
The Ultimate Guide to
CI/CD for Embedded

Software Systems

W H I T E P A P E R

The Ultimate Guide to CI/CD for Embedded Software Systems
Whitepaper

2

Continuous integration and continuous delivery (CI/CD) combine to form continuous software
development. CI is the practice of frequent integration—merging smaller build units into software
applications, services, libraries, or components. For safety- and security-critical embedded systems,
CD stands for continuous delivery, which requires extensive testing and may also require software
certification before deploying out to the field. The use of the term deployment in CI/CD is reserved
for web applications, microservices, APIs for backend services, and other types of deliverables where
the software does not require extensive testing to deploy.

The focus of this whitepaper is to arm you with best practices for integrating automated testing into
the CI software development workflow to detect defects early and deliver high-quality code. This
is commonly referred to as continuous testing (CT), where software development is combined with
software testing as part of the build process, performing the steps frequently, multiple times a day.

Automation in Continuous Integration and Delivery

“Continuous Integration is a software development practice where members of a team
integrate their work frequently, usually each person integrates at least daily — leading
to multiple integrations per day. Each integration is verified by an automated build
(including test) to detect integration errors as quickly as possible.

“You achieve continuous delivery by continuously integrating the software done
by the development team, building executables, and running automated tests
on those executables to detect problems. Furthermore you push the executables
into increasingly production-like environments to ensure the software will work in
production.”
—Martin Fowler

Without automation of the build process and,
by extension, processes connected to creating
deployment, artifacts and build verification
would be tedious and time consuming—the
antithesis of continuous.

Continuous integration relies on a shared
repository and automated software build
tools. It’s important to immediately sort out
integration issues and broken builds. Following
that, the most critical step is integrating
continuous testing, an integral part of the CI/CD
pipeline designed to ensure that code changes
are automatically and continuously tested
throughout the development life cycle.

When developers make changes to the codebase
and commit the changes, this triggers the build
process, which includes compiling the code
and preparing the environment for testing.
Developers can perform static analysis, unit
testing, code coverage, and other test methods
quickly and provide immediate feedback.

Failing tests force code fixes early in the
development cycle, and when all tests pass,
deployment to the main branch occurs. This
continuous workflow ensures that code changes
are constantly verified through automated
tests, providing rapid feedback and maintaining
the overall health and quality of the software
throughout its life cycle.

The Ultimate Guide to CI/CD for Embedded Software Systems
Whitepaper

3

Figure 1:
Continuous integration
as part of a continuous
development cycle.

Continuous Integration and Delivery for Embedded Systems
CI/CD is popular and a best practice in embedded software development, which is often
constrained in ways that nonembedded development is not. Solutions like Parasoft C/C++test CT
accommodate continuous testing. It naturally integrates with popular open source unit testing
frameworks like GoogleTest, Boost.Test, CppUnit, and custom solutions, which are further
enhanced with C/C++test CT’s code coverage, requirements traceability, and reporting capabilities.
The solution’s versatility eliminates IDE dependencies, making it compatible with containers and a
valuable extension for VS Code.

Besides the physical and computational constraints of the target
hardware platform, there are constraints in the marketplace. The
marketplace for embedded software has unique requirements for
safety, security, privacy, and extremely long life cycles. Products can
remain in the market for decades.

At the development level, embedded software isn’t much different
than typical application development, requiring IDEs, compilers,
static, and dynamic analysis and build tools. However, tools often
target different architectures than they work on (host versus target
environment). Versions of tools are important to ensure homogenous
development environment across the team.

Automation at the build level uses the same techniques. But when
code needs to be executed, the host/target barrier becomes
significant. Automation that requires code execution needs special
support in embedded software development.

Automating testing for embedded software is more challenging due to the complexity of initiating
and observing tests on embedded targets, not to mention the limited access to target hardware that
software teams have. Software test automation is essential to make embedded testing workable on a
continuous basis from the host development system to the target system.

The Ultimate Guide to CI/CD for Embedded Software Systems
Whitepaper

4

Testing embedded software is particularly time consuming. Automating the regression test suite
provides significant time and cost savings. In addition, test results and code coverage data collection
from the target system are essential for validation and standards compliance, as needed.

Traceability between test cases, test results, source code, and requirements must be recorded and
maintained, which means data collection is critical in test execution.

