e n
—
P
’/
///

i1 PARASOFT

DevOps Best Practices

for Automotive So

‘tware

Develo

oment

Whitepaper

DevOps Best Practices for Automotive Software Development

OVERVIEW

As the automotive industry continues to embrace an Agile development methodology, they start to
uncover other processes that can be accelerated, such as delivery by DevOps, particularly including
continuous testing. DevOps is aimed at automating all of the necessary steps required to take
application code and deliver it to the end user.

DevOps works like a conveyor belt to move application code through the distinct phases. Today’s
DevOps and “continuous everything” initiatives require the ability to assess the risks associated with
a release candidate—instantly and continuously.

Continuous testing provides an automated, unobtrusive way to obtain immediate feedback on the
business risks associated with a software release candidate. It guides development teams to meet
business expectations and helps managers make informed trade-off decisions in order to optimize the
business value of a release candidate. Much of this is performed through continuous integration (Cl).

In this whitepaper, we'll dive into the following best practices for DevOps in automotive software.

» Use Test Automation to Enable Continuous Integration.

» Remove Validation & Verification Roadblocks With Continuous Testing on Host & Target Systems.

» Leverage Containers to Create Consistent, Reproducible, & Secure Development Environments.

» Grow Test Coverage With Automated Test Generation & Smart Test Execution.

» Make Data-Driven Decisions From Centralized Reporting & Analysis.

USE TEST AUTOMATION TO ENABLE CONTINUOUS
INTEGRATION

It's important to fully understand the DevOps phases and when to start using the right tools for the
best results. There are also various tried and true CI/CD pipeline tools or solutions in the market that
support your DevOps deployment. Some tools used by the automotive industry include Parasoft,
Jenkins, GitHub, GitLab, Azure DevOps, Bitbucket, Bamboo, Docker (containers), and more. We'll
cover a few of these later in this paper.

One of the core components in DevOps is continuous integration. Cl is the merging of code

features, fixes, or small changes backed by process which include version control and software build
automation. The goal of Cl is to establish a consistent and automated way to build, package, and test
applications in what is called a software “pipeline.” Testing, in most cases, is the roadblock to making

The phases in the cycle are
represented by the well-
known CI/CD and DevOps

Whitepaper

DevOps Best Practices for Automotive Software Development

Cl seamless and efficient. Manual testing is out of the question, so it comes down to automating
testing or not testing at all. Automated testing includes more than just unit testing, it also includes
best practices such as static analysis and regression testing. Automated testing generates immediate
feedback which is used to adjust and replan for the next iteration or sprint.

TEST AUTOMATION IN CI/CD WORKFLOW

Test automation in DevOps involves automating your testing methods. It’s important to be familiar
with each of the phases of this methodology and where to trigger your testing verification and
validation methods.

You may have also heard the term DevSecOps, which is the practice of integrating security into the
DevOps workflow. It requires a mindset shift in teams to integrate security tools and practices into
this methodology. Security has become important for many auto manufacturers due to regularoty
requirements from WP.29 and the need to incorporate processes from standards like ISO 21434. The
image below provides a visual overview of the phases and where test methods are applicable.

An important benefit of the CI/CD pipeline workflow is the feedback loop it provides to make the
“continuous” part work properly. Any hangups in the loop cause inefficiencies that lead to delays in
development and deployment.

» Plan » Build » Release

~

» Code (refactor) » Test » Deploy

) S/

(s

The essential workflow hinges upon the automated testing aspect. Version control merges all
changes to the main repository. After deployment to the test environment, automated testing begins.
In the final stage of continuous deployment, this is the last moment when production feedback can
take place.

Figure 2:

Static analysis is an
important part of
automated testing.
When done early during
code development and
refactoring, it eliminates
downstream errors that
are more difficult and
expensive to fix.

Whitepaper

DevOps Best Practices for Automotive Software Development

Integration Points for Automated Testing

Test automation, particularly unit testing and static analysis, play the most important role during the
code, build, and test phases of the cycle.

» Code. Static analysis tools are essential during the coding phase both from a quality and security
point of view but also in terms of coding standard compliance. For automotive software that must
conform to MISRA C or C++, for example, clean reports at the coding and check-in are needed to
ensure continuous compliance.

