
A Practical Guide to
Accelerate MISRA C

2023 Compliance With
Test Automation

W H I T E P A P E R

A Practical Guide to Accelerate MISRA C 2023 Compliance With Test Automation
Whitepaper

2

INTRODUCTION
The challenges of building embedded software applications continue to increase. Demands to
incorporate competencies in network connectivity, artificial intelligence (AI), and other performance
improvements have increased code complexity and, in turn, heightened the risk of security
vulnerabilities and safety hazards. To help mitigate these challenges, many organizations look to the
Motor Industry Software Reliability Association (MISRA) coding guidelines.

MISRA C 2023 guidelines for the use of the C language in critical systems is a definition of a subset of
the C language designed to minimize potential errors, security vulnerabilities, and mistakes that cause
program failure or serious errors. Although initially created for automotive systems, the guidelines
have been adopted by many other industries for safety-critical applications. In all cases, determining
compliance, which is increasingly required in vendor/client relationships, can be complex and time-
consuming if it's not automated.

There are many tools on the market that report errors indicating when code is violating a guideline.
However, few tools simplify the reporting and documentation process required for demonstrating
compliance—never mind implementing the guidelines into your software development process!

Test verification and validation solutions like Parasoft's make reaching MISRA compliance quicker and
with less cost. The solution streamlines the entire process of achieving, documenting, and maintaining
MISRA compliance throughout the product life cycle. It also streamlines other automated testing
methods like unit, regression, integration, system, structural code coverage, and more.

A Practical Guide to Accelerate MISRA C 2023 Compliance With Test Automation
Whitepaper

3

LEGACY & EXISTING CODE
Reuse of code is a reality for every project. However, reusing legacy code in a safety-critical software
project and achieving full MISRA C 2023 compliance is a daunting task.

The original MISRA principles were created to be applied as code being developed. Even the
standard itself provides a warning.

“…a project that checks for MISRA C compliance late in its cycle is likely to spend a
considerable amount of time re-coding, re-reviewing and re-testing. It’s therefore
expected that the software development process will require the early application
of MISRA C principles.”

Because many organizations do need to reuse their legacy codebases for business reasons, the
MISRA Compliance: 2020 guidance document was created in response to these challenges. In it,
there's a clear distinction between the new, native code that's developed in the scope of a current
project and the adopted code that's developed outside of the scope of the project. In this paper, we
explain a practical approach to dealing with legacy code and MISRA C compliance.

SHADES OF GRAY
Although it seems like it should be simple to understand what type of code you’re dealing with, the
situation in many cases isn’t black and white. For example, an initial prototype that was developed
without following MISRA guidelines is productized, and then management realizes that compliance is
a requirement for the intended marketplace.

Typically, the legacy codebase was never developed with any coding guidelines in mind. Therefore, a
codebase cannot be automatically classified as adopted code if updates are required in the context of
a new project adding to the complexity of the situation.

All too often, initial scans of a large codebase via a static analysis tool with all MISRA C 2023 rules
enabled, including the latest amendments to the standard, produces tens of thousands of violations.
After the initial shock, teams begin to find creative ways of addressing the violations. It’s important
for development teams not to be deterred. There is light at the end of the tunnel.

Over time, we’ve collected and identified best practices and approaches that development teams have
used to make the code compliant while not interfering with the ongoing development velocity. In this
paper, we share some practical, balanced approaches to make existing codebases MISRA compliant.

https://www.misra.org.uk/
https://www.misra.org.uk/app/uploads/2021/06/MISRA-Compliance-2020.pdf

A Practical Guide to Accelerate MISRA C 2023 Compliance With Test Automation
Whitepaper

4

FOLLOW THE GUIDANCE IN THE MISRA COMPLIANCE:
2020 FRAMEWORK
MISRA C 2023 is a set of coding guidelines for the C programming language. The focus of the
standard is increasing safety of software by preemptively preventing programmers from making
coding mistakes that can lead to runtime failures and possible safety concerns by avoiding known
problem constructs in the C language. However, MISRA continues to publish amendments to its latest
MISRA C 2023 coding guidelines to mitigate the growing risk of cyber security coding vulnerabilities.

