
Develop a Strategy
and Business Case

for Test Automation
USING ROI CALCULATIONS TO DERIVE VALUE

W H I T E P A P E R

Develop a Strategy and Business Case for Test Automation
Whitepaper

2

THE COST OF POOR SOFTWARE QUALITY
What is the business case for improving software quality? There are obvious savings in reduced fixes
and lower support costs that come with most quality improvements. However, the real payoff is in
improved customer retention and acquisition with, presumably, market share growth.

To begin a discussion on a business case and the value of software quality, it’s important to establish
the cost of poor software quality. Software is expensive to create, maintain, and support. Inevitably,
poor quality software increases the costs of all these dimensions.

It turns out that poor software quality is very expensive. According to the report from the Consortium
for Information & Software Quality (CISQ), The Cost of Poor Software Quality in the US: A 2020
Report, the total cost was estimated at $2.08 trillion, approximately 10% of the US GDP for 2020. The
largest contributor to this number is the “meteoric rise of cybersecurity failures” with an “underlying
cause is primarily unmitigated flaws in software.”

Figure 1:
Source: The Cost of Poor
Software Quality in
the US: A 2020 Report,
from the Consortium for
Information & Software
Quality

https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf

Develop a Strategy and Business Case for Test Automation
Whitepaper

3

THE IMPACT OF POOR SOFTWARE QUALITY
The place where poor software quality impacts the bottom line the most is when it ruins customer
experiences. Many companies recognize this and place a higher importance on customer experience
as it relates to the software aspects of their brand. Corporations specifically call out software quality
as a potential risk to their business in their annual reports and at investor conferences.

This acknowledgement is a step in the right direction, but as the CISQ report shows, many companies
are struggling with customer experience and software quality.

One of Parasoft’s customers, Caesars Entertainment, considers guest experience their number one
priority and is making strides in improving software quality as part of this goal.

Along the way, Caesars and others face challenges in their journey to improving software quality. A
large part of this is testing as it remains the best way we can verify and validate software.

Improving quality implies improving testing. As large organizations like Caesars understand, manual
testing doesn’t scale, and with an expanding portfolio of organizations, they needed to make sure
they could meet their customer experience goals. Take a look at Caesars' journey and how they, and
others, determine the value of test automation using return on investment (ROI) calculations.

Figure 2:
2020/2019 Annual
Reports & Investor
Conferences—quality at
the executive level.

Develop a Strategy and Business Case for Test Automation
Whitepaper

4

SETTING TEST AUTOMATION
PRIORITIES
To improve the automation of a testing process,
it’s important to prioritize its focus. This is
driven by where test automation provides the
most value.

Every organization has its “problem children.”
These are areas of the application heavily used
by customers and where most of the bug reports
come from. It makes sense to concentrate the
automation in these areas first. But as the test
practice matures, the goal to increase coverage
means that other areas of the application are
tested by automation as well.

MANUAL TESTING REMAINS IMPORTANT

Test automation isn’t meant to replace manual
testing altogether, but rather reduce the
mundane testing to let the team focus on
usability and customer experience. Teams need
to weigh which tests make sense to automate.

Manual testing remains important for both user
experience and exploratory testing. Human
testers are much better at determining that the
implemented functionality fulfills its intention.
These tests have limited up-front costs and
are easy to maintain. However, manual tests
are expensive and time consuming to do, and
extensive regression testing is prohibitive within
Agile sprints.

Figure 3:
Manual or automated
testing? Teams need to
do both!

On the other hand, automated tests have an up-
front cost and little to no ongoing costs. When
done right, they are reliable and repeatable and
take much less time than manual tests.

The correct balance is a combination of both
with the emphasis for manual tests to be on
usability, UX, and exploratory testing. Test
automation excels at removing tedious and
repetitive tasks from human testers. It’s also
highly repeatable and, importantly, scalable.

BUILDING A SCALABLE TEST
AUTOMATION STRATEGY
Consider the concept of the test pyramid,
which is well-known to Agile practitioners. The
ideal state to establish an efficient and scalable
strategy is to allocate testing and developer
resources in a way that critical portions of the
application are tested as early as possible. The
idea is to spend more time and effort on building
quality into the application with deep code
analysis, unit testing, and API testing. End-to-
end testing of the application is minimized and
focused on the scenarios that are critical to
validate the customer experience.

