s i PARASOFT

How to Choose a Modern
Static Analysis Tool

i
“eH

I

“r,'l

|

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

From 50,000 feet all static analysis tools tend to look
the same. When planning to deploy static analysis, it is
important to select a solution that fits the needs of the
organization and can grow with future requirements.

The features and capabilities that a tool needs
to have can be broken into two groups. One is
the common expected technical features around
items like supported languages, IDEs, CI/CD
pipelines, industry standards, reporting, etc.

The second group is the often-overlooked
intangibles that can make or break a static
analysis initiative. Does the tool come with
support? Is it “static” itself or continually growing
and evolving? Does the vendor work with
customers and seem to care about their success?
Will the tool fit into an organization’s software
development lifecycle (SDLC) and development
culture? When and where is it best to use free
and open source software (FOSS), and when are
commercial tools needed?

This paper provides a framework that can be
used when evaluating static analysis tools
that moves beyond simple proofs of concept,
bakeoffs and evaluations.

BACKGROUND

Software continues to increase in complexity
while delivery timeframes continue to shrink.
It's not uncommon today to have software that
is released multiple times per day in support of
complex multi-application systems that need
to be reliable, secure, and meet government
guidelines. The Internet-of-Things (IoT) is made
up of a surprisingly large amount of code in
devices reliant on cloud-enabled services. loT
is enabling consumers and businesses with
useful technology as well as providing the
building blocks for better factory automation,
infrastructure and utility control, and the basis
for autonomous driving.

The common strategy to meet this demand of
better quality, in less time, with more security,
leads organizations to static analysis tools to
ensure that code meets uniform expectations
around security, reliability, performance, and
maintainability. When trying to determine
which static analysis tool will work best, many
evaluators take a
common approach

to selecting a tool

for their group or
organization: they run
each tool on the same
code, compare the
results, then choose
the tool that reports
the most violations
out-of-the-box.

This isn't really a
product evaluation;
it's a bakeoff. And
the winner is not
necessarily the best
tool for establishing a sustainable, scalable static
analysis process within the team or organization.
In fact, many of the key factors that make the
difference between successful static analysis
adoption and yet another failed initiative are
commonly overlooked during these bakeoffs.

This paper recommends the steps for selecting

a static analysis tool that a software team will
actually use; one that suits the team’s current
situation, can be deployed and maintained across
the enterprise, will assist in and survive an audit,
and will grow as needs evolve.

ASSESS YOUR NEEDS

Before searching for a tool that meets an
organization’s needs, a brutally honest look is
needed to assess where the organization stands
today and where it hopes static analysis will take
it. Consider the following:

WHAT YOU NEED

» What specific pain points are being addressed
with static analysis? For example, is the
elimination of specific performance or
stability issues needed? Or, for example,
is the goal to reduce the length and number
of QA cycles or make code more reusable
and easier to extend?

» Does the organization have regulatory
compliance requirements such as functional
safety standards or industry coding standards
(e.g., FDA, MISRA, JSF, PCI-DSS, SEI CERT,
CWE, OWASP)?

» What initiatives are underway, such as
security improvement, DevOps, DevSecOps,
microservices architecture, blockchain, loT,
etc. Does static analysis have a direct or
indirect effect on these initiatives?

» Does the team need visibility into static
analysis results and reports as it relates to
risk management and/or compliance to
industry standards?

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

WHERE YOU STAND

» Is the development process stable, repeatable,
and streamlined enough to provide a strong
foundation for static analysis? Are there
weaknesses to address first (e.g., lack of a
fully automated build process)?

» What does the existing pipeline look like?
What is the build frequency - daily, hourly,
continuous? Do tools in the pipeline need to
run in the integrated development
environment (IDE), on local servers and virtual
machines (VMs) or in the cloud?

» Has static analysis been tried before, was it
successful? What was learned and what
can be done to prevent the same obstacles to
success this time?

» How is the development organization
structured? Will there be a fixed set of quality
policies organization-wide and/or more
specific checker configurations to suit the
needs of specific projects and teams?

» How will static analysis efforts vary across
current projects? What new projects are
anticipated in the foreseeable future and how
will static analysis apply?

» Where is the organization to be in terms of
static analysis in 2 to 3 years from now? Or 10
years from now?

Gathering this information helps create a list

of requirements which drive the evaluations

of tools and vendors that best meet an
organization’s needs. Whether a formal request
for proposal (RFP) is created or just an internal
comparison, it's a good practice to establish
these requirements ahead of time.

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

STATIC ANALYSIS OVERVIEW Static analysis tools are mandated or highly

recommended by safety standards such as ISO
26262 and EN 50128, for their ability to detect
hard-to-find defects and improve security of
software. Static analysis tools also help software
teams conform to coding standards such as
MISRA or CERT.

In simple terms, static analysis is the process
of examining source and binary code without
execution, usually for the purposes of finding
bugs or evaluating quality. Unlike dynamic
analysis (e.g. Parasoft Insure++), which requires
a running program to work, static analysis

can be run on source without the need for an If you'd like to know more about how static

executable. analysis works, please see our whitepaper
“Getting Started with Static Analysis”.

This means static analysis can be used on
partially complete code, libraries, and third-party
source code. Static analysis is accessible to the
developer, to be used as code is being written or
modified, or to be applied on any arbitrary code
base. In the application security domain, static
analysis goes by the term Static Application
Security Testing (SAST). Many commercial tools
support both security vulnerability detection
alongside bug detection, quality metrics and
coding standard conformance.