Over the years, many developers of embedded
systems were—and still are—complaining that
MISRA C was too stringent of a standard and
that the cost of writing fully compliant code was
difficult to justify.

Realistically, given that MISRA C is applied in
safety- and security- critical software, the value
of applying the standard to a project depends on
factors like the following.

 » Risk of a system malfunction because of a software failure.

 » Risk of system exploit because of a software vulnerability.

 » Cost of a system failure to the business.

 » Development tools and target platform.

 » Level of developer’s expertise.

Programmers must find a practical middle ground that satisfies the spirit of the standard and still
claim MISRA compliance without wasting effort on non-value-added activities.

In the document, MISRA Compliance: 2020, the MISRA Consortium provides the response that was
needed by the community, with a reasonably well-defined framework of what the phrase “MISRA
compliant” truly means.

To claim MISRA compliance, it's required to establish:

 » Use of a disciplined software development process.

 » Exactly which guidelines are being applied.

 » The effectiveness of the enforcement methods.

 » The extent of any deviations from the guidelines.

 » The status of any software components developed outside of the project.

A Practical Guide to Accelerate MISRA C 2023 Compliance With Test Automation
Whitepaper

5

PROOF OF COMPLIANCE: THE END GOAL
A key problem that developers of safety-critical software encounter is how to demonstrate and
prove compliance at the end of the project. There's a tendency to add more information into the
reports than is required. It can become a contentious issue, resulting in wasted time and effort if the
evaluation criteria are based on subjective opinions from the various stakeholders.

A recommended approach to improving the evaluation of compliance readiness is to use existing
templates for both the final compliance and tool qualification report. If the information is not required
by the standard, avoid adding it. Combining extra information is not only a waste of time, but also
introduces a risk of delaying an audit process. Having the documentation auto generated, as Parasoft
does, is the ultimate solution.

The MISRA Compliance: 2020 document is also helping organization to use a common language
articulating the compliance requirements by defining the following artifacts.

 » Guidelines compliance summary

 » Guideline enforcement plan

 » Deviations report

 » Guideline recategorization plan

The following screenshots show auto-generated reports with links to other records and/or expansion
of information on the page.

Figure 1:
Parasoft's Guidelines
Compliance Report
summary is the primary
record of overall project
compliance.

A Practical Guide to Accelerate MISRA C 2023 Compliance With Test Automation
Whitepaper

6

Figure 2:
Parasoft's Guideline
Enforcement Plan
demonstrates how
each MISRA guideline
is verified.

Figure 3:
Parasoft's Deviation
Report documents
all approved
deviation permits.

A Practical Guide to Accelerate MISRA C 2023 Compliance With Test Automation
Whitepaper

7

START BY ESTABLISHING THE END GOALS
Work with the stakeholder and establish the Guideline Re-categorization Plan (GRP) at the beginning
of the project. It’s possible that there could be several GRPs.

 » A GRP for new code being written during the life of the project to ensure a high level of code
quality is delivered.

 » Another GPR for the use of legacy code that contains a different set of expectations because it
may have proven itself out in the field for many years.

Also take the following into account.

1. For every incremental change, is there visibility into how many items of work are remaining to get
to full compliance? This helps to plan the work accordingly and set the right expectations with
the management.

2. Have the Guidelines Compliance Summary (GPS) report templates been reviewed with the
acquirer at the beginning of the project? Were they acceptable and complete?

There are templates for these documents that commercial static analysis tool vendors, including
Parasoft, provide to help organizations satisfy the MISRA 2020 Compliance framework.

Figure 4:
Parasoft's Guideline
Re-categorization Plan
communicates how the
guidelines are to be
applied as part of the
stakeholder/supplier
relationship.

A Practical Guide to Accelerate MISRA C 2023 Compliance With Test Automation
Whitepaper

8

TAKE A PHASED APPROACH: DIVIDE & CONQUER
The initial scan of the existing code by a static analysis tool tends to produce thousands of violations,
particularly when using a default set of rules. It's impractical to stop new development efforts to
focus on fixing all these identified violations. In fact, we’ve seen cases where regressions were
introduced when significant changes to the codebase were made to fix the static analysis violations.
Therefore, it’s important to establish a workflow to fix the violations over time without disrupting
the development process or degrading the quality of the software.