C and C++ testing solutions like Parasoft’s are offered with their test harness optimized to take
minimal additional overhead for the binary footprint and provide it in the form of source code, where
it can be customized if platform-specific modifications are required.

Figure 2:
A high level view of
deploying, executing, and
observing tests from host
to target.

One huge benefit that the Parasoft C/C++test solution offers, is its dedicated integrations with
embedded IDEs and debuggers that make the process of executing test cases smooth and automated.
Supported IDE environments include Eclipse, VS Code, Green Hills Multi, Wind River Workbench, IAR
EW, ARM MDK, ARM DS-5, TI CCS, Visual Studio, and many others. See all technical specifications.

C/C++test supports the creation of regression testing baselines as an organized collection of tests
and will automatically verify all outcomes. The same is true for C/C++test CT when in collaboration
with testing frameworks like GoogleTest. Teams can automatically and regularly run the tests to
verify if code modifications change or break the functionality captured by regression tests. If any
changes are introduced and test cases fail, teams will receive an alert to the problem.

The parity of capabilities of remote target execution with host-based testing means that
embedded software teams can reap the same benefits of automation as any other type of
application development.

Listening Agent

Download/Test

Parasoft Runtime Library
Jtag, Serial, Ethernet…

Communication

Instrumented Application

https://www.parasoft.com/ctest/specifications/

The Ultimate Guide to CI/CD for Embedded Software Systems
Whitepaper

5

Git Server

Pull code

Dev / desktop

Build

Run

Containerized Development Platform at Every Developer’s Desktop

It’s easy to configure the command-line based tools, Parasoft C/C++test CT and C/C++test
Professional, to work with a compilation toolchain and the execution environment deployed in
containers. Even though containers were initially developed to solve problems with the deployment
of microservices and web-based applications, they recently gained popularity among embedded
teams—especially big teams that use containers to manage complex toolchains.

When it comes to managing complex development environments, specifically in safety-critical
software development, teams usually struggle with the following challenges:

 » Synchronizing upgrades for the entire team to a new version of a tool like a compiler, build
toolchain, and so on.

 » Dynamically reacting to a new security patch for the library or software development kit (SDK),
and the like.

 » Assuring consistency of the toolchain for all team members and the automated infrastructure
(CI/CD).

 » Ability to version the development environment and restoring it to service the older version of
the product that was certified with the specific toolchain.

 » Onboarding and setting up new developers.

All these problems are easy to solve with containers.

Using a Command-Line Based Tool With a Containerized Compilation Toolchain

It’s easy to configure the command-line based tool, Parasoft C/C++test Professional, to work with
a compilation toolchain and the execution environment deployed in containers. The tool supports
deployments that are based on Linux and Docker containers.

Figure 3:
An example deployment
of Parasoft C/C++test
with Docker build and run
containers.

The Ultimate Guide to CI/CD for Embedded Software Systems
Whitepaper

6

Well-suited for in-container static analysis deployments, tools like
C/C++test Standard can be packaged with the compiler and build
system in one container image for CI/CD and deployed to developers’
desktops for the local command-line scans.

The tool accesses the containerized compiler (GNU GCC) and the
runtime environments. In this specific setup, there are two separate
Docker containers:

 » One for the compiler and build tools

 » Another for the execution environment (such as a stripped down
 version of embedded Linux)

The diagram also shows Jenkins using containerized C/C++test to
run static analysis. In this specific setup, the tool, the compilation
toolchain, and the build tools are deployed in the container shown
in the top right corner of the diagram.

The container below it in the bottom right, provides the execution environment, which may be
required to execute runtime tests, like unit tests or automated system level tests. If you on want to
implement static analysis, then the setup will most likely include only one type of container with the
compilation toolchain and Parasoft C/C++test.

Benefits of Continuous Integration and Delivery
The biggest benefit of CI/CD is reducing project risk. In the past, too many projects rely on “big bang”
software integration efforts where software teams attempt to integrate their software too near the
end of the product development. These teams encounter huge issues with integration and are often
under massive “crunch” schedules to get the project finished.

Testing is pushed even further to the end of the project where it becomes too little too late. By
using continuous integration, software teams always have a full build of the product ready for
testing, delivery, and release. Rather than throw things together in one big bang, the team has gone
through smaller integration steps, continuously, to find issues early and reduce the risk from late-
cycle integration.

Here are more benefits to continuous integration. Think of this list as incremental and contributing to
reduced risk and better quality.