Checkin

files browser Open file in editor

12 Package Explorer & | JoJunit B . TS Bookjava Ui CartManagerjava | i) BookstoreDB.java |

|~ '» parabank [parabank_history b7dsac] 16, £+ NL_ISON + * A0 "+
- @ srefmainjjava + - publisher id = ° ¢

* # com.parasoft.bookstore

» [Book java

P i BookStoreDB jave

¥ [BoakStoreMemoryDB java

» [CartManagerjava

¥ [f Cartservice java

» [CartTimerjava

¥ (o8 jave

P [l DisplayOrder java

» [icartservice java

¥ [Gmem jave

¥ [emNatFoundExceptionjava

¥ (i) KeystorePasswordCallback java

¥ [f Orderjava

¥ [submittedOrder.java

¥ [TempBack java

¥ [UsernameTokenPasswordcallback java

&k Coverage H 5 Impacted Unit Tests e

Line Coverage

Figure 1:

An example of
integrating static
analysis into a

NL_TABLE 474 NL_ISBN 4 7w 1T
while (hashext) [}
id = re.getInt{ML_I0};

String isbn = rs.getSiring(NL_TSEN);

String title = rs,getString(NL_TITLE);

Date year = rs.getDate(NL_YEAR;

5tring peblisher = rs.getString(NL_PUBLISHER_NAME)

String description = rs.QetString(NL_DESCRIFTION) ;
11 (NL_PRICE) ;

price = r
int stock = rs.getIntiNL_STOCK);

stat2 = db,

2,
Hesultset, TVPE_SCROLL_INSENSITIVE,
Resultset, CONCUR_UPOATABLE |
stat2.setStringll, “v" + titlePart.tolowerCase() + “\°);
stat2.setstring(2, isbn);

ResultSet riZ = siat2. execuleQueryil:

boolesa hasMore = rs2. firstl);

Wector<strings authors = new Vector<Strings(l:

developer's IDE:

Results

while (rasMore] {
String suthor =

742, QeLSTring(NL_AUTNOR_NANE) ;

1) Warnings delivered

B Findings £ s Unit Test Assistant © Console . Probloms . D < o - ! sl =i directly into error
21 Findings = i [Line 141] JDBE resultset not closed: stmt2.resultSetl), r2 .
Description Praject Relative Path # BookStoreDE java (107) int id = r5.getint(NL_ID; windows,
i JDBC resultset not closed: stm parabank [parsbank/sre/main/java/com/parasaft/bookstore /BookStor Dl java Java (100 Stringisbnars BN de highlighti
JDBC resultset not closed: sim parabank P i i va ‘Static Analysis Ensure resour: 1 - Highest d {105} String title = TILE); 2) Code 1ghlig tmg
% JDBC resultset not closed: stm parabank .. f i e jave 1y 1-Highest 110§ Date year = rz. getDake(NL_YEARK; d . hich ick
JDBC resultset not closed: stm parabank P i va Static Analysis Ensure resour: 1 - Highest ik =13 PUBLISHER_NAME]; and tracing which quici
8 "list” may possibly be null parabank P fenai i ger jave a8 tysis Avaid NullPoir 1 - Highest 112 String. Hon =15, . DESCRIPTICHK .
8 olist” may possiblybenull parabank fparabank/ infjava) Jjave tatic Anslysis Avaid Nullp 113k Big price =rs mal{L_PRICE); to line of code based on
B "cartidToOrderMap. geticartid parabank P java ‘Static Analysis Avald NullPoir 1 - Highest BookStoreDB java (114): int stock = ¢ getink{NL_STOCK); .
& JDBE resultset not closed: stm parabank i ji 2t ty e 1 - Mighest 118k stmez = b warning selected,
& JDBC resultset not closed: sim parabank P java Static Analysis Ensure resoure 1 - Highest BookStoreDB java {115): amt2 setStringl1, “%" + titlePart toLowerCase{) + "%, 3)s .
B JDBC resultset not closed: stm parabank s Java Static Analysls Ensure resourc 1 - Highest # BoakStoreDB java (120) stmt2.setString(Z, lsbr);) upport for project
5 JDBC resultset not closed: stm oarabank i h i A hsis B 1-Michest S 5 =

view and code check in.

https://www.parasoft.com/products/insure
https://blog.parasoft.com/getting-started-with-static-analysis-without-overwhelming-the-team

CONFIGURATION

Centralized configuration
Custom checkers

Support for inline and
external suppressions

Flexible configuration
controls and permissions

Scan projects with
millions of lines of code

Configuration supports
legacy code / age

Configurable checker
severity levels

Flexible licensing models
Parameterized checkers

Supports dynamic Cl /
Cloud deployment

COMMON CAPABILITIES

Static analysis tools have matured in the last decade. Below is a list of expected capabilities that
advanced modern static analysis solutions have, from configuration, customization and integration
through compliance-oriented reporting and analytics. It's important to understand what value each
of the below capabilities provides and decide which ones apply and respective priority.

INTEGRATION

Desktop & Server
scanning

Cl1/CD plugins

Roundtrip results from
Cl/CD to IDE

IDE plugins
Web-based Ul
CLI for automation

Open APIs for
integration

Source control
integration

Bug tracking integration

Requirements
management integration

EASE OF USE

Integrated clickable docs

Right/wrong code
examples for each
checker

Online training links
On-the-fly IDE analysis

Automated violation
assignment

Built-in configuration for
common standards

IDE quick-fix

REPORTING &
ANALYTICS

Configurable dashboards
& reports

Custom widgets
Custom data sources

Support for security risk
models

Code author information

Built-in history &
analytics

Custom analytics

Simple PDF report
export

Open output API

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

STANDARDS &
COMPLIANCE

Built-in support for
common security
standards

Built-in support
for common safety
standards

“Mapless” standards-
centric configuration &
reporting

Supports multiple
models of checkers
(prevent,smells,detect)

Complete
comprehensive line-item
support for compliance
& security standards

Common industry
metrics with thresholds
Figure 2:

Static analysis
tool evaluation

Dead code detection

Duplicate code detection

criteria

Configuration is an often-overlooked aspect of
static code analysis. It's important that a tool
can be set up to take into account a project’s
required standards, risk model, and associated
legacy code as well as fit into reasonable
schedules and workflow.