It's important to do both manual and automated
testing of the UI. Automated testing exposes
regressions in existing functionality, while
manual testing focuses on the usability of
new capabilities.

Develop a Strategy and Business Case for Test Automation
Whitepaper

5

Figure 4:
Building a scalable test
automation strategy.

A successful test strategy relies on building on a foundation of testing smaller scale components
and moving up to the other levels (units to APIs, APIs to UIs). It’s likely your current strategy
isn’t quite there yet. If it is, hopefully you are reaping the benefits. If not, then let’s examine the
evolution required.

Automated unit testing is a proven technique for
ensuring software quality. While it might seem
like a burden to developers, the payoff is efficient
execution with quick feedback if changes have
impacted the application.

In order to get the most out of testing and
automated testing tools, tests must be
trustworthy, maintainable, readable, self-
contained, and be used to verify a single use
case. Automation is key to making unit testing
workable and scalable.

Automated API Testing provides an ideal
way to validate the integrated business logic
and serves as a communication mechanism
between developers and testers. With a high
level of maintainable automation, API testing
can extend into, and shift left, performance and
security testing.

API testing decouples the underlying complexity
of modern enterprise applications. When used in
conjunction with virtualized services, it provides

an efficient way to test business logic without
the need for time-consuming and brittle UI tests.
Shifting these tests left and executing them
earlier in the software life cycle means catching
critical security and architectural defects early,
where they are easier to diagnose and less risky
to fix.

Manual and automated UI testing are still critical
but when the full foundation of the test pyramid
supports it, there's more time for exploratory
and in-depth UX testing.

Although the original test pyramid starts at unit
testing, code quality and security need to be
assured before submitting to the repository and
unit testing. Static analysis is a proven way to
improve code quality and security. It’s critical
in enforcing project-wide coding standards.
Detecting bugs and vulnerabilities before the
code is tested decreases testing effort and
reduces the chances of serious bugs getting
through the testing process.

Using a bottom-up approach, consider the following recommendations at each level of the pyramid.

https://www.parasoft.com/unit-testing-best-practices-getting-the-most-out-of-your-test-automation

Develop a Strategy and Business Case for Test Automation
Whitepaper

6

BEST PRACTICES FOR DEFINING A SCALABLE
TEST AUTOMATION PRACTICE

Improving a test automation strategy doesn’t
happen overnight. It requires investment and
commitment. Here are some best practices to
help improve an organization’s strategy.

Invest in People

It’s not necessary to hire new people if you
can retain and train your existing team. Those
on the team that are motivated to take on
automation should be trained on the tools
and techniques that will benefit the business.
Specialists can be used during initial stages to
help kick start the initiative and help establish
test practices and processes.

Define the Process

It’s critical that test automation goals are aligned
with product quality and business goals. Metrics
and reporting need to be aligned with these
goals so the team understands what the goals
and the quality status are at any time.

Consolidate Technology

Technology shouldn’t lead the test automation
strategy but, rather, be defined by the goals and
requirements. Often the toolchain consists of
open source frameworks and commercial tools.

To facilitate the scaling of test automation,
it’s important to define a toolchain that
is consolidated and consistent across the
organization. It’s also critical to consider the
long-term goals, not just the short-term needs,
when selecting tools.

Develop a Strategy and Business Case for Test Automation
Whitepaper

7

THE VALUE OF TEST AUTOMATION EVOLVES WITH TEST
STRATEGY
Establishing a scalable test solution in a real-world organization is an evolution that takes several
years. There's no silver bullet solution that migrates an enterprise software organization from a
manual-heavy testing approach to a balanced, automated one overnight. Take, for example, the case
of Caesars Entertainment and their seven year journey to improving their testing approach.

In their first year, Caesars established a
foundation to build on. In their case, it was a
center of excellence for software testing. The
name doesn’t matter. What's important is the
commitment to improving quality and testing
standards and practices.

By year two, they had stabilized their testing
practice and established a standardized set
of reports to help communicate test and
product status.

In year three, the testing practice was spreading
across the enterprise along with standardized
processes and tools.