» Build. The build stage triggers both application-wide static analysis and regression testing. At this
stage static analysis tools run on the complete scope of the project, offering better precision, and
finding potentially missed errors at the unit level. It's also at this stage that regression tests are
initiated. The results of regression tests drive the next phase, testing.

» Test. At this stage, testing for newly added features begins along with handling failed regressions
tests. The results of regression and new tests drive the next planning cycle.

Static analysis tools are ideal for integrating an important security and quality check in the developer
workflow. For example, the diagram below shows how static analysis is integrated into both the
developer desktop when code is committed but also part of the regular build phase. Results from the
build can be used to drive relatively quick fixes before these issues cause more disruption later in
the lifecycle.

Oo®

o

—O ©

clico

Complete Scans
®

cio
SA Results
o O ——.
Check-in ' —] ,’ =
Request Results
SA Results

i() @)

] |

Whitepaper

DevOps Best Practices for Automotive Software Development

The following diagram illustrates how code commits trigger build and test automation. This workflow
is in context of the typical development environment, which includes a repository, like Git, developer
desktop tools, like IDE, and local and cloud-based build and test servers.

Execute
build & test pipeline

Figure 3: (

A continuous integration

>
»

workflow. Self hosted runners Cloud hosted runners

Archive results

Trigger
pipeline :
(auto or manual) !

demo-repo '
++
c++ i push
CPP 4 ll
pull

Developer’s desktop

l.,
¥

Let's look at this workflow in more detail.

» Typically, after a developer has completed a fix or created new code, a commit into the repository
triggers both static analysis on the unit and an incremental build and test.

» Developers use these results to fix and refactor as needed.

» New features imply new unit tests that might be performed individually at first but then become
part of the regression test suite soon after.

» Project-wide builds are triggered manually or at certain times of the day. The builds kick off a
complete static analysis run and a regression test suite, which now includes new and updated
unit tests.

Although this seems straightforward, achieving good results from unit testing is still challenging.
Typically, development teams do a minimal amount of unit testing or skip it altogether. Often this is
due to some combination of the pressure to deliver more and more functionality and the complexity
and time-consuming nature of creating valuable unit tests.

Whitepaper

DevOps Best Practices for Automotive Software Development

This breaks down into some common reasons developers cite that limit the adoption of unit testing
as a core development practice.

» There's a lot of manual coding involved. Sometimes even more than was required to implement
a specific feature or enhancement.

» It’s difficult to understand, initialize, and/or isolate the dependencies of the unit under test.

» Defining appropriate assertions is time-consuming and often requires cycles of running and
manually adjusting tests or performing intelligent guesswork.

» It's just not that interesting. Developers don’t want to feel like testers, they want to spend time
delivering more functionality.

How Test Automation Tools Help with Unit Testing

Test automation tools provide a way around the following unit test hurdles.

» Unit testing and assertion frameworks provide standardized execution formats like CPPUnit.
» IDE integration delivers unit testing results directly to the developer.

» Guided unit test generation reduces the coding effort.

» Function mocking isolates the code from its dependencies.

» Code coverage shows what code was executed.

» Host and target-based test execution.

By making testing more efficient within the CI/CD pipeline, it's possible to improve test coverage
with each cycle and not impede the progress of the project with continuous testing.

Whitepaper

DevOps Best Practices for Automotive Software Development

REMOVE VALIDATION & VERIFICATION ROADBLOCKS WITH
CONTINUOUS TESTING ON HOST & TARGET SYSTEMS

Continuous integration is just part of a continuous development process that needs testing and
delivery to reap the benefits of the approach.

Continuous testing provides an automated, unobtrusive way to obtain immediate feedback on a
software release candidate. Continuous testing isn’'t simply more test automation. The purpose is to
build quality and security into the product as part of a continuous integration/release/delivery process.

» Use static analysis early for detection of bugs and security vulnerabilities. Early detection,
usually at the developer’s desktop, prevents bugs from wasting unit testing time and entering the
software build.

» Enforce a coding standard to conform to required corporate and industry standards, like MISRA
C/C++ or SEI CERT C. Adhering to a coding standard prevents whole classes of defects and poor
coding practices from entering the build to become larger issues later on.

» Automate test execution on host and target systems as soon as units are coded and when
integrated subsystems are ready. The required tests that need to verify units also include
nonfunctional, load, security, and performance testing. These tests are executed directly from
the Cl orchestration system. The results from these tests get pulled back into the same build and
gathered. Code coverage information (statement, branch, and MC/DC) is cross referenced by unit,
file, test, and build number.