Getting the configuration right
saves trouble down the road.
Getting it wrong almost always
means long-term failure.

For example, if your team is complaining about
false positives, they've probably gotten off on
the wrong foot with improper configuration.

Integration is important so that that the tool
fits into the existing workflow, pipeline, process,
and toolchain. A tool that doesn’t play well with
others is best avoided. Integration is important
both in the build toolchain as well as into the
developer’s desktop tools and IDEs.

Ease-of-use is more important than first realized.
It not only means how easy is a tool to set up

and learn, but also what it takes to work with

the output of static analysis on a day-to-day
basis. Ultimately the sustainability of a static
analysis initiative is dependent on how well it can
seamlessly work with the people who actually
write the code and the people who manage them.

Reporting & Analytics are a critical part of static
analysis; helping to understand where risk lies in
the code, which warnings are most important,
and which warnings can be safely ignored.
Reporting and analytics help the business to
understand trends (e.g. improvement over time)
and status (will the project deliver on time?)

and even return on investment (is my static
analysis tool saving me time? Money? Bugs?)
Most tools have basic reports like histograms,
list of violation by severity and category. It’s

PARASOFT.COM

How to Choose a Modern Static Analysis Tool

important to also have risk scores, prioritization
models, and flexible report output that first your

organizations reporting needs.

*)ownsp

Compliance Overview

Weakness Detecabilty | mpact vor
ofuions !
owAsPAT 3| Severs @ o
. owasp A2 hage:2 | son o o o
i 3 memge2 | sone 6 o o
owasPAd fys sere I 0 0
owAsp A5 PP b 2 0 o
owasp A6 s s odero2 as 0 o
© Not Compliant ownsp 7 B i st p g g
owasp A8 heragei2 | sew p 0 o
owasp A9 5 A2 vedomer2 160 0 o
owAsp AT0 5 D1 Mederster2 | O ot Complant st o o
Retsion ste: 20151114
Poge 105 20200325 Poge 2015 20200525
Weakness Detection Plan Deviation Report
Weakness | Description Exploitability Detectability | Impact Score | Parasoft Rule I OWASP-AT Injection
OWASP-AT | Injection Easy: 3 Easy: 3 Severe: 3 8 8W‘§”§8' TD(S:MD OWASP-A2 Broken Authentication v
SOt 7AT U 23 s
e owasp 43
QUASE A IO, OwASp A XML o
QU2 Al ToL
AR OWASP-A5 Broken Accss Cotrol ' 1
OHAEER A ToSi
'OWASP201 on
SO A T
ey
QHAZD A Tobe
U201 7 A1 ToGuT
WSR2 BokenAuhentcoton | Eosy3 Common2 Avewge2 | Seeess 7 owaspsoi7azisy
QuTETAS S,
QUATE A2 2
SRASEENTAS IR,
SUEER A S o
OWASPAD | SenitveDataExposre | Averager2 | Widesoread3 | Aversger2 | Sered |7 | OWASPOOIT ASASSAYA
QuEER A NS
e
QUASEER T3 Chven
QUATER T3 52D
QUATER A3 o
QUATERTAS
0 A3 Baorop
[l
QHE TS
QUEER A
QUATE TR
TR,
QU A
QSIS
QuZ s
QUATER T3S
QUATER A S
QUATER A3 Moy
QAT ASNS
QHE T e
QHRE0 A A
OWASPAS XMLEwamolEnties | Avesger2 Common2 Eas3 Sewes 7 OWASPOI7ALDNXE
Poge 305 20200525 Poge o5 20200525

Standards & Compliance are often key drivers
for static analysis. Many standards require
general use of static analysis, others lay out
general principles, and some spell out exactly
what must be done. An effective solution
supports the standards required, without the
tedious mapping of tools’ checkers to standard
guidelines and provide reports that support audit
requirements and clearly illustrate exactly what
was done and how. Modern tools should support
an entire standard, not some fraction of it.

Figure 3:
Example
compliance
reports from
Parasoft C/
C++test

WHAT ELSE TO LOOK FOR

There are other key aspects of static analysis tools
that need to be considered depending on the
scale of usage and intended project environment.
These factors should also be considered during
the evaluation depending on needs:

» Scalability determines how well a tool scales
to projects large and small. Things to consider
are: Is the tool able to handle extremely large
amounts of code? Is desktop and server-based
usage supported? How will the tool impact a
continuous integration/deployment pipeline?

» Flexibility of tools is important for integrating
any tool in day-to-day workflows and
pipelines. It's also a key factor in how the tool
is being used: If the focus is on security, for
example, can the tool be configured easily
across the organization to focus on security
vulnerabilities and standards? Or it may mean
customizing the tools to support in-house
coding standards, guidelines, and checkers.

» Centralized and distributed sounds
contradictory but it relates to the ability to
support remote operation on a developer’s
desktop and simultaneously supporting
centralized analysis on the complete project.
Centralized collection of results, analysis and
reporting is important for management and
project status evaluation. A modern static
analysis tool needs to support both of these
key environments.

»

»

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

Managing tool output (findings, warnings,
bugs, vulnerabilities) All static analysis tools
create lists of warnings, what separates them
is how well they manage these results. Once

a static analysis tool has been installed and
configured in a project, and all dependency
issues have been sorted out, there is usually a
fairly lengthy report of violations and warnings
reported by the tool. This can be overwhelming
and how these initial reports are managed
influences the success of the tool integration
into the project. Not all warnings are critical
and don't need to be dealt with immediately.
The tool must support management of results,
workflows for bug-tracking, integration with
developer tasks, and automated prioritization
rather than manual triage. Tools must also be
able to take into account issues with legacy
code and varying policy.

