
© 2017 Parasoft Corporation

1

Runtime and Memory Error Detection and Visualization 
with Parasoft Insure++

INTRODUCTION

Parasoft Insure++ has been around since 1993 and run through billions of lines of code. Because Insure++ has seen so much code, it is extremely 

valuable for detecting and preventing sets of errors. This paper is an important read before you begin using Insure++. It provides valuable insight 

into how Insure++ discovers and notifies you about: 

• Errors during compilation 

• Linking problems 

• Errors during exercise of instrumented executables 

AUTOMATING C/C++ RUNTIME ERROR DETECTION WITH INSURE++

C and C++ developers have a unique problem: many errors in their code don’t manifest themselves 

during testing. Software with subtle problems such as memory corruption may run flawlessly on 

one machine, but crash on another. To help developers find and fix such problems prior to release, 

Parasoft designed Parasoft Insure++. Parasoft Insure++ is an automated runtime application testing 

tool that detects elusive errors such as memory corruption, memory leaks, memory allocation 

errors, variable initialization errors, variable definition conflicts, pointer errors, library errors, I/O 

errors, and logic errors. 

With the click of a button or a simple command, Insure++ automatically uncovers the defects in your 

code— helping you to identify the source of that strange problem you’ve been trying to diagnose for 

weeks, as well as alerting you to problems that you were previously unaware of. Insure++ detects 

more errors than any other tool because its patented technologies achieve the deepest possible 

understanding of the code under test and expose even the most elusive problems. 

WHAT PROBLEMS CAN INSURE++ FIND?

Insure++ automatically detects errors that might otherwise go unnoticed in normal testing. Subtle 

memory corruption errors and dynamic memory problems often don’t crash the program or 

cause it to give incorrect answers until the program is delivered to customers and they run it on 

their systems... and then the problems start. Even if Insure++ doesn’t find any problems in your 

programs, running it gives you the confidence that your program doesn’t contain any errors. Of 

course, Insure++ can’t possibly check everything that your program does. However, its checking is 

extensive and covers every class of programming error, including: 

Technical Whitepaper



© 2017 Parasoft Corporation

2

• Memory corruption due to reading or writing beyond 

the valid areas of global, local, shared, and dynamically 

allocated objects. 

• Operations on uninitialized, NULL, or “wild” pointers. 

• Memory leaks. 

• Errors allocating and freeing dynamic memory. 

• String manipulation errors. 

• Operations on pointers to unrelated data blocks. 

• Invalid pointer operations. 

• Incompatible variable declarations. 

• Mismatched variable types in printf and scanf argument 

lists. 

DISCOVERING MEMORY USAGE PROBLEMS 

Many modern algorithms make heavy use of dynamic memory, but 

few take any great precautions to ensure that they achieve the best 

possible use of the memory system. As a result, many applications 

can benefit from streamlining their memory usage or modifying the 

order of their allocation requests to reduce the fragmentation that 

takes place when memory is allocated and freed. 

Many algorithms also contain subtle memory leaks in which the 

program consumes growing amounts of memory as it runs until the 

resources of the host are finally exhausted and the program crashes—

sometimes days or weeks after starting. 

Parasoft Insure++ offers a graphical memory display/animation tool. It 

is designed to help developers avoid memory problems by displaying 

and animating the memory allocations performed by an application. 

By watching your program allocate and free dynamic memory blocks, 

you gain a better understanding of the memory usage patterns of 

your algorithms and also an idea of how to optimize their behavior. 

Parasoft Insure++ allows you to: 

• Look for memory leaks. 

• See how much memory your application uses in response 

to particular user events. 

• Check on the overall memory usage of your application to 

see if it matches your expectations. 

• Look for memory fragmentation to see if different allocation 

strategies might improve performance. 

• Analyze memory usage by function, call stack, and block 

size. 

AVOIDING MEMORY PROBLEMS 

Parasoft Insure++ can help you detect and avoid more than just 

memory leaks. It can show you most common memory problems, 

including memory blowout, memory fragmentation, memory overuse, 

and memory bottlenecks. 

Memory Blowout 

Many programmers are not aware of the danger memory blowout 

poses for commercial and industrial applications. Memory blowout 

is very common because the operating system allocates pages of 

memory to the program and never releases them. Other programs 

running on this machine will then be starved for memory and crash. 

During memory blowout, a program allocates a large chunk of 

memory for use and frees it after it is finished with the memory. At 

that moment, the freed memory can be reused by the program, but 

it is not released to the operating system. The reason for this is that 

when memory was allocated by the program, the operating system 

allocated all the needed memory pages. The operating system will not 

release the memory pages, even after they are freed by the program, 

until the program is exited. As a result, other programs running on the 

machine needing memory will ultimately crash. 

Parasoft Insure++ can help you prevent memory blowouts. Figure 

1 shows the Heap History report generated for a program showing 

memory blowout. This problem can be easily identified by the large 

size of the heap and the small amount of allocated memory. This shows 

up on the display as a low ratio of allocated memory to heap space. 

Without Parasoft Insure++, it would be difficult--if not impossible--for 

most developers to detect this impending catastrophe. 

MEMORY FRAGMENTATION 

Most programs that use a lot of dynamic memory are at risk of 

memory fragmentation. Memory fragmentation can be caused 

by the overuse of memory, which slows down memory allocation. 