 » Integration testing is early and often, which
means bugs are exposed earlier where they
can be fixed easier and more cheaply.

 » Regression testing starts earlier so that new
features can be tested to see how they impact
existing code. New tests are added to the
regression test suite after each iteration.

 » Incremental improvement of the product in
terms of new features added and tested and
bugs removed. It’s easier to build in quality
and security in an incremental fashion.

 » Enables continuous testing and delivery
which are equal parts of the continuous
development process. Continuous integration
alone isn’t effective without continuous
testing and delivery.

https://martinfowler.com/articles/continuousIntegration.html#BenefitsOfContinuousIntegration

The Ultimate Guide to CI/CD for Embedded Software Systems
Whitepaper

7

Continuous Integration and Delivery
Needs Continuous Testing
Continuous integration is just part of a continuous development process that needs testing and
delivery to reap the benefits of the approach.

Continuous testing provides an automated, unobtrusive way to obtain immediate feedback on a
software release candidate. Continuous testing isn’t simply more test automation. The purpose is
to build quality and security into the product as part of a continuous integration/release/delivery
process. Some of the activities include:

 » Static analysis for early detection of bugs
and security vulnerabilities. Early detection,
usually at the developer’s desktop, prevents
bugs from wasting unit testing time and
entering the software build.

 » Coding standard enforcement helps conform
to required industry standards (such as
MISRA C/C++ or CERT C/C++) and prevents
whole classes of defects and poor coding
practices from entering the build to become
larger issues later on.

 » Automated test execution is needed
as soon as the application is built. The
required tests that need to verify units
also include nonfunctional, load, security,
and performance testing. These tests are
executed directly from the CI orchestration
system. The results from these tests get
pulled back into the same build and gathered.
Code coverage (statement, branch, & MC/DC)
information is cross referenced by unit, file,
test, and build number.

 » Requirements traceability correlates
code, tests, and other assets with business
requirements. This provides an objective
assessment of the requirements that are
working as expected, which ones require
validation, and the ones at risk.

 » Test impact analysis provides direction to
the team on where testing efforts need to
go. From a risk perspective, changed code
impacts more than the software itself, it
impacts relevant tests and assets. As code
changes are made, are new tests needed or
existing tests modified? What are the impacts
on dependencies? Automation helps teams
focus just on the tests that are impacted.

 » Test data management significantly increases
the effectiveness of a continuous testing
strategy. Good test data and test data
management practices increase coverage
and drive more accurate results. However,
developing or accessing test data can be
a considerable challenge, in terms of time,
effort, and compliance.

Data generation underpins continuous testing
because you can continuously generate data
appropriate for the type of scenario you’re
trying to execute instead of trying to rely on
production data sources and hoping that all
the right data is in the right place. Combining
data generation with simulation will allow you
to inject the right data in the right place at the
right time.

The Ultimate Guide to CI/CD for Embedded Software Systems
Whitepaper

8

CI/CD & Continuous Testing: The Foundation for DevSecOps
It's worth mentioning that DevOps and DevSecOps methodologies share the use of automation and
continuous processes for establishing collaborative cycles of development. While DevOps prioritizes
delivery speed, DevSecOps shifts security to the left, which is more important in software that's
classified as embedded safety- and security-critical.

DevSecOps represents a shift in software development processes
that stresses collaboration between end users, developers, and
IT professionals. Software test automation can enhance these
connections and help organizations accelerate secure software
development.

Software test automation plays an important role but it’s just one
piece of the DevSecOps puzzle. Testing is often one of the greatest
constraints in the software development life cycle (SDLC) so
optimizing security processes that allow testing to begin earlier—
and shrink the amount of testing required—has a significant impact
on the security of the software and development efficiency.

Adopting a continuous testing process (more than just automated tests running regularly) helps
promote the 6 Pillars of DevSecOps:

 » Collective responsibility

 » Collaboration and integration

 » Pragmatic implementation

 » Compliance and development

 » Automation and measurement

 » Monitoring and reporting

Shift-Left Security in DevSecOps

The drive to shift-left security in the SDLC comes from the desire to find and fix bugs and security
vulnerabilities as early as possible. Issues are much easier, cheaper, and less risky to fix earlier, not
later. Common sense, but the software industry is full of examples where critical defects caused
catastrophic results.

Figure 4:
Finding and fixing security
vulnerabilities early is
cheaper and less risky.