Industry Risk models Support for risk

profiles is a good way to prioritize static
analysis findings; those that are in the high-
risk category should receive the highest
priority, low risk, low priority. OWASP
categorizes security risks into exploitability,
prevalence, detectability and impact. SEI
CERT categorizes risks into three levels; high,
medium and low based on severity likelihood
and cost to repair. CWE has categories around
the impact of the particular vulnerability
based on its context. Make sure that your tool
supports these risk scoring models without
manual effort.

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

» Configuration and filtering modern static

analysis tools should provide the ability to Succeeding with static analysis is more than just
configure which set of checkers that are a feature checklist - there are several intangibles
enabled for the analysis and also provide that can make or break the initiative. For

the ability to filter out results within their example, is the tool scalable? Does the vendor
respective reporting tool’s warnings based keep up with current standards as they evolve
on warning category, file name, severity and and provide support, training, documentation,
other attributes. Both of these methods are and generally work well with their customers?
available to help developers focus on the The selection process below lays out how to
types of warnings that they are interested incorporate these important non-functional

in and reduce the amount of information requirements into the evaluation effort.

provided at any one time. Shockingly, some
tools have little to no capability in this area,
requiring you to run their predetermined set
of checkers, which likely don’t align with your
business needs and risk.

Appendix A provides more details on each
evaluation criteria. Additional tips and training
for a successful static analysis deployment can
be found in the whitepaper “Getting started
with static analysis”.

https://blog.parasoft.com/getting-started-with-static-analysis-without-overwhelming-the-team
https://blog.parasoft.com/getting-started-with-static-analysis-without-overwhelming-the-team

TOOL SELECTION PROCESS

The first step is to explore the available options
and compile a preliminary list of tools that seem
like strong contenders. What are the criteria

to consider?

When word gets around that an organization or
team is investigating new tools, they are likely to
hear some suggestions. For instance, someone
may recommend tool A, which was used on a
previous project company or a star developer
has been using tool B on his own code and thinks
everyone else should use it too.

These endorsements are great leads on tools

to investigate. However, don’t make the mistake
of thinking that a strong recommendation—even
from a trusted source—is an excuse to skip the
evaluation process. The problem with these
recommendations is that the person offering them
probably had a different set of requirements than
exists now. They know that the tool worked well
in one context, however the need now is to select
a tool that works well in the current environment
and that helps accomplish departmental and
organizational goals. To accomplish this, it is
important to keep the big picture in sight during

a comprehensive evaluation.

When an organization acquires a tool, they

are committing to a relationship with the
vendor of choice. Behind most successful tool
deployments, there is a vendor dedicated to
helping the organization achieve business
objectives, address the challenges that surface,
and drive adoption.

It's important to consider several layers of
vendor qualification and assessment across the
span of the evaluation process. At this early
stage, start a preliminary investigation by getting

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

a sense for what the vendor thinks of their own
tool. Read whitepapers, view webinars, etc.
Focus on the big picture, not the fine-granularity
details. At this point, consider:

» Vision: If the vendor’s vision is not aligned
with requirements and goals, or if the vendor
isn't poised to support anticipated growth,
it's best to learn this early in the process.

It’s inadvisable to evaluate a vendor who is
misaligned with an organization’s goals unless
options are extremely limited.

» Best Practices: Learn about the vendor’s
recommended “best practice” for using their
tool. Do they have a coherent strategy for
how to deploy it across an organization and
evolve it as the organization's needs change?
Most importantly, does the strategy align
with the team and organizations’ goals?
Remember that if developers don't end up
using the tool on a daily basis, it's not going to
deliver value to the organization—no matter
what rich functionality the tool offers. The
lack of apparent "best practice" doesn’t
mean a tool is ruled out (although a possible
red flag.) However, a usage model needs to
be developed, which obviously makes the
evaluation (as well as the actual deployment)
significantly more complicated.

» Reputation: What organizations are using the
tool? What do the case studies reveal about
its deployment, usage, and benefits? What are
industry experts saying in reviews, write-ups
and awards?

The next step is to contact the vendors. Full
tool evaluations are potentially time consuming
and disruptive, so research is recommended
before ever installing a tool on a developer
desktop. Many key questions can be answered
by just talking to the vendor. Consider the
following topics during discussions with tool
vendors. Appendix B contains more details

on evaluating vendors.

An obvious question arises about the use of open
source tools for a static analysis solution. There
are few key issues with FOSS to keep in mind.
Open source software is often described as “free
like a puppy, not free like beer” meaning that
costs are incurred regardless of the free license.
Looking at FOSS solutions is not discouraged,
but an evaluation needs to include costs for
important features, services and support that are
lacking. Details about costs and benefits of FOSS
in general are available elsewhere, including
issues like:

» |s support available? Will | need it?

» |Is the project active? Do | want to effectively
take it over if not?

» s it good enough to solve the problems
| need it to?

» If I'm working with a standard, how much
is covered by the tool?

» Will it scale well in an enterprise
environment? Often tools that work well for
small groups struggle in large organizations.

One thing to consider about FOSS static
analysis tools studies by organizations such

as NIST have shown them lacking. As of
writing this paper, FOSS static analysis tools,
although generally easy to use with relatively
good performance, are not as thorough nor as
complete as the commercial solutions in terms
of precision, coverage of coding standards,
and set of comprehensive warning classes. In
particular, when working with a standard such
as CWE Top 25 or OWASP Top 10 or MISRA
C/C++ investigate specifically what items in
the standard are actually covered by the tool.
Currently, FOSS tools have poor coverage for
any of the well-known industry safety and
security standards.