For example, when a program allocates and frees small and large 

memory blocks interchangeably, the programmer will expect the total 

amount of allocated memory to remain constant. However, memory 

allocation routines cannot fit blocks of memory in freed spaces that 

are the wrong size. This will lead the program to request new pages 

Figure 1. Memory Blowout



© 2017 Parasoft Corporation

3

for memory from the operating system. As a result, the program will 

consume more memory and ultimately run out of dynamic memory 

without leaking a single byte. 

Parasoft Insure++ Heap Layout report can help you monitor memory 

fragmentation (See Figure 2), which immediately presents the layout 

of dynamically allocated blocks and the free spaces in between them. 

By simply clicking on a block, the status of the block, its memory 

address, its size, and the stack trace where it was allocated are 

displayed. 

MEMORY OVERUSE (HOGGING) 

Memory overuse or hogging occurs when memory is allocated by 

a program and never freed. Memory is not leaked during overuse, 

though, because pointers remain in the program—the memory can be 

freed, the program just doesn’t free it. As a result, the program uses 

more and more memory until it runs out and crashes. 

Memory overuse can be observed in the Heap History graph. If 

the amount of leaked memory is negligible and stays constant, or 

Insure++ does not report any leaks but the Heap History exhibits a 

stairway pattern (as in Figure 3), the program is hogging memory and 

eventually will run out. In these cases, the programmer should use the 

Query report to look for totals of memory allocated for different stack 

Figure 2. Monitoring Fragmented Memory

traces. If a stack trace shows the total amount of allocated memory 

growing, it likely contains the offending line of the source code (see 

Figure 4). At that moment, the programmer should analyze the code 

and verify that the program needs to allocate memory at that stage 

and needs to keep it. If it doesn’t, this is an algorithmic problem and 

needs to be fixed. 

MEMORY BOTTLENECKS 

Bottlenecks occur when an operating system spends more time 

paging memory than running the program. Memory bottlenecks 

frequently arise when a program uses large amounts of dynamic 

memory or calls large amounts from different parts of the program. 

They are particularly problematic because a program may perform 

well in-house but stop dead in the field. 

Paging can significantly slow down execution of the program and 

effectively prevent it from running. A program may perform in-house 

without having to page, but this can change when different conditions 

are introduced. A customer might have less memory or be crunching 

much more data than the program was tested with. As a result, the 

program uses a larger portion of memory and forces the operating 

system to page. The problem is compounded if the program accesses 

a lot of memory from different locations. 

To avoid this problem, the program should be analyzed with respect 

to how much memory different parts of the program need and if that 

need is warranted. Parasoft Insure++ enables you to calculate how 

Figure 3. Memory Hogging

Figure 4. Analyzing Memory with Query



Parasoft helps organizations perfect today’s highly-connected applications by automating time-

consuming testing tasks and providing management with intelligent analytics necessary to focus 

on what matters. Parasoft’s technologies reduce the time, effort, and cost of delivering secure, 

reliable, and compliant software, by integrating static and runtime analysis; unit, functional, 

and API testing; and service virtualization. With developer testing tools, manager reporting/

analytics, and executive dashboarding, Parasoft supports software organizations with the 

innovative tools they need to successfully develop and deploy applications in the embedded, 

enterprise, and IoT markets, all while enabling today’s most strategic development initiatives 

— agile, continuous testing, DevOps, and security.

ABOUT PARASOFT

Copyright 2017. All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or reg-
istered trademarks of Parasoft Corporation. All other products, services, and companies are trademarks, registered 
trademarks, or servicemarks of their respective holders in the US and/or other countries.

www.parasoft.com

Parasoft Headquarters:
+1-626-256-3680

Parasoft EMEA:
+31-70-3922000

Parasoft APAC:
+65-6338-3628

4

much memory is allocated by a specific path, routine, or block type. 

This type of analysis is critical for understanding algorithmic problems 

and can make it much easier to improve memory performance. 

REVEAL THE “TRUTH” ABOUT MEMORY USE 

When developers write their programs, they usually have some 

idea how memory should be allocated by the program. This idea is 

typically far from what the program is actually doing. Parasoft Insure++ 

lets developers see the “truth” about their programs by visualizing 

memory allocation at runtime. 

Developers can single-step the program by setting breakpoints at 

calls to malloc, free, new, delete, realloc and then watch allocations 

as they happen. This works as a confirmation of an algorithm’s 

performance and shows whether or not the program works correctly. 

Single-stepping should be done just after a program is first built. 

By checking memory usage early, you can save a lot of headaches 

down the road. Also, you can spot significant algorithmic problems. 

It is particularly useful at this stage to look at the Block Frequency 

graph of Parasoft Insure++ (see Figure 5). This graph will show the 

distribution of memory blocks. 

CLEANING UP LEAKS 

Not all leaks in a program have to be cleaned. Leaks are only deadly 

if they reoccur constantly. Leaks that only occur at the beginning of a 

program can be ignored in many cases. But, leaks that occur during 

the execution of a program--especially leaks in parts containing 

loops--are deadly and need to be fixed. The severity of a leak can 

be easily determined using the Time Layout display (See Figure 6). 

This diagram shows blocks as they are allocated in time sequence. 

All leaks concentrated at the initial stage of program can be safely 

ignored. On the Time Layout display, clicking on a block will show its 

size, address, and stack trace where it was allocated. 

Figure 5. Viewing Block Frequency

Figure 6. Checking the Timing of a Leak