The essential requirements to shift-left security
center around the need to incorporate security
into any and all applications at the very
beginning. Security can’t be added on. It must
be built in. Here are some recommendations
to shift-left security in the DevSecOps pipeline
that help create the necessary platform for
continuous testing.

 » Accelerate security

 » Improve test automation

 » Increase code coverage

 » Optimize testing with smart test execution

 » Automate bidirectional traceability

https://www.nccoe.nist.gov/sites/default/files/2021-10/03-jmartin-SAFECode-6-Pillars-of-DevSecOps.pdf

The Ultimate Guide to CI/CD for Embedded Software Systems
Whitepaper

9

Accelerate Security in DevSecOps

Modern DevSecOps initiatives require the ability to assess the risks associated with a release
candidate—instantly and continuously. Continuous testing provides an automated, unobtrusive way
to obtain immediate feedback on the security risks associated with a software release candidate. It
guides development teams to meet security requirements and helps managers make informed trade-
off decisions to optimize the release candidate.

Continuous testing delivers a quantitative assessment of risk as well as actionable tasks that mitigate
risks before they progress to the next stage of the SDLC. The goal is to eliminate meaningless
activities while improving quality and security and driving development towards a successful release.

 Improve Test Automation to Optimize the CI/CD

It should be clear at this point that test automation is a key aspect to achieve both quality and
security in a CI/CD pipeline. In turn, it becomes clear that test automation needs to be a focus for
improvement and optimization.

The largest struggle teams face is what to test. Since full system testing with each new candidate
release is too time consuming and expensive, teams inevitably compromise testing by picking parts
of the test suite to execute.

Focusing testing on exactly what is needed to increase code coverage and determine which
regression tests are needed after each code change is critical to accelerating testing, enabling
continuous testing, and accelerating the DevSecOps pipeline.

Increase Code Coverage

In general, code coverage is a measurement of how much of the production code is executed while
your automated tests are running. By running a suite of tests and looking at code coverage data,
there is a general sense of how much of the application is being tested.

There are multiple kinds of code coverage. For embedded systems, you need to be familiar with
statement, branch, and MC/DC. For the strictest requirements, like in avionics software, object code
verification or assembly language code coverage may be required.

Structural Code Coverage

Collecting and analyzing code coverage metrics is an important aspect of safety critical embedded
software development. Code coverage measures the completion of test cases and executed tests.
It provides evidence that validation is complete, at least as specified by the software design.

The Ultimate Guide to CI/CD for Embedded Software Systems
Whitepaper

10

It also demonstrates the absence of unintended behavior—code that isn’t covered by any test is a
liability since its behavior and functionality are unknown. The amount and extent of code coverage
depends on the safety integrity level. The higher the integrity level, the higher the rigor used and,
inevitably, the number and complexity of test cases. Below are examples of types of recommended
code coverage.

 » Statement coverage requires that each program statement be executed at least once.

 » Branch coverage ensures that each possible decision branch (if-then-else constructs) is executed.

 » Modified condition/decision coverage (MC/DC) requires the most complete code coverage to
ensure test cases execute each decision branch and all the possible combinations of inputs that
affect the outcome of decision logic. For complex logic, the number of test cases can explode so
the modified condition restrictions are used to limit test cases to those that result in stand alone
logical expressions changing. See this tutorial from NASA.

Advanced unit test automation tools like Parasoft C/C++test provide all of these code coverage
metrics and more. C/C++test automates data collection on host and target testing and accumulates
test coverage history over time. Code coverage history can span unit, integration, and system testing
to ensure coverage is complete and traceable at all levels of testing. Parasoft C/C++test CT can
integrate structural code coverage with these and other types of coverage metrics into open source
frameworks like GoogleTest.

Code Coverage With Automated Unit Test Case Creation

The creation of productive unit tests has always been a challenge. Functional safety standards
compliance demands high-quality software, which drives a need for test suites that affect and
produce high code coverage statistics. Teams require unit test cases that help them achieve their
coverage goals which is still important even outside the realm of safety critical software. Any code
not covered by at least one test is shipping untested!

Increasing code coverage can be challenging. Analyzing branches in the code and trying to find
reasons why certain code sections aren’t covered, continues to steal cycles from development teams.

https://shemesh.larc.nasa.gov/fm/papers/Hayhurst-2001-tm210876-MCDC.pdf
https://www.parasoft.com/how-to-obtain-100-structural-code-coverage-of-safety-critical-systems/

The Ultimate Guide to CI/CD for Embedded Software Systems
Whitepaper

11

Resolve Coverage Gaps

Teams can resolve coverage gaps in test suites using a coverage advisor. Parasoft discovered how
to use advanced static code analysis (data and control flow analysis) to find values for the input
parameters required to execute specific lines of uncovered code.