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

Here are criteria to consider during the technical
evaluation of the candidate tools. These are
expanded upon in Appendix A:

» Coverage of the necessary guidelines

» Quality of the built-in checkers for the
necessary guidelines

» Coverage for the industry and
corporate standards

» Depth and breadth of analysis

» Practical means to reduce noise
(ignorable checker violations)

» Reasonable number of and approach
to false positives

» Acceptable number of false negatives

» Ease of adjusting built-in checkers to suit
organization’s policies

» Ease of adding new custom checkers to
check unique requirements

» Level of complexity supported for new
custom checkers

10

https://codecurmudgeon.com/wp/2017/01/open-source-project-activity/
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://owasp.org/www-project-top-ten/
https://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/Default.aspx
https://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/Default.aspx

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

When evaluating the results of each pilot
project, the evaluation and final decision
making should boil down to answering the
following key questions:

The best tool in the world won't deliver any value if it’s not deployable, if
developers won't use it, or if it's too much of a disruption to the project
progress. Deciding how well something can be adopted requires a
comprehensive evaluation of not only the tools, integrations but of the vendor,
their support, services and training.

Some factors that affect adoption include: a robust and flexible checker
configuration, reducing “noise” in the results, a workflow that'’s practical and
repeatable for both your highly-skilled engineers and junior developers,
scalability beyond the current project and across the enterprise, and a vendor
committed to working with an organization to achieve success. The combination
of all these factors work together to make the difference between a good tool
and a great tool for an organization.

Often, developer adoption really boils down to whether developers recognize
time saved in the long run, even considering the perception of extra work
required (at minimum, reviewing and responding to reported violations). For
instance, if the tool actually identifies the root cause of issues that have been
troubling them—or alerts them to issues that they know will cause headaches
later on—they are much more likely to embrace it as a help rather than reject
it as a hindrance.

Deployment of new technologies requires a focus on what problems are trying
to be solved. Additionally, the expectations of the new technology to address
the problem should be realistic. If you are simply assuming that static analysis
will improve whatever software issues you're having, then you should expect

to be disappointed. An example of where a trial or evaluation can fall apart

is where an organization rushes to solve a pervasive problem, turns on all

the checkers (beyond typical default settings) in the static analysis tool, gets
overwhelmed with warnings and fails to solve the original problem. This is either
a mismatch between expectations of what static analysis tools can do or lack of
understanding of how these tools should be introduced into a project.

11

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

It's also Important to quantify success and ROI. It's important to determine
ahead of time how success is measured; lost time, missed releases, or field
support cases. The ROI you get should be measured by addressing the problems
for which you chose static analysis. One common trap to avoid is the idea to
assess value based on how many violations static analysis finds. Any well-
structured deployment of static analysis will have more violations initially than
later on as the code comes into compliance. This doesn’t mean the tool is less
valuable, in fact the less findings against the same checkers is indeed proof

that the tool is doing its job - it’s not just finding bugs, it's changing developer
behavior by getting them to write better code.

Evaluations are time consuming and require team commitment. Full deployments
require more time and commitment. Settling for a tool that's “good enough for
now” might save money in the short term but prove extremely costly in the

long term.

Every software development organization needs to grow and evolve to remain
viable today. It's not a question of if, but how. Whether the organization is
trying to advance quality by adopting additional software verification methods,
complying with evolving corporate governance policies, or extending into new
types of development projects, tool requirements will change.

The ultimate question when evaluating tools is:
Will this tool and vendor in the long run help
reach the project, organization and company
goals, or hold them back?

Establishing a workable and sustainable quality
process takes time. Starting this path early,
prepares the organization when the pressure
arrives to deliver software at a faster pace or
improve quality, but procrastination results in
efforts being too little, too late.

12

SUMMARY

Evaluating software tools for adoption

and integration into a company’s software
development process is a time consuming yet
important practice. It's critical that organizations
have a clear understanding of what their

goal is for adopting any new tool, process or
technology. Success needs a goal and without
an end goal, success is indeterminable. If there

is one place where adoption of new technology
fails, it's the lack of understanding the motivation
for using it in the first place.

Static analysis tools evaluations often end up

as a “bake off” where each tool is tested on a
common piece of code and evaluated on the
results. Although this is useful, it shouldn’t be
the only criteria used. Technical evaluation is
important, of course, but evaluators need to look
beyond these results to the bigger picture and
longer timeline.

Evaluators need to consider

how well tools manage results
including easy to use visualization
and reporting.

Teams also need to clearly understand how each
tool actually supports claims made in areas such
as coding standards, for example.

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

\

i .

The tools vendors use themselves need to be
part of the evaluation. A vendor who becomes
a partner in your success is better than one that
can’t provide the support, customization, and
training the team requires.

Most importantly of all, is how well each tool
answers the three key questions:

» |s the tool going to be used?

» |s it the solution that helps the organization
reach its goals?

» |s it a long-term solution to problems faced?

Let us help.

13

https://www.parasoft.com/try

Appendix A:

Tool Evaluation Capabilities & Criteria

TECHNICAL
EVALUATION
CRITERIA

Coverage of the checkers needed:
The evaluation should focus on the
checkers the team and organization
are actually willing to enforce—both
now as well as in the foreseeable
future. Enforcement may mean
stopping the release or deployment of
an application that has violations of a
particular checker.

Quality of the built-in checkers

for necessary guidelines: Evaluate
each tool’s checker accuracy for the
guidelines to be enforced. Although
many checkers initially appear

useful but the tool under evaluation
may report so many false positives
(incorrect warnings) that this guideline
and checker combination is not
terribly useful. The lack of checker
precision may be a result of poor
implementation, or it could be ill-
suited for verification by static analysis
(other verification techniques may
work better.) In terms of the tool
evaluation, the existence of a checker
to support the guidelines needed isn't
enough by itself, precision matters.

