct program logic. Even
parameterizing tests for scenarios can be tedious and time consuming.

Software development teams must address these problems with test creation,
isolation, and maintenance if they want to achieve the benefits of thorough unit
testing. The answer starts with test automation tools, but simply automating the
execution of tests and collecting results isn’t enough. Runtime analysis, the process
of observing a running executable and recording key metrics, is an innovative way
to help improve unit testing creation, mocking, and test stability.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

34

https://www.parasoft.com/products/parasoft-jtest/

RUNTIME ANALYSIS CAN IMPROVE UNIT TESTING
In most cases, developers don’t consider runtime analysis important in early stages
of unit testing. Most tools are used for catching errors that unit testing missed, or
simply in calculating code coverage. But while these benefits are important, runtime
analysis can also observe the execution of the first iteration of a unit test to make
recommendations to improve the test and detect changes to the test runtime
environment that interfere with test stability.

Test frameworks such as JUnit create sparse code that requires further developer
input. This work is tedious, so it can be automated to fill in more of the details
based on the observed program logic. For example, the following unit test can be
automatically generated by Parasoft Jtest:

Figure 14:
Unit Test Generation
in Parasoft Jtest

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

35

Similarly, for unit tests with parameterized inputs, shown below:

Since the created tests are executable from the start, they can be observed by runtime
analysis for both results and execution flow. For example, a test may fail due to a
raised exception, shown below.

DETECTING DEPENDENCIES AND MOCKING WITH RUNTIME ANALYSIS
In addition, runtime tools observe the execution path into dependencies and recommend
potential mocks to increase the isolation of the test. Although visual inspection of an
object under test will reveal its dependencies, automating the detection and mocking of
these dependencies saves lots of tedious and error-prone work.

Figure 15: P
arameterized Test
Generation in
Parasoft Jtest

Figure 16:
Exception Error Shown in
Parasoft Jtest Unit Test
Assistant

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

36

In the example below, Parasoft Jtest offers the developer a choice of what to mock
based on the execution trace of the unit test:

In this case, adding a mockable method pattern adds the method to a list of mocks to
be handled by a mocking framework such as PowerMock.

Mocking static constructors are also possible, as shown below.

IMPROVING TESTING FIDELITY WITH RUNTIME ANALYSIS
With full knowledge of the execution flow, plus parameters used in method calls,
runtime analysis can be used to provide useful recommendations to the developer
to improve the test code. Although assertions are provided, statically, when a
test is created, they may not be enabled or correct. At test execution, failed and
missing assertions trigger warnings which then lead to recommendations to remedy
the problem.

Figure 17:
Execution Trace
of Unit Test

Figure 18:
Example for Mocking
Constructors

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

37

For example, after creating a new test, and no recommended assertions have been
uncommented, you would see the following:

Whatever happens, it is the constant feedback about corrective action for assertions
that closes the loop on test creation to complete unit testing. Additionally, as the unit
under test is changed, these changes can be dealt with in the same manner, continually
reducing the manual test maintenance required.

Or if an assertion fails, for example, the following is displayed:

Figure 19:
Example of Assertion
Recommendations

Figure 20:
Example of Assertion
Failure

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

38

IMPROVING TEST STABILITY WITH RUNTIME ANALYSIS
Runtime analysis can also detect changes in the test environment during execution
that impact the ability to recreate an identical test environment for subsequent tests.
Tests that pass at one time and fail later can be a cause of great frustration and lost
time and effort. Some examples of instabilities that you can detect with runtime
analysis include the following:

	» A changed system property during a test that hasn't changed back to its original
state. A subsequent test may rely on this property.

	» Additional execution threads in the background that may interfere with a test run.

	» A new file creation during test execution that might impact subsequent runs if they
rely on the file and its contents.

	» Modified static fields that might impact future tests that use these same fields.

It’s critical that each test execution has an identical starting point, to ensure reliable
results. Preventing test instability with runtime detection removes guesswork from the
test debug phase.

CONCLUSION
You can see that runtime analysis isn't just for computing code coverage. Runtime
analysis during test execution is critical to improving test efficiency and effectiveness.
Monitoring execution paths provides information about dependencies to improve
the handling of dependencies and mocking. Assertions can be monitored, and
automatic recommendations improve test fidelity. Detecting changes in the runtime
test environment that affect test stability removes frustration and reduces debugging
cycles for test code.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

39

TAKE THE NEXT STEP
Learn how Parasoft Jtest can help you improve your Java
code quality and team productivity. Contact us today.

ABOUT PARASOFT
Parasoft helps organizations continuously deliver quality software with its
market-proven, integrated suite of automated software testing tools. Supporting
the embedded, enterprise, and IoT markets, Parasoft’s technologies reduce the
time, effort, and cost of delivering secure, reliable, and compliant software by
integrating everything from deep code analysis and unit testing to web UI and API
testing, plus service virtualization and complete code coverage, into the delivery
pipeline. Bringing all this together, Parasoft’s award winning reporting and analytics
dashboard delivers a centralized view of quality enabling organizations to deliver
with confidence and succeed in today’s most strategic ecosystems and development
initiatives—cybersecure, safety-critical, agile, DevOps, and continuous testing.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

40

https://www.parasoft.com/products/parasoft-jtest/
https://www.parasoft.com/contact/