» Maintain requirements traceability to correlate code, tests, and other assets with stakeholder
requirements. This provides an objective assessment of the requirements that are working as
expected, which ones require validation, and the ones at risk.

» Use test impact analysis to focus where testing efforts need to go. From a risk perspective,
changed code impacts more than the software itself. It impacts relevant tests and assets. As
teams make code changes, questions arise:

» Do we need new tests or modify existing ones?
» What are the impacts on dependencies?
Automation helps teams focus only on the tests that are impacted.

» Maintain test data automatically to increase the effectiveness of a continuous testing strategy.
Good test data and test data management practices increase coverage and drive more accurate
results. However, developing or accessing test data can be a considerable challenge in terms of
time, effort, and compliance.

» Rely on test and data generation to make continuous testing work. You can continuously generate
data appropriate for the type of scenario you're trying to execute instead of trying to rely on
production data sources and hoping that all the right data is in the right place. Combining data
generation with simulation will allow you to inject the right data in the right place at the right time.

Figure 4:

A high-level view of
deploying, executing, and
observing tests from host
to target.

Whitepaper

DevOps Best Practices for Automotive Software Development

It should be clear at this point that test automation and the tools that support traceability and
management of tests enable continuous testing, which is a key aspect of achieving quality and
security in a CI/CD pipeline. In turn, it becomes clear that test automation needs to be a focus for
improvement and optimization.

At the development level, automotive software isn’t much different than typical application
development. It requires IDEs, compilers, static and dynamic analysis, and build tools. However, tools
often target different architectures than they work on, for example, host versus target environment.
Versions of tools are important to ensure a homogenous development environment across the team.

Automating testing for automotive software is more challenging due to the complexity of initiating
and observing tests on embedded targets, not to mention the limited access to target hardware that
software teams have. Software test automation is essential to making automotive testing workable
on a continuous basis from the host development system to the target system.

Testing automotive software is particularly time consuming. Automating the regression test suite
provides significant time and cost savings. In addition, test results and code coverage data collection
from the target system are essential for validation and standards compliance.

Traceability between test cases, test results, source code, and requirements must be recorded and
maintained, which means data collection is critical in test execution.

A solution like Parasoft C/C++test comes with an optimized test harness to take minimal additional
overhead for the binary footprint and provides it in the form of source code, where it can be
customized if platform-specific modifications are required.

Communication
channel

Whitepaper

DevOps Best Practices for Automotive Software Development

One huge benefit that the Parasoft C/C++test solution offers is dedicated integrations with
embedded IDEs and debuggers that make the process of executing test cases smooth and automated.
Supported IDE environments include those listed below. See all technical specifications.

» Eclipse » Green Hills Multi » ARM MDK
» VS Code » Wind River Workbench » ARM DS-5
» MS Visual Studio » IAR EW » TI CCS and more

The Parasoft solution supports the creation of regression testing baselines as an organized collection
of tests and will automatically verify all outcomes. These tests run automatically on a regular basis

to verify whether code modifications change or break the functionality captured in the regression
tests. If any changes are introduced, these test cases will fail to alert the team to the problem. During
subsequent tests, C++test will report tasks if it detects changes to the behavior captured in the
initial test.

The parity of capabilities of remote target execution with host-based testing means that
automotive software teams can reap the same benefits of automation as any other type of
application development.

https://www.parasoft.com/ctest/specifications/

Figure 5:

Example deployment using
Parasoft C/C++test with a
containerized compilation
toolchain.

Whitepaper

DevOps Best Practices for Automotive Software Development

LEVERAGE CONTAINERS TO CREATE CONSISTENT,
REPRODUCIBLE, & SECURE DEVELOPMENT ENVIRONMENTS

Development teams know that CI/CD workflows can function the same, regardless of whether they're
containerized or not. The value that containers provide DevOps teams is that it allows applications

to be easily deployed and patched. Organizations can scale containers to their needs to accelerate
development, testing, and production within Agile and DevOps use cases.

When it comes to managing complex development environments, especially in the safety-critical
space, teams usually struggle with the following challenges.

» Synchronizing upgrades for the entire team to a new version of a tool like a compiler, build
toolchain, and so on.