Coverage for the industry and
corporate standards you need:
Evaluate each tool on their support
for the common industry standards
like CWE Top 25, OWASP Top 10, SEI
CERT C, PCI-DSS and MISRA C/C++.
Even if one of these standards doesn’t
apply now, could it in the future. Also

consider support for compliance to
functional safety standards like ISO
26262, 1S5S0 61508, ISO 62304, and
others such DO-178B/C. Is the vendor
keeping up-to-date with emerging
standards such as UL 2900, GDPR,
and CCPA? Be sure to investigate how
deep the support is for each standard.
Evaluate each tool on how well it
supports audits required by these
standards and the vendor’s experience
in each of these areas.

Depth and breadth of analysis:
Evaluate each tool on depth of
analysis such as support for advanced
control and data flow analysis for
improved results in finding critical
bugs and security vulnerabilities.
Evaluate each tool also its breadth of
analysis such as support for so-called
“code smells”, industry and de-facto
coding standards and guidelines,

and proactive checkers that prevent
bugs from occurring in the future.

An equally important criteria is the
scope of the analysis; the scope ideally
should be the entire program.

Practical means to reduce noise
(ignorable warnings): The more noise
is reported, the more likely team
members are to ignore all warnings,
including important ones. Reducing
noisy reports can be accomplished
by disabling checkers, modifying
checker parameters, suppressing
checkers in specific contexts. Tools
that produce too much noise might
increase the burden of the tools on
the development team. It also impacts

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

the CI/CD pipelines that rely on
automation to provide go/no-go build
and deploy decision with a minimum
of human review.

Reasonable number of false
positives: There are very broad
interpretations of false positives -
which, by definition, means warnings
reported are incorrect and don't
violate the guideline being checked -
to also include correct warnings but
for checkers that developers don't
like nor agree with, misunderstood
checkers, a real error which has a
mitigating circumstance missed by
the analysis, and checkers that are
ignored in certain contexts such

as in legacy code. Regardless, false
positives whether meeting the strict
definition or not are the most likely
reason for users to dislike using static
analysis tools. In order to improve

the perception of the tools, it’s
important to understand the root
cause of false positives. Verifiable
incorrect warnings can often be traced
to incomplete analysis, often due to
missing dependencies. Like a compiler,
static analysis tools required the full
context of dependencies in order to
perform precise analysis. Other issues
such as checkers that the team doesn’t
agree with, should simply be turned
off. Tools should be evaluated on

how they can handle both “real” false
positives and usability issues with the
warnings produced. Configuration
options, for example, go a long way in
improving tool output.

14

Acceptable number of false negatives:
False negatives are instances where
code actually violates a checker, but
the tool misses it and no warning is
reported. With all static analysis tools
there is a trade-off between producing
a low number of false positives

and missing real bugs and security
vulnerabilities, the false negatives.
There is balance needed between

the number of false negatives and
false positives since missing real bugs
is a concern. Each tool should be
evaluated on more than false positive
rate alone, missing important warnings
is of equal concern.

Ease of adjusting built-in checkers to
suit team and organization policies:
Each tool should be evaluated on how
simple adjustments to checkers to suit
team and organizational requirements.
Also consider if the checker
modifications can be done without
scripting or complicated configuration.

Ease of adding new custom checkers:
Evaluations should include modifying
checkers and creating completely
new checkers (or ones based on
existing checkers) via scripting or
other provided techniques such as
APIs. Evaluate the complexity of
creating new checkers and how well
it's supported by each tool. Does

the tool provide a Ul for creation and
customization? If a complex process is
required or API, how well suited is that
to the team’s needs? If consulting or
professional services are required be
sure to include the estimated cost.

TOOL
SCALABILITY
CRITERIA

Scalable usage model: Scaling to
current and future requirements is a
key criterion for tool evaluation. Not
all static analysis tools are designed for
large scale deployment and analysis.
Consider whether vendor’s proposed
usage model (in terms of deployment,
updating, and training) scale to current
requirements and the future. Does the
product licensing model work with the
organization’s goals?

Ease of updating the tool
configuration team-wide or
organization-wide: Adopting static
analysis organization-wide requires
the ability to deploy the tool equally to
each developer. Evaluate the tool and
the vendor’s process for deploying and
updating the tool configuration across
all applicable tool installations. Is there
a way to guarantee that everyone

is using the correct configuration?

Is there role-based access control

to ensure that only the appropriate
people (e.g., team leads) modify the
checkers and configurations? Can the
deployment of the tool support an
audit, for example when developing
safety critical software?

Ability to support tiered
configurations: Each tool should be
able to enforce a fixed set of quality
policies organization-wide, but still
be able to support customization to
suit the needs of specific projects
and teams.

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

Extensibility: Each tool should be
evaluated on how well is supports
customizations. Is there an API

or scripting support? If so, is the
API well-documented? Are there
ways to automate and integrate
through programming APIs, CLlIs,
and REST APIs?

Support for other languages and
verification methods: How well can
each tool be extended to support
other best practices such as peer code
review support, unit testing, or API
functional testing, etc.)? Does the tool
support all the programming languages
that the organization requires?

Speed of analysis: For large code
bases, the speed of analysis becomes
an important factor in tool evaluation.
Consider whether there is a significant
discrepancy in the desktop analysis
speed between the different tools
Does the tool support different modes
of analysis such as fast checkers

on the desktop and more in-depth
analysis in batch mode? Be sure to
measure speed in terms of the end-
to-end process: if developers need

to open another tool, run it, then
bring results back into their original
environment, all of this should be
considered. For automated/build
execution, speed is mostly a factor
that the analysis completes within the
allotted timeframe. Consider whether
the analysis requires additional servers
and the cost therein.

Cloud deployable: Does each tool
integrate with cloud services such as
AWS, Microsoft Azure and others to
run the analysis? Is it possible to set up
servers in a private cloud?