By years four and five, Caesars was optimizing
their test frameworks and standardized
operational procedures. By year six, they were
integrating continuous testing into continuous
integration/delivery (CI/CD) pipelines.

In year seven, they expanded their test practice
with service virtualization to improve their API
test strategy.

Figure 5:
Caesars Entertainment's
seven year testing journey
to quality management.

Although quality improvement is a long-term
commitment, improving an organization’s
test automation strategy is a journey with
worthwhile rewards.

When advocating for quality and transformation
of existing processes, whether testing or
otherwise, you must establish an understanding
why it’s important. The keys to obtaining buy-in to
this commitment to improvement is to understand:

	» How automation helps.

	» Why you need it.

	» 	What's the expected ROI for every dollar
invested in new practices and tools?

It’s also essential to be able to communicate
this value to management. Since explaining the
value is so important, how is it measured? The
common way to do this is by comparing the costs
of implementing new tools and techniques versus
the savings they bring about—the ROI.

https://www.parasoft.com/case-study-caesars/

Develop a Strategy and Business Case for Test Automation
Whitepaper

8

MEASURING THE ROI OF TEST AUTOMATION
COST AVOIDANCE METHOD

One way to measure the ROI of adopting a new process or technology is by tracking how much time
has been saved compared to previous projects or time periods. This method isn’t tracking individual
defects and estimating costs, it’s tracking the actual change in behavior over time. As efficiencies
improve with automation, so does the cost associated with the entire project.

CASE STUDY

Caesars tracked their ROI using a cost avoidance method associated with the automation of manual
activities (that is, how much did they save by accelerating their testing with automation). As their
journey from early adoption on test projects moved to large scale projects, the ROI grew over time as
their test strategy evolved.

The formula they used for ROI considers the manual effort traditionally required for testing and
effort invested in test automation—test creation and maintenance and the execution time. Coming
from a mostly manual process where MT would be large, this customer decreased the overall time
spent on testing significantly as their adoption matured.

Figure 6:
Caesars Entertainment's
formula for tracking the
ROI of new processes or
technologies.

ROI = (MT – TC – TE) * rate
= (31 – 1 – 5) * 50

= $1250/wk

= $65,000/yr

ROI = (MT – TC – TE) * $/hr
MT = Manual Time
TC = Time to Create
TE = Time to Execute Automation

MT = 31 hr
TC = 1 hr
TE = 5 hr
Labor rate = $50/hr

Example

Develop a Strategy and Business Case for Test Automation
Whitepaper

9

Cost Avoidance
$1,000,000.00

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

$900,000.00

$800,000.00

$700,000.00

$600,000.00

$500,000.00

$400,000.00

$300,000.00

$200,000.00

$100,000.00

$0.00

The following graph shows Caesars’ savings over time. For their calculations they used a labor rate
of $50/hr. By year six, they were seeing savings over $850K per year and by year 7 and beyond, they
projected over $1 million in savings.

COST SAVINGS FROM EARLY DEFECT REMOVAL
Another common way to measure the ROI of new tools and processes is to calculate how much a
discovered, prevented, or avoided defect or security vulnerability would cost if it survived unscathed
through the development process and into customer hands.

It’s easy and cheap to fix bugs during the coding phase but unfortunately most bugs aren’t found
until much later in the development lifecycle. See the defects introduced versus defects found in the
following graph.

Figure 7:
Caesars Entertainment's
savings over a six year
span of time.

Develop a Strategy and Business Case for Test Automation
Whitepaper

10

Figure 8:
The reduced cost of
defects when detected
early or prevented
altogether.

Finding and fixing bugs after the coding phase gets more and more expensive and the cost to fix goes
up exponentially. The business driver behind “shift left” is related to this graph. Finding and fixing
defects early is cheaper and easier, and improves outcomes for downstream processes.

As the yellow curve illustrates, moving the defects found curve to the left reduces the defects found
both early and late in the cycle with a significant impact on costs and schedule.

Capers Jones is a well-known researcher in this area and keeps an up-to-date study on the effect of
defect density and defect removal efficiency (DRE) and its impact on software quality. Put simply,
DRE can be used to measure the effect on quality from adopting a new process or technology.