» Dynamically reacting to a new security patch for the library or software development kit (SDK).

» Assuring consistency of the toolchain for all team members and the automated infrastructure or
Cl/CD.

» Ability to version the development environment and restore it to service the older version of the
product that was certified with a specific toolchain.

» Onboarding and setting up new developers.

All these problems are easy to solve with containers. Within each container is the standardized
versions of the development toolchain including static analysis tools, compiler, IDE, and build tools.
These containers are updated in a centralized fashion and deployed on an as-needed basis when a
developer is working on project code. The diagram below shows a representative example of this.

Dev [desktop

Build

I_:i-l'lLLX
Pull code \?
M

PRt N o)
B v | -

Git Server

The consistency of the development environment eliminates any errors that might arise from
developers having slightly different versions of tools on their desktop. It's a good way to ensure
everyone is using the correct version of each tool, which might be important later for regulatory
compliance. Containers also provide a centralized way to update tools and ensure these updates are
propagated immediately across the organization.

10

Whitepaper

DevOps Best Practices for Automotive Software Development

GROW TEST COVERAGE WITH AUTOMATED TEST
GENERATION & SMART TEST EXECUTION

In general, code coverage is a measurement of how much production code is executed while your
automated tests are running. By running a suite of tests and looking at code coverage data, there's a
general sense of how much of the application is being tested.

There are multiple kinds of code coverage. For automotive systems, there may be highly
recommended requirements to perform statement, branch, and MC/DC depending on compliance
standards, such as with ISO 26262 ASIL D.

Collecting and analyzing code coverage metrics is an important aspect of safety-critical automotive
software development. Code coverage measures the completion of test cases and executed tests. It
provides evidence that validation is complete, at least as specified by the software design.

Code coverage also demonstrates the absence of unintended behavior. Code that isn’t covered by
any test is a liability since its behavior and functionality are unknown. The amount and extent of
code coverage depends on the automotive safety integrity level. The higher the integrity level, the
higher the rigor used. And, inevitably, the higher the number and complexity of test cases. Below are
examples of types of recommended code coverage.

’ P »Statement coverage requires that each program statement be

executed at least once. Branch and MC/DC coverage encompasses
statement coverage.

»Branch coverage ensures that each possible decision branch (if-
then-else constructs) is executed.

»Modified condition/decision coverage (MC/DC) requires the most
complete code coverage to ensure test cases executes each decision
branch and all the possible combinations of inputs that affect the
outcome of decision logic. For complex logic, the number of test
cases can explode so the modified condition restrictions are used to
limit test cases to those that result in standalone logical expressions
changing. See this tutorial from NASA.

Advanced unit test automation tools like Parasoft C/++test provide all of these code coverage
metrics and more. C/C++test automates this data collection on host and target testing and
accumulates test coverage history over time. This code coverage history can span unit, integration,
and system testing to ensure coverage is complete and traceable at all levels of testing.

The creation of productive unit tests has always been a challenge. Functional safety standards
compliance demands high-quality software, which drives a need for test suites that affect and
produce high code coverage statistics.

11

https://shemesh.larc.nasa.gov/fm/papers/Hayhurst-2001-tm210876-MCDC.pdf

Figure é:

Parasoft Coverage Advisor
displays what input
values, global variables,
and external calls are
needed for a test case to
obtain the needed code
coverage.

Whitepaper

DevOps Best Practices for Automotive Software Development

Teams require unit test cases that help them achieve their coverage goals. These goals are important
even outside the realm of safety-critical software. Any code not covered by at least one test is
shipping untested!

Increasing code coverage can be challenging. Analyzing branches in the code and trying to find

reasons why certain code sections aren’t covered continues to steal cycles from development teams.

Teams can resolve coverage gaps in test suites using a coverage advisor. Parasoft discovered how
to use advanced static code analysis (data and control flow analysis) to find values for the input
parameters required to execute specific lines of uncovered code.

This analysis computes preconditions for function parameters, global variables, and external function
calls required to execute a specific line of code. The Coverage Advisor view presents a collection of
solutions for the user-selected lines of code. Presented values are used for creating new unit test
cases. The functionality boosts the productivity of developers working on unit test cases to improve
code coverage.