15

CONFIGURATION
EVALUATION
CRITERIA

Centralized configuration: Tools
under evaluation should support
configuration that can be set by team
leads and distributed to developers
on the team to support a common
set of guidelines and standards to
follow. Local configurations can add
to this but shouldn’t contradict the
project-wide settings. Tools should
support grouping and categorization
of settings for different purposes such
as new code versus legacy. Warning
severity should be customizable both
at configuration time and in warning
reports.

Custom checkers: Customizing
checkers should be supported as
well as the ability to distribute these
custom checkers to the rest of

the team easily and automatically.
Creating new checkers should be
straightforward if based on existing
checkers and an API should be
available for more sophisticated
customization.

Support for inline and external
suppressions: Warnings need to be
suppressed in the right circumstances
and developers should have the
flexibility to deal with this directly in
the code with an inline expression or
via the tool either in the IDE or via a
web interface at the project level.

INTEGRATION
EVALUATION
CRITERIA

IDE integrations: Evaluate how each
tool supports the team’s development
environment. If not supported what

is the path to support? Does the
integration meet the required usage
for day to day workflows?

Batch/build mode: Does the candidate
tool support command line operation?
Can the analysis be invoked in a batch
mode? How are results from batch
mode handled?

CI/CD pipelines: Does the tool work
in your existing toolchain? Can it be
used as a gate for making decisions to
promote or not promote your code in
a true continuous environment? Does
it work well in a cloud-distributed
execution environment?

Warning reporting/review
mechanisms: Evaluate each tool on
how easy it is to understand warnings
and the reports generated. Are they
extensible/customizable if needed?
Do the reports show historical
information and trends on a time or
build-by-build basis, or are they a
snapshot in time? Are there additional
analytics (e.g., alerts for areas of
concern, coding standard compliance,
guidance on next steps)?

Connection to bug tracking: Evaluate
the tools on their integrations to other
critical systems in the development
environment. Bug tracking is a
common integration with static
analysis since warnings can be real
bugs that need to be tracked and
fixed. For example, does the tool
support integration to JIRA?

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

Connection to requirement
management tools: Certain
requirements may need tracking

into static analysis, for example, non-
functional requirements for security
or adherence to standards.

Automated assignment of errors to
responsible developers: Candidate
tools are evaluated on how warnings
are managed. Are issues detected

by batch mode tests assignable to
the developer who wrote the related
code? Is it possible to distribute

the information to their desktop

with direct links to the problematic
code? Can violations be reassigned if
needed? Can the violations assigned to
one developer be mapped to another
when someone leaves the group?

Legacy code identification and
support: Tools should be able to

deal with legacy code, possibly using
different configurations for new,
existing and legacy code. Consider
whether each tool can apply a
configuration unique to each category
of code. Can it identify and ignore all
legacy code if needed?

Checker severity customization:
Evaluate whether each tool can
change warning severity levels to help
the team focus on the most important
error types.

Ability to suppress warnings:
Evaluate how well each tool support
suppression of warnings. Can a
checker be enforced in general but

be exempt in certain instances? Are
suppressions shared across the team?
Can they be defined in the code so
everyone working on or reviewing the
code can see them?

16

Automated violation correction: Can
the tool refactor code to fix any of
the violations you care about? If | care
about 100 checkers and tool A can fix
50 of them and tool B can fix none of
them, that’s a huge benefit for tool A.

On-the-fly analysis: Evaluate whether
tools can analyze the code, on
demand, inside the IDE before it’s
even checked into source control. How
are these results handled? If a warning
remains in the code after check in,
does this result show up in the batch/
build analysis?

Risk models: Does the tool under
evaluation help prioritize warnings
by risk profile? Does the tool
support common risk models such
as OWASP or SEU/CERT? Are
these risk models configurable?

EASE-OF-USE
EVALUATION
CRITERIA

Integrated and navigable
documentation: Evaluating each
product’s documentation is an
important part of the evaluation. Is the
documentation easily accessible? Is it
easy to navigate? Is the documentation
available right in the IDE? Is each
warning properly documented?

When a warning is issued, is it easy

to find the documentation for it?
Documentation should contain code
examples for each error. For coding
guidelines and checkers, examples
that do and do not violate the checker
should be illustrated.

Online training: Training is important
for adopting any tool. Evaluating

a vendor’s training capability is
important and is the accessibility

of training after initial deployment.
Onlineg, in-person, and video-based
training should be available.

Tool usability: Ease of use should
encompass all aspects of the tool’s
usage. Is it easy to use at the developer
level in the IDE? Is it easy to assess

the warning reports? Is the web
interface easy to navigate? Does the
tool integrate into daily workflows with
little impact on developer productivity?
How easy is customization? Are
developers picking up tool usage
easily? There are many aspects of
usability, but in general, users will
provide feedback on their experience.

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

REPORTING
AND ANALYTICS
EVALUATION
CRITERIA

Configurable dashboards and reports:
Reports and dashboards are useful for
condensing large amounts of data into
an easy-to-understand format. Tools
should be evaluated on the quality and
configurability of their reporting. Are
dashboards provided? How does the
tool support high level management
of results? Are dashboard widgets
configurable? Are data sources
customizable? Are reports linkable to
other activities such as unit tests, API
and Ul tests?

Support for risk models: Are results
reported in relation to industry-
standard risk models? For example, SEI
CERT coding standards include a risk
model and violations can be mapped
to this model which helps with
evaluation and prioritization.

Warning history and analytics: Tools
should support historical information
for warnings and, preferably, analytics
that provide further insight into trends.
Can warnings be traced to a particular
build or file modification? Is it possible
to see the life of a warning over time?
Are trends visible in the dashboard?
Are these analytics configurable?

Report output: Tools should support
reports that can be printed or used
in an official manner as a record

for particular milestones. Does the
tool support PDF report export?