If DRE increases, then the new practice is improving quality. However, Jones is quick to point out
that there’s more to return on investment for increased quality than the money saved fixing a defect
earlier. While it’s a valuable metric, it actually undersells the ROI and does not properly correlate to
actual software quality.

CALCULATING ROI FROM COST PER DEFECT

Using only the cost-per-defect metric and approach to calculating ROI, consider the example above
with a team of ten people working on a project with a loaded labor rate of $100 per hour.

This team, using new test automation tools with all the benefits (shifting left the identification of
defects), discovers 20 more defects than they did in the previous sprints. Finding and fixing these
bugs early might require three hours per defect for a total of $6,000.

This ROI calculation depends on knowing how much a defect costs to fix later on in the development
cycle. Estimates are often used based on the graph above showing the multiplier at each stage of
development. Later is more expensive.

1 x 4 x
10 x

40 x

640 x

Percentage
of defects

85%

Coding Unit Test SIT Perf Prod
% Defects introduced

Cost to repair defect
% Defects found

https://softwaretesting.cioreview.com/cxoinsight/software-quality-in-2016-the-state-of-the-art-nid-15138-cid-112.html
https://namcook.com/articles/The Mess of Software Metrics 2017.pdf

Develop a Strategy and Business Case for Test Automation
Whitepaper

11

For the sake of this example, finding and fixing these bugs later in integration or system testing might
triple the effort, costing $18,000 for these 20 defects.

Figure 9:
Calculation of ROI from
cost per defect.

Figure 10:
Simplistic example of ROI
calculation.

Figure 11:
ROI calculation that
factors in lost time and
effort that's prevented
pre-emptively.

ROI = DR * (CPD – (ATF * LLR))

ROI = DR * (CPD – (ATF * LLR)) + NES * CPS

= 20 * ($900 – (3 * $100))

= $12,000

ROI = DR * (CPD – (ATF * LLR))
DR – defects removed
CPD – full cost of defect if it made it
to final stages of the project
ATF – average time to fix
LLR – loaded labor rate

NES – number of extra, unplanned sprints
CPS – cost per sprint

DR 	 = 20 defects
CPD 	 = $900
ATF 	 = 3 hours
LLR 	 = $100

Example

Why Cost Per Defect Undersells the ROI

Simplistically, for the example above, the ROI is $12,000. Sounds great, right? This is actually a
conservative estimate.

The example doesn’t factor in the two days of development time savings or an extra sprint that was
avoided due to these early fixes. Factoring in the impact early defect removal has on the project is
trickier to account for because it might be hard to estimate how many sprints were added due to
accumulated defects that had to be fixed. However, the ROI calculation needs to include some factor
of the lost time and effort that is pre-emptively prevented.

Just as an example, a team of ten people cost $8,000 per day at $100/hour. Two lost days due to
these 20 defects (not an unreasonable amount) is an additional $16,000.

One might be quick to point out that it doesn’t take ten people to fix these errors, which is correct,
of course. However, an extra sprint costs money, and the entire team is still being paid regardless of
where the setback lies.

Develop a Strategy and Business Case for Test Automation
Whitepaper

12

In the context of communicating ROI of test automation tools, it’s important to look at the larger
picture and the savings from the overall improvement in schedules that comes with better quality.
With larger teams and larger projects come larger savings and higher ROI on tools. Which leads to a
more direct ROI method: accounting for the savings directly.

HOW PARASOFT HELPS DELIVER THE VALUE OF TEST
AUTOMATION
There is a role to play in the shift to automated testing. Although key to making the process
more efficient, the transition still requires commitment to the processes and culture change to be
successful. However, the right tools selection can help software teams realize the benefits of this
transformation easier and sooner.

The following section discusses various Parasoft tools and how they contribute to the value of test
automation. Each tool applies to a different layer of the test pyramid as illustrated below.

“However, when economic analysis includes the savings associated with
shorter schedules, it will be seen that the economic value of quality is directly
proportional to the size of the application measured with function points. The
larger the application, the more valuable high quality becomes. This phenomenon
cannot be measured using cost per defect, but it can be measured using economic
analysis based on total application schedules and costs.”
— Capers Jones, A Short History of the Cost Per Defect Metric

Figure 12:
The test pyramid and how
each Parasoft tool applies
to the different layers.