@ Flow Analysis Fast ... @ Stubs il Coverage il Coverage Advisor 2 & Console = Im

Pre-conditions for executing line 13 in processor.cpp - process(int, Point *, int)

~ Solution #1

Required dependencies:
@ Function parameter(s): int x
Pre-conditions:
x > 100
Expected coverage:
#l 6lines (6, 8,9, 10, 12, 13)

~ Solution #2

Required dependencies:
@ External function call(s): int calculateValue(int)
@ Function parameter(s): Point * point, int x
Pre-conditions:

x <= 100

point!=0

calculateValue(int) > point->x

Expected coverage:
5lines (6, 8,912, 13)

12

https://www.parasoft.com/how-to-obtain-100-structural-code-coverage-of-safety-critical-systems/

Whitepaper

DevOps Best Practices for Automotive Software Development

Each coverage solution includes the following.

» Required dependencies. Dependencies that need to be customized to cover the selected line.
These may include function parameters, external function calls, global variables, local variables,
and class members.

» Preconditions. Conditions that must be satisfied by the required dependencies to cover the
selected line. Clicking a precondition navigates to the related code line.

» Expected coverage. Code lines that will be covered if all of the preconditions are satisfied.

MAKE DATA-DRIVEN DECISIONS FROM CENTRALIZED
REPORTING & ANALYSIS

Any CI/CD pipeline produces a lot of data. Whether it's build information, test data results, static
analysis reports, or code coverage information, it's too much to consume manually. Teams need tools
to collate this data, analyze it, and report it in human readable form. Teams can then use this data to
make better decisions and assign resources within the organization to gain the most benefit. Here are
some examples.

» Automating bidirectional requirements traceability.
» Reducing the burden of compliance reporting.

» Tracking progress through intelligent reporting and dashboards.

Requirements traceability is defined as “the ability to describe and follow the life of a requirement,
in both a forwards and backwards direction (i.e. from its origins, through its development and
specification, to its test verification and validation, including subsequent deployment and use, and
through periods of on-going refinement and iteration in any of these phases).”

Many requirements in automotive software are derived from safety analysis and risk management.
The system must perform its intended functions, of course, but it must also mitigate risks to
greatly reduce the possibility of injury. Moreover, in order to document and prove that these safety
functions are implemented and tested fully and correctly, traceability is critical.

Maintaining traceability records on any sort of scale requires automation. This is particularly
important in a CI/CD pipeline since manually maintained traceability would slow down each iteration.
Application life cycle management tools include requirements management capabilities that are
mature and tend to be the hub for traceability.

Integrated software testing tools can complete the verification and validation of requirements by
providing an automated bidirectional traceability to the executable test case, which includes the pass
or fail result and can also trace down to the source code that implements the requirement.

Parasoft integrates with market-leading requirements management and Agile planning systems like
Intland codebeamer, Polarion from Siemens, Jama Connect, Atlassian Jira, and a few others.

13

https://www.inflectra.com/ideas/topic/requirements-traceability.aspx#:~:text=Requirements%20traceability%20refers%20to%20the,iteration%20in%20any%20of%20these

Figure 7:

Whitepaper

DevOps Best Practices for Automotive Software Development

As shown in the image below, each of Parasoft’s test automation tools, C/C++test, Jtest, dotTEST,
SOAtest, and Selenic, support the association of tests with work items defined in these systems. That
includes requirements, stories in IT, defects, test runs, test cases, and more. Traceability is managed
through a central reporting and analytics dashboard, Parasoft DTP.

- Deploy / :
Devel Build Test End to End Vi
evelop / Bui estEndto En Stage erify

Nonfunctional
Requirements

Non-functional
Requirements

Code Analysis Test Automation Test Automation Test Automation

* APITest
* UlTest

* Load/Performance
Testing

* APITest
* UlTest

« TDD
* Unit Test

« Load/Performance
Testing

* Security
* Reliability

<++>CIC++test <¢>Jtest < >dotTEST . c SOAtest s-) Selenic . < SOAtest s-)SeIenlc

v P

Requirements
Management

Parasoft DTP correlates the unique identifiers from the management system with static analysis

Bidirectional traceability findings, code coverage, and test results from unit, integration, and functional tests. Results are

from work items to test
cases and test results.
Traceability reports
are displayed, and
results are sent back
to the requirements
management system.

displayed within traceability reports and sent back to the requirements management system. They
provide full bidirectional traceability and reporting as part of the system’s traceability matrix.