Is there an open API for custom
output options?

17

STANDARDS

AND COMPLIANCE
EVALUATION
CRITERIA

Built-in support for common security
standards: If one of the goals for
static analysis adoption is improving
security or adopting a secure coding
standard, it's reasonable to expect

the tools being evaluated to support
common standards. For example,
does the tools support OWASP Top
10, CWE/SANS Top 25, CERT secure
coding standards? It’s also important
to determine how much coverage each
tool has of each standard that support
is claimed. For example, sometimes
vendors have an OWASP Top 10
configuration that only covers 2 or

3 of the 10 items.

Built-in support for common safety
standards: Similarly, if the intended
use of the static analysis tool is on a
safety critical projects, it's reasonable
to expect support for common
standards. For example, does the

tool under evaluation support MISRA
C and MISRA C++? Does the tool
support AUTOSAR C++14? What
coverage of these standards does each
support? How is compliance, reporting
and checker violation handled?

Map-less violation reporting and
configuration: A common way

to “support” common standards

in static analysis tools is to map
existing checkers into each standard.
Developers have to refer to this
mapping in order to determine which
checker is being violated by each
warning. This extra mapping layer
increased the tedium of enforcing and
compliance with standards. During
tool evaluation it's important that the
evaluation considers how easy it is to
relate warnings with the standards
needed and how easy each tool is

to configure.

Supports multiple modes of checkers:
During the evaluation some vendors
may tout the error detection capability
but it's important to consider
preventative methods as well. Does
each tool under evaluation do “code
smell” detection? Are their checkers
designed to detect poor software
coding techniques ahead of time?
How well is the defect and security
vulnerability detection complimented
by preventative checkers and coding
standard support?

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

Common industry metrics with
thresholds: Static analysis tools are
ideal for collecting software metrics
during their analysis, in fact, common
metrics such as cyclomatic complexity
may be collected by default. If metrics
are important to the organization,
then the evaluation should consider
how well each tool supports metrics.
Are the metrics included in reports
and dashboards? Can thresholds be
set for each metric? Does exceeding
metrics threshold raise a warning?
How easy is it to create new metrics?
Are metrics configurable?

18

Appendix B:

Vendor Evaluation Criteria

VENDOR
CRITERIA

Product stability: Was the product
stable? Some issues are inevitable
(e.g., memory management, a
checker not firing correctly, etc.), but
does the big picture demonstrate

a commitment to quality?

Defect reports: Were reported
bugs resolved in a reasonable time
period? Were showstoppers fixed
promptly? Were less significant
issues addressed or at least
scheduled for a future release?

Feature requests: How were your
feature requests handled? Try to push
at least a handful through as a test. If
you provide the vendor a list of feature
requests that make business sense
and would benefit the entire user
base, how does the vendor proceed?
If they work systematically at them
and implement them quickly, it's a sign
that they have robust development
resources and are willing to invest
R&D into improving the product.

Overall support: How promptly are
your questions answered by support?
As with feature requests, don't be
shy. This is another important test.

If you can’t get reasonable response
times for just a few users in the initial
evaluation period, chances are you
won'’t have adequate support for a
global deployment.

Vendor viability: An investment in
tools is also an investment in the
vendor as well and having confidence
in their longevity and prosperity

is important. When considering
vendors also consider how long

they have been in business. If new

to market, are they well-funded?

Do they have a good track records

of customer support and success?

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

IS YOUR VISION
IN SYNC WITH
THE VENDOR'S?

Initiate the conversation to
understand the vendor’s vision for
how the tool would be deployed
and used in an organization’s
environment, then discuss how this
aligns with the team'’s vision. There
are 3 key steps in this process:

1. Explain the problems that static
analysis is required to address.
Does the vendor agree that
static analysis is the best path
to solving these problems, or are
other strategies suggested? Can
the vendor help set objective
criteria for assessing whether
their static analysis tool
addresses the required
problems? If objectively
measurable goals are set now,
this helps later during
assessment on whether the tool
is helping to achieve the
expected results.

2. Describe the target
environment (project size,
policies, infrastructure, etc.),
then inquire how the vendor
has helped other organizations
in similar situations.

3. Explain the team'’s vision for tool
deployment, adoption, and usage
over the next 2-3 years, and ask
the vendor if this seems feasible.

19

How are mismatches handled?

What if there are significant
mismatches apparent at this point?
What kind of resolution is proposed?

It's reasonable to expect the vendor
to accommodate requests that
could benefit its other customers
and thus make business sense.

For example, there's widespread
value in integrating the tool into a
development environment that many
other development organizations
happen to use. What if something
that is unique to an organization,
for instance an integration with
proprietary problem reporting
system? If there's some reasonable
response to such requests, this is a
significant advantage. For example,
one reasonable solution might be
for the vendor to expose an API,
which customers can use to extend
the product for their own needs.

» If the vendor has issues with
what the customer is trying
to accomplish, do they offer a
convincing explanation of why
this isn’t a wise strategy and
offer an alternative that
makes sense? If a vendor
is willing to provide valuable
feedback —especially before you
have committed to a contract—
it's a positive sign of a good
working relationship.

»

If the vendor seems to be
bending over backwards

to accommodate any request,
e.g., agreeing to implement
functionality which isn’t central
to their capabilities and won't
appeal to other customers.
This diminishes their credibility.
How will the tool evolve if they
are willing to accommodate
anything and everything? And
what gets left behind in the rush
to add every feature request?

If the vendor is not able or
willing to accommodate unique
requirements, although it

may not reflect negatively on
the overall quality and value of
their tool. However, lack of
flexibility or customization

is not a good fit for your specific
circumstances, you need to
continue looking.

PARASOFT.COM
How to Choose a Modern Static Analysis Tool

20