Reuse API tests
to validate your
application's
performance
under stress

https://www.softwarevalue.com/media/389295/cost-per-defect-2013.pdf

Develop a Strategy and Business Case for Test Automation
Whitepaper

13

SHIFT DEFECT AND SECURITY
VULNERABILITY DETECTION TO WHERE
CODE IS CREATED

Parasoft Jtest verifies Java code quality and
checks compliance with security standards
(OWASP, CWE, PCI DSS, and more) by applying
a wide range of static analysis checkers and
using the most comprehensive set of static
code analyzers to go way beyond open source.
Parasoft Jtest leverages Parasoft’s centralized
reporting and analytics hub, Parasoft DTP, with
its Process Intelligence Engine to provide deep
insights on code quality and risk.

Parasoft Jtest plugs into both the CI/CD pipeline
and the developer’s IDE (Eclipse, IntelliJ)
where it automatically analyzes the code in
the background and alerts developers when
it detects issues, giving immediate feedback
as early as possible, effectively shifting quality
and security left to the point code is created.
In addition to reviewing static analysis results
directly in the IDE, results are also available as
HTML, PDF, and custom extension reports.

One big benefit from embedding static code
analysis into the software development process
is that of the business intelligence of the current
state of the product and key indicators of risk,
enabling software teams to focus on key areas
of their product. Without this ability, users
must assemble multiple reporting products and
integrate each individual tool.

GREATLY REDUCE UNIT TEST CREATION,
EXECUTION, & MAINTENANCE

Parasoft Jtest provides users with AI assistance to
help make unit testing easier and faster. Users can
easily generate, augment, and reuse unit tests,
while optimizing the execution of those tests, to
substantially reduce the amount of time and cost
associated with unit testing. Jtest users report
creating JUnit test suites twice as fast, meeting
coverage targets while building a comprehensive,
meaningful, and maintainable suite of JUnit test
cases, and releasing with confidence.

Jtest identifies areas of untested code and
provides recommendations for how to cover it.
Then, with quick-fix actions, Jtest can clone and
mutate existing tests to cover the untested code.
Jtest’s one-of-a-kind bulk generation capability
enables users to create unit tests en masse for
an entire project, package, or class, automatically
performing all the groundwork, set up, and even
mocking, giving the user a jump start on their
unit test suite. Users simply add in additional
business logic to the tests and execute them.

https://www.parasoft.com/products/parasoft-jtest/
https://www.parasoft.com/products/parasoft-dtp/

Develop a Strategy and Business Case for Test Automation
Whitepaper

14

Parasoft Jtest makes maintaining unit tests more
automated, reducing the burden of upkeep. Jtest
automatically determines when assertions are no
longer valid and provides quick fixes to replace
the code with correct assertions. Jtest also helps
identify instabilities in the test environment and
provides recommendations on how to resolve
these issues.

With its AI capabilities, Jtest correlates source
code changes in the development environment
with the entire JUnit test suite and performs test
impact analysis. This benefits users by enabling
them to automatically execute only the unit tests
that were affected by the correlated source code
changes, rather than having to run the entire
suite of tests repeatedly. This workflow can be
used in the IDE as well as the CI process.

Parasoft Jtest enables users to control the
coverage collecting process in real time (for
manual or automated functional tests) when
coverage data is being collected. Users can start
or stop test sessions and download current
coverage data to correlate coverage information
with the test and the person doing the test.

REDUCE RELIANCE ON MANUAL UI TESTING
BY GROWING YOUR API TESTING PRACTICE

Parasoft SOAtest delivers a fully integrated set of
API and web service testing tools that automate
end-to-end functional API testing. Streamline
automated functional testing of business logic
with advanced codeless test creation capabilities
for applications with multiple interfaces (REST &
SOAP APIs, microservices, databases, and more).
The tools reduce the risk of security breaches
and performance outages by transforming
functional testing artifacts into security and load
equivalents. Such reuse, along with continuous
monitoring of APIs for change, allows faster and
more efficient testing.