The traceability reporting is highly customizable. The following image shows a requirements
traceability matrix template that traces to the test cases, static analysis findings, source code files,
and manual code reviews.

14

Figure 8:
Requirements traceability
matrix template

Whitepaper

DevOps Best Practices for Automotive Software Development

&~ admin~

Polarion Requirement Traceability

Fitter: Automatve ECU Target Build: ALN

Podarion Requirement Tests Files Reviews

Ky Sy Surnass S Total (] [x] - k13 m [

o The ECL software shall incorporate Satety, Secunty and f % 4

il Ecu-sz4 R : ; Ni& Tid T M M A HiA Hig WA

Reliabiity
“ ECLLE25 Thee ECL shial pravide The listed set of funchonal capabillies Hia A MiA Sy MiA M Y HiA Hi&
= dect compy with RIS

W Ecuszs e decided and shall comply with MISRA - " - i . . - ik i
“ ECU-527 NiA A L MIA WA MIA 1A i K

ﬂ ECU.528 M, MIA NI M N NI NIA, MIA

! ECU-529 () MiA M MiA MiA MNiA HiA Hi& WA

ulation on i

W X | ncally alfocated at start and
W Ecu-ss0 S PRy NG elars Nia N Ni NiA NiA A NiA WA NA
atits appropriat ..

! ECLL-537 all loop in & confin WA T M A MR A Uis, Hi& WA
shall calculate sensar de value
i Ecusiz i T M A M MA A MiA MiA M NI
! ECLL533 0 50.00% 2 1 1 [+ (v} [+] oo Qi
Bl Ecuss shall have fault prior Ni ik N M M J i NI, NI
W Ecu-sas ECU shall perform fautt detection and repariing NiA A A N M NiA N oy NA
2rncry allocations within ds
B ecucs s o el M HiA M A M ey MiA HiA oy
W Ecu-saT rd initialize memeory M A) i BiA WA A A i
R T 75w | ilems pe page 1-14/ 14 jlems

Powered by Parasaft OTP. Copyright & 135

The bidirectional correlation between test results and work items provides the basis of requirements
traceability. Parasoft DTP adds test and code coverage analysis to evaluate test completeness.
Maintaining this bidirectional correlation between requirements, tests, and the artifacts that
implement them is an essential component of traceability.

Bidirectional traceability is important so that requirement management tools and other life cycle
tools can correlate results and align them with requirements and associated work items.

Compliance to standards can place a significant burden on the development team, depending on

the criticality of the software being developed the amount of record keeping changes. For example,
development for products that fall under ISO 26262 ASIL D, requires a thorough paper trail of best
practices all the way through the SDLC. In support of this, Parasoft provides the following automation
points, most of which have been discussed already, to assist in reducing the compliance burden.

» Bidirectional traceability is an important part of illustrating to regulators that requirements were
fulfilled through design, implementation, verification, and validation. Automated traceability is
essential to keep accurate records without tedious manual records.

» Coding standard compliance, like with MISRA C/C++, is usually required for safety-critical
automotive software. Without automated tools, such as static analysis, conformance to the
standard would be impossible. An example of such compliance reports is shown below.

» Code coverage is critical in showing that tests have executed all the necessary parts of the
application. Code coverage requirements for safety-critical software are strict. Automobile
manufacturers need to keep records of their coverage reports. Automating code coverage
reporting, especially across test types (unit, subsystem, manual, and system testing), provides a
complete picture.

15

Figure 9:

An example of a Parasoft
DTP report for MISRA C
coding compliance

Whitepaper

DevOps Best Practices for Automotive Software Development

» Validation and verification reports from test execution is required to show that, indeed, tests
have passed and been executed. These are often required to be performed on realistic target
hardware so integration with embedded toolchains is essential.

» Tool qualification means that Parasoft tools meet the standards required to be used in safety-
critical software. Parasoft C/++test, for example, has been certified by TUV SUD for I1SO 26262,
IEC 61508, IEC 62304, and EN 50128 standards. These certifications mean that the tools can be
used in confidence for safety-critical software and that certification of the tools in a production
environment is much easier.