Here are key recommendations for using static analysis tools for the first time in a project.

 » Baselining. After the initial scan of the code, mark all the initial violations as “to be addressed
later” and set as a baseline. From that point forward, when updating existing code and/or
developing new code, maintain a policy of “no new violations allowed.”

This policy can be enforced by the static analysis tool, applying a code review process or a
continuous integration (CI) tool like GitHub, GitLab, Azure DevOps, Jenkins, or others. When
developers have a few hours or days to spare, they can resolve remaining violations marked from
the baseline. Organizations can prioritize this approach based on the following.

 » Current code under development

 » Code review findings

 » Relying on metrics, like severity, to suggest the next violation to resolve

 » Line in the sand. The development sets a date—the line in the sand. After this date, every
translation unit (individual source file) modified must have all violations addressed. All unmodified
translation units automatically fall under the true adopted code definition from the MISRA
compliance document.

 » Severity based prioritization. The developer fixes all mandatory findings for the module assigned
to them. Over time, they address all Required violations as time permits based on a priority
selected by the team lead. Parasoft uses AI and machine learning to learn from this prioritization
process and can take ownership of this task based on real world historical behavior.

https://github.com/marketplace/actions/run-parasoft-c-c-test
https://gitlab.com/parasoft/cpptest-gitlab
https://marketplace.visualstudio.com/items?itemName=parasoft.cpptest-azure-devops
https://plugins.jenkins.io/parasoft-findings/

A Practical Guide to Accelerate MISRA C 2023 Compliance With Test Automation
Whitepaper

9

STAFF COMPETENCY & TRAINING
Today, development teams employ coding standards as a method to define, manage, and utilize
a group of coding practices, with the prime objective being consistency and ensuring a baseline
for code quality. The main aim of a coding rule is to limit use of the language so it prevents the
developer from doing things that are “wrong” and can be potentially dangerous. Developers can
avoid many defects in software by adopting sensible language-use restrictions. This results in style
uniformity, which is valuable as a discipline in software projects.

The versatility aspect of the C++ and C languages allows developers to write code that can be
unintentionally incorrect and possibly dangerous. It's easy for him or her to write code that adheres
to the requirements of the language’s standard but this, nonetheless, can result in undesirable
behavior and program crashes. These include, for example, code that accesses memory beyond the
parameters of an arithmetic process or of an array that results in memory or boundary violations.

It's obviously important to identify these potential problems. But the aim of MISRA is to prevent
problems, not simply identify them. A compiler can detect some, but using a dedicated analysis tool
is more effective.

The MISRA standard emphasizes that adhering to coding rules is only one component to developing
software successfully. Developers must integrate each programming project into a disciplined
engineering setting that includes methodical development workflows and apply proven in-use
validation tools.

Figure 5:
Parasoft DTP – Reporting
and analytics compliance
dashboard

For any of the approaches described above, it’s important for technical leads and management to
constantly monitor the progress and project compliance status via a centralized dashboard. For
example, Parasoft’s reporting hub provides the following pre-configured compliance status dashboard.

A Practical Guide to Accelerate MISRA C 2023 Compliance With Test Automation
Whitepaper

10

The expertise and training of the development staff are key factors often overlooked by software
organizations and frequently identified by auditors as the number one issue when evaluating the
readiness of a product.

According to MISRA guidelines, staff competency is an important part of the MISRA compliance. It’s
best to conduct training at the beginning of the project and have a training date recorded with all the
developers signing off that they received the training. At the end of the project, the development
team should be able to prove the following.

 » Staff that approves deviations understands and has been trained to recognize the risks associated
with the violation.

 » Staff has been trained to properly configure and use the static analysis and development tools
prior to their use.

In practice, training for an experienced team is relatively short. A few days invested in the beginning
of the project saves weeks of rework, quality issues down the road and missed project deadlines.