This analysis computes preconditions for function parameters, global variables, and external function
calls required to execute a specific line of code. The Coverage Advisor view presents a collection of
solutions for the user-selected lines of code. Presented values are used for creating new unit test
cases. The functionality boosts the productivity of developers working on unit test cases to improve
code coverage.

Each coverage solution includes:

 » Required dependencies. Dependencies that need to be customized to cover the selected line.
These may include function parameters, external function calls, global variables, local variables,
and class members.

 » Preconditions. Conditions that must be satisfied by the required dependencies to cover the
selected line. Clicking a precondition navigates to the related code line.

 » Expected coverage. Code lines that will be covered if all of the preconditions are satisfied.

Figure 5:
Coverage Advisor displays
what input values, global
variables, and external
calls are needed for a test
case to obtain the needed
code coverage.

The Ultimate Guide to CI/CD for Embedded Software Systems
Whitepaper

12

Optimize Testing With Smart Test Execution

To accelerate testing in a continuous pipeline, smart test execution on a per-build basis is needed
to reduce the set of tests required to be executed to address the risk that each new iteration has
introduced. The analytics provided by test impact analysis are key to making testing focused on
only what absolutely needs to be tested rather than the shotgun approach used otherwise.

Only through smart, can data-based decision making enable continuous testing. Focusing the
development team on the minimum set of tests to ensure proper coverage at each iteration is the
key to bring the agility back to Agile development methods.

Smart test execution in Parasoft C/C++test is extended with plugins for CI systems (Jenkins,
TeamCity, Bamboo, and so on) for advanced functionality to help software development
organizations reduce bottlenecks associated with running continuous builds. The same capabilities
are available inside IDE environments with dedicated plugins that access a centralized coverage
image through a REST API, and determine which tests need to be executed locally inside the IDE
to verify all changed code.

On the development side, experienced developers might apply the proper structure in organizing
their tests and run only a subset of them manually, but they still might not know which tests need
execution to verify ALL changes.

Teams using CI might rely on nightly builds to execute all tests automatically overnight and get
feedback the next day, but only if it's possible to execute the total number of tests in under 12 hours.

Unfortunately, most software development teams are running their day-to-day operations accepting
those unscalable testing practices. The situation becomes even more difficult when manual testing
is involved. Traditional software development organizations are still following testing practices
represented by an inverted pyramid, which emphasizes running manual tests over automated tests
for one reason or another.

Smart test execution uses test impact analysis to trace the execution of manual tests against
applications and associated, captured code coverage information with those tests. Similar technology
is used for automated testing. This analysis figures out which manual tests need execution to access
changed functionality delivered with every new build. Thus, smart test execution is critical at the
developer and tester levels in their local IDEs. It enables them to focus the testing where it’s needed,
removing guesswork and extra “just in case” work.

Figure 6:
An example high-level
chart provided showing
the distribution of tests
that passed, failed, are
incomplete, and need
retesting. Users can click
the pie chart to view
more details.

https://www.parasoft.com/blog/put-the-agility-back-into-agile-development-with-change-based-testing/

The Ultimate Guide to CI/CD for Embedded Software Systems
Whitepaper

13

Automate Bidirectional Traceability

Requirements traceability is defined as “the ability to describe and follow the life of a requirement,
in both a forwards and backwards direction (i.e. from its origins, through its development and
specification, to its subsequent deployment and use, and through periods of on-going refinement
and iteration in any of these phases).”

In the simplest sense, requirements traceability is needed to keep track of exactly what you’re
building when writing software. This means making sure the software does what it’s supposed to
and that you’re only building what's needed.

Traceability works both to prove you satisfied the requirements and to identify what doesn’t. If
there are architectural elements or source code that can’t be traced to a requirement, then it’s a risk
and shouldn’t be there. The benefits go beyond providing proof of the implementation. Disciplined
traceability is an important visibility into development progress.

It’s important to realize that many requirements in embedded software
are derived from safety analysis and risk management. The system
must perform it’s intended functions, of course, but it must also
mitigate risks to greatly reduce the possibility of injury. Moreover,
in order to document and prove that these safety functions are
implemented and tested fully and correctly, traceability is critical.