The following is an example of a coding standard compliance report for MISRA C. Parasoft C/C++test
provides dedicated reporting for documenting compliance to MISRA C. A dashboard on the Parasoft
web portal provides at-a-glance views on the current state of the project, such as the one here:

-+ Filter Perlod Baseline Build Target Build
MISRA C 2023 stmformismc Last10buikss FirstBuld inPeriod misr-c-2023.2023 1
o
[
MISM Oompﬁm MISRA Guideline Co... == MISRAUDMMW uemwmw Status - 'I'DDEMBSﬁA@.IIdalmN Y
rpdance: MISRA C:-2023 Guideling -
Name # of Viciations
E M |SRA i 4.6 (Advisory) typedets that indicat. . 6
— g?' ?(%) 6 Fule 14.4 (Required) The controling e 2
X Missing rule(s) in N V|oJat|ons Deviations Rule 15,6 (Required) The body of an ..« 1
anah‘rsis] Rule 14,3 (Required) Controlling expre. 1
A B e 202 R Rubt 13,4 (Advisory) The result of an a.-- 1
Bolk: s 2EansA 2121217 Compliance: MISRA C 2023 (MISRA C 2012)
misra-c-2023-2023.1 mone.

Compliance: MISRA G 2023 (MI...
R— —M —

y Guidelines by Status = by Status =

\folatlons Dewal:ons
Buld: misa-c-2023-2023.1
Compliance: MISRA C 2023 (MESRA C 2012)

MISRA Analysis Com... s

Complance: MISRA C:2

98%

MISRA Compliance - Advisary Guidelines by Status =

5 4 i 2
Violations Deviations Violations Deviations
Bulld: misra-c-2023-2023,1 Bult misra-¢-2023-2023.1
Compliance: MISRA C 2023 (MISRA C 2012) Compliance: MISRA G 2023 (MISRA C 2012)

Top 5 MISRA Violations - MISRA Viclations by - TreeMap -

Compliance: MISRA C:2023 Catagerias

Mame # of Vislations
MISRAC2012-DIR 4 8b

Buld: misra-c-2023-2023.1 Compliance: MISRA C 2023 (MISRA C 2012)

[. .
MISRAC2012.RULE 14 4 : S — iR
Rules in Compliance: 375 MISRAC2012-RULE 2 20 1 Dir 4.6 Rule 13, Rute 144 Rule 15,
Rules Enabled: 381 MISRAC2012-RULE_15_8-b 1 MISRAC2012-DIR 4 B0 MISRAC MISRAC20MZ-RULE 14 4-a MISRAL
Violations; 12 MISRAC2012.RULE 14 3-ac 1 :li.l.:_l :ut.(_l
more.

Each of these dashboard widgets is linkable to a more detailed view, containing detailed violation
reports, files, and source code.

From here, you can automatically create the reports needed to document MISRA compliance as
outlined in "MISRA Compliance 2020: Achieving Compliance with MISRA Coding Guidelines."
Automating these reports is a big time saver, greatly reducing the amount of manual work required to
document project compliance.

16

https://www.misra.org.uk/app/uploads/2021/06/MISRA-Compliance-2020.pdf

Whitepaper

DevOps Best Practices for Automotive Software Development

TRACK PROGRESS THROUGH INTELLIGENT REPORTING & DASHBOARDS

For team collaboration, Parasoft C/C++test publishes analysis results to DTP, a centralized server.
Developers can access test results from automated runs and project managers can quickly assess
the status of the project. Different dashboard views provide information of quality, code coverage,
security, and coding standard conformance, for example. Reported results are stored with a build
identifier for full traceability between the results and the build. Those results include:

» Static analysis findings » Unit testing details » Source code details

» Metric analysis details » Code coverage details

When integrating into Cl/CD workflows, Parasoft users benefit from a centralized and flexible
web-based interface for browsing results. The dynamic web-based reporting dashboard includes
customizable reporting widgets, source code navigation, advanced filtering, and advanced
analytics from Parasoft’s Process Intelligence Engine. Users can access historical data and trends,
apply baselining and test impact analysis, and integrate with external systems like those for test
requirements traceability.