TOOL QUALIFICATION
A less obvious component of MISRA compliance, often left until the end of the project, is the
qualification of the development tools used in the product, and proving they're fit for purpose
according to the pertinent safety standard. If a tool needs qualification, what level of validation
needs to be performed?

Figure 6:
Parasoft C/C++test TÜV
SÜD Certificate

Tool qualification needs to start with tool selection,
ensuring you're using a development tool that's
certified by an organization, such as TÜV SÜD. This
will significantly reduce the effort when it comes to
tool qualification.

Parasoft C/C++test is certified by TÜV SÜD for
functional safety according to IEC 61508, ISO 26262,
and IEC 62304 standards for both host based and
embedded target applications, paving the way for
a streamlined qualification of static analysis, unit
testing, and coverage requirements for the safety-
critical standards.

While in many instances tool qualification is required,
the method used to perform tool qualification varies
depending on the risk associated with the tool
malfunction and the software criticality level. Parasoft
provides a qualification kit and certifications for
specific safety standards and their requirements.

In the absence of this efficient kit, software teams must consider tool qualification costs when
evaluating commercial, free, and open source tools. Some standards like DO-178C provide
reasonable guidance on tool qualification requirements. Regardless of the method, the goal of the
tool qualification process is to state that “the tool is valid for its intended use” and provide a proof
and rationale for how the team came to this conclusion.

https://www.parasoft.com/solutions/compliance/tool-qualification/
https://webstore.iec.ch/publication/22273
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/38421.html
https://en.wikipedia.org/wiki/DO-178C

A Practical Guide to Accelerate MISRA C 2023 Compliance With Test Automation
Whitepaper

11

REDUCE THE MANUAL EFFORT OF TOOL QUALIFICATION
Traditionally, tool qualification has meant significant amounts of manual labor, testing, and
documenting development tools to satisfy a certification audit. But this documentation-heavy
process requires manual interpretation and completion. As such, it's time-consuming and prone to
human error.

A sensible way to reduce the workload is to bring
automation to the process with qualification
kits. Qualification kits walk the user through an
intuitive workflow to dramatically reduce the
amount of effort required. For example, here are
the benefits of using Parasoft Qualification Kits.

 » Automatically reduce the scope of
qualification to only the parts of the tool
in use.

 » Automate tests required for qualification as
much as possible.

 » Handle any manual tests as eloquently as
possible and integrate results alongside
automated tests.

 » Automatically generate audit-ready
documentation that reports on exactly
what’s being qualified, not more or less!

SUMMARY
There's no silver bullet that makes achieving MISRA compliance easy in safety-critical projects.
However, by introducing the MISRA Compliance 2020 framework and using a practical, phased
approach with a clearly defined end point in mind, software development teams can achieve
compliance without significantly disrupting their development process. The bottom line is that there's
still a fair amount of work to achieve compliance, but automation goes a long way to reducing the
tedious manual processes.

A Practical Guide to Accelerate MISRA C 2023 Compliance With Test Automation
Whitepaper

12

TAKE THE NEXT STEP
Talk to a compliance expert to learn how your development team can get the most extensive
MISRA coverage.

ABOUT PARASOFT

Parasoft helps organizations continuously deliver quality software with its market-proven, integrated
suite of automated software testing tools. Supporting the embedded, enterprise, and IoT markets,
Parasoft’s technologies reduce the time, effort, and cost of delivering secure, reliable, and compliant
software by integrating everything from deep code analysis and unit testing to web UI and API
testing, plus service virtualization and complete code coverage, into the delivery pipeline. Bringing all
this together, Parasoft’s award-winning reporting and analytics dashboard delivers a centralized view
of quality enabling organizations to deliver with confidence and succeed in today’s most strategic
ecosystems and development initiatives—security, safety-critical, Agile, DevOps, and continuous
testing.

“MISRA”, “MISRA C” and the triangle logo are registered trademarks of The MISRA Consortium Limited. ©The MISRA Consortium Limited, 2021. All
rights reserved.

https://www.parasoft.com/contact/
https://www.parasoft.com/