Maintaining traceability records on any sort of scale requires
automation. This is particularly important in a CI/CD pipeline since
manual maintained traceability would slow down each iteration.
Application life cycle management tools include requirements
management capabilities that are mature and tend to be the hub
for traceability.

Integrated software testing tools can complete the verification
and validation of requirements by providing an automated
bidirectional traceability to the executable test case, which
includes the pass or fail result and traces down to the source
code that implements the requirement.

Parasoft integrates with market-leading requirements management
and Agile planning systems like Intland, codebeamer, Polarion from
Siemens, Jama Connect, Atlassian Jira, CollabNet, VersionOne,
and TeamForge.

As shown in the image below, each of Parasoft’s test automation tools (C/C++test, C/C++test CT,
Jtest, dotTEST, SOAtest, and Selenic) support the association of tests with work items defined in
these systems, such as requirements, stories in IT, defects, test runs, and test cases). Traceability
is managed through a central reporting and analytics dashboard, Parasoft DTP.

https://www.inflectra.com/ideas/topic/requirements-traceability.aspx#:~:text=Requirements%20traceability%20refers%20to%20the,iteration%20in%20any%20of%20these

The Ultimate Guide to CI/CD for Embedded Software Systems
Whitepaper

14

Parasoft DTP correlates the unique identifiers from the management system with static analysis
findings, code coverage, and test results from unit, integration, and functional tests. Results are
displayed within traceability reports and sent back to the requirements management system.
They provide full bidirectional traceability and reporting as part of the system’s traceability matrix.

The traceability reporting is highly customizable. The following image shows a requirements
traceability matrix template that traces to the test cases, static analysis findings, source code files,
and manual code reviews.

Figure 7:
Bidirectional traceability
from work items to test
cases and test results.
Traceability reports
are displayed, and
results are sent back
to the requirements
management system.

The bidirectional correlation between test results and work items provides the basis of requirements
traceability. Parasoft DTP adds test and code coverage analysis to evaluate test completeness.
Maintaining this bidirectional correlation between requirements, tests, and the artifacts that
implement them is an essential component of traceability.

Bidirectional traceability is important so that requirement management tools and other life cycle tools
can correlate results and align them with requirements and associated work items.

Figure 8:
Requirements traceability
matrix template

The Ultimate Guide to CI/CD for Embedded Software Systems
Whitepaper

15

Summary
Continuous integration and delivery is common place in embedded development. Migrating a
waterfall process to CI/CD and Agile development pays off in risk reduction and quality and security
improvements. Security is top of mind for embedded developers and CI/CD is an enabler for
DevSecOps, which introduces security requirements and controls into all aspects of the pipeline.

Containers are a perfect fit with CI/CD as they support rapid deployment and portability across
different host environments with support for versioning and centralized control. Containerized
development environments are important for secure development in a DevSecOps pipeline, making
it possible to provide a reproducible application environment with built-in security controls.

Continuous testing is a necessary component of a well-oiled CI/CD pipeline because testing is by
far the most time and resource consuming activity. Continuous testing provides a framework to
shift testing earlier in the life cycle.

With the right application of automation and focus on the highest risk areas of the application, it’s
possible to streamline testing to be less of an inhibitor in continuous processes. Continuous testing
requires tools support for automation and optimization. Continuous testing is further improved with
tools that drive larger code coverage, smart test execution and bidirectional traceability.

Take the Next Step
Request a demo to see how your embedded software development team can
streamline testing with CI/CD.

About Parasoft

Parasoft helps organizations continuously deliver high-quality software with its AI-powered
software testing platform and automated test solutions. Supporting the embedded, enterprise, and
IoT markets, Parasoft’s proven technologies reduce the time, effort, and cost of delivering secure,
reliable, and compliant software by integrating everything from deep code analysis and unit testing
to web UI and API testing, plus service virtualization and complete code coverage, into the delivery
pipeline. Bringing all this together, Parasoft’s award-winning reporting and analytics dashboard
provides a centralized view of quality, enabling organizations to deliver with confidence and succeed
in today’s most strategic ecosystems and development initiatives—security, safety-critical, Agile,
DevOps, and continuous testing.

https://www.parasoft.com/products/parasoft-c-ctest/c-c-request-a-demo/
https://www.parasoft.com/