TLPARASDFT
= Report Canter
&b ¢ i ~
Ohashboands Add Dashboard Share Downdosd POF Relresh Widgets Asd Widget Dalte Cashboard
Default Dashiboard .
Managing Change
Portiolio Dashooard
Static Analysis Files - Changed = Caverage - Tesis- Changed = WViolations - Changed =
AVML enhanced Static Analysis I r'
Functional Tost Rosults 91 6
0, ’] . o
Complete Code Coverage Total Changes 64.3%
Matrics Paratuank_SA-UT_3.3-3017 o v . 403
Parsbask_SAUT_ 3122020 28K /43K =
Traceatslity Report
“Tasta Impacted by Change - Pie Chart - Modified Coverage = Risky Code Changes - Pia Chart - Tost Stabity - Donut. =
AUTOSAR C++14 Compliance
MISRAC 2012 Compliance "'\.
SEI CERT C Comphiance e — Low
- Fal
1. 16.9% = o 99%
SE| CERT C++ Compliance Fecas: - el
s e 2 s 28/ 168 : — —
OWASP Tep 10 2017 - NET "wrabark_SAUT_2-3-3017 [Paratank_SA-UT_3-12-2000 Parabank_SA-UT_3.2-2017 Parabank_SALIT_2-2-2017 1 Parabank SAUT_312-2020
CWE Top 25 2019 - NET Coverage - Tast - Fisky Cade Changes - Bubble Chart. -
CWE 40 - NET
o, .
o1 0SS - NeT 64.3% T4 =
OWASP Top 10 2017 - Java Coverage 1
CWE Top 25 2019 - Java :
CWE 40 . o
(Top 25 + on the cusp) a— . \
PCI DSS - Java § : 4 $)
D Mee e [Mt - .
DISA-ASD-STIG Review P
My Guaity Tek. 169 [T——— Wl ms = :
Matadata Exampies prees o . |

Rescurce Groups Exampies

Figure 10:

Centralized web-based
dashboard for test impact
analysis and more.

17

Whitepaper

DevOps Best Practices for Automotive Software Development

SUMMARY

DevOps in automotive software requires the ability to assess the risks associated with a release
candidate—instantly and continuously. Continuous testing provides an automated, unobtrusive way
to obtain immediate feedback on the quality, safety, and risks associated with a software release
candidate. However, making this transition with embedded, safety-critical automotive software is not
an easy task. Transitioning from a traditional waterfall method to an Agile one that drives a modern
Cl/CD pipeline is entirely feasible with the right preparation, training, and best practices.

These best practices include test automation to enable continuous integration. Another is to remove
validation and verification roadblocks with continuous testing on host and target systems. Use

of containers is a best practice that enables teams to create consistent, reproducible, and secure
development environments. Next, grow test coverage with automated test generation and smart test
execution. Lastly and importantly, use the feedback that the CI/CD pipeline provides to make data-
driven decisions from centralized reporting and analysis.

The adoption of these modern, automated testing techniques and tools reduces the inefficiencies of
traditional, manual automotive software testing—making new approaches attractive and shine.

\
TAKE THE NEXT STEP

Learn how your automotive DevOps software development team can
implement best practices into your CI/CD workflow and streamline testing.
Contact one of our experts today to request a demo.

Parasoft helps organizations continuously deliver quality software with its
market-proven, integrated suite of automated software testing tools. Supporting
the embedded, enterprise, and loT markets, Parasoft’s technologies reduce

the time, effort, and cost of delivering secure, reliable, and compliant software
by integrating everything from deep code analysis and unit testing to web

Ul and API testing, plus service virtualization and complete code coverage,

into the delivery pipeline. Bringing all this together, Parasoft’s award winning
reporting and analytics dashboard delivers a centralized view of quality enabling
organizations to deliver with confidence and succeed in today’s most strategic
ecosystems and development initiatives — security, safety-critical, Agile,
DevOps, and continuous testing.

“MISRA”, “MISRA C” and the triangle logo are registered trademarks of The MISRA Consortium
Limited. ©The MISRA Consortium Limited, 2021. All rights reserved.

18

https://www.parasoft.com/products/parasoft-c-ctest/c-c-request-a-demo/
https://www.parasoft.com/

	Use Test Automation to Enable Continuous Integration
	Remove Validation & Verification Roadblocks With Continuous Testing on Host & Target Systems
	Leverage Containers to Create Consistent, Reproducible, & Secure Development Environments
	Grow Test Coverage With Automated Test Generation & Smart Test Execution
	Make Data-Driven Decisions From Centralized Reporting & Analysis