SOAtest provides a single, intuitive interface
and automates complex testing scenarios for
120+ message formats and protocols, covering
microservices to mainframes. Testers gain
confidence knowing that change impact analysis
continuously monitors APIs, highlights changes
and corresponding test cases for updates, and
streamlines test refactoring efforts. As is critical
in CI/CD pipelines, SOAtest gives immediate and
intelligent feedback for smarter API testing and
on-time releases.

https://www.parasoft.com/products/parasoft-soatest/

Develop a Strategy and Business Case for Test Automation
Whitepaper

15

To relieve the burden of manual testing at
the UI level, API testing is made easier and
more efficient to adopt with Parasoft SOAtest.
Automatic creation of functional tests from
recorded traffic is a critical time saver: API calls
from an application’s web interface can be
captured directly in the Chrome web browser,
using SOAtest’s smart API test generator plugin
to build tests, leveraging advanced heuristics
and artificial intelligence to produce meaningful
and complex test scenarios. Machine learning is
employed to learn about the underlying business
logic from any test in your test library, enabling
SOAtest to intelligently create or update any of
your test assets in exact accordance with how
your business has decided to test that API.

As API testing strategy scales, libraries of test
cases grow, and when the APIs being tested
change, tests need to be updated. Ordinarily
this causes a significant barrier to scaling the
automation strategy, but SOAtest automates API
change management. Parasoft SOAtest’s Change
Advisor proactively scans API interfaces, looks
for changes in the services, then identifies how
the test assets are impacted by those changes
and helps users easily update them.

Executing complete test suites for every
incremental build is very time consuming and
becomes a bottleneck in every CI/CD pipeline.
Instead of executing all the tests to verify the
quality of a build, SOAtest optimizes API test
suites to execute only the tests necessary to
validate the changes between builds. Within
its smart test execution capabilities, Parasoft
SOAtest uses test impact analysis to optimize
the set of tests to be executed so you can get
quicker feedback from the CI/CD pipeline.

To enable visibility and tracking of functional
test results, Parasoft SOAtest generates HTML
reports and XML output with results that can be
published into continuous integration systems as
well as to Parasoft’s centralized reporting server
for additional reporting and analytics.

OFFLOAD MANUAL UI TESTING TO
STREAMLINED SELENIUM TESTING

Selenium is one of the most popular tools for
UI testing. However, testing with Selenium
requires confidence that failures are due to
UI errors rather than failures in the tests
themselves. While Selenium tests are brittle in
the face of constant UI changes, it offers many
benefits. Parasoft Selenic applies AI heuristics to
determine if failures are due to a real regression
in the application. This self-healing capability
uses enhanced locator and wait condition
strategies to detect unstable tests, modify them
on the fly during execution, and then illustrate
where the changes were made.

Focus on real issues instead of wasting cycles
on failed test runs. Parasoft Selenic not
only highlights test execution issues, it also
provides recommendations for fixes to the
tests that will make them more reliable. Locator
recommendations can be imported directly
into the integrated development environment
for one-click test updates that ensure
successful testing in the future.

https://www.parasoft.com/solutions/smart-test-insights/smart-test-execution/
https://www.parasoft.com/products/parasoft-selenic/

Develop a Strategy and Business Case for Test Automation
Whitepaper

16

Parasoft Selenic's Recorder captures UI actions
within the Chrome browser. The Recorder
also defines locators with elements specific to
Salesforce, Guidewire, and other enterprise
applications. After the capture, use the recording
to create easily maintainable pure Java-based
Selenium tests with assertions, built using the
Page Object Model for maximum maintainability.

Manual UI testing is very time consuming and
slow compared to automated testing. Parasoft
Selenic and Selenium together accelerate
automated UI testing. In particular, Selenic
optimizes your Selenium test suite to execute
only the tests required to validate code changes
between builds. More efficient testing delivers
faster feedback. Less testing takes less time,
providing an ever larger benefit multiplier versus
manual testing time.

REMOVE BARRIERS TO TESTING BY
REDUCING ENVIRONMENT CHALLENGES

To realize the benefits from Agile and DevOps
initiatives, teams need instant access to
their test environment, free of constraints.
By applying service virtualization in testing
environments, organizations can reduce or
eliminate the reliance on unavailable, unstable,
or costly dependencies, such as 3rd party
services, databases, and mainframes. Parasoft
Virtualize’s intuitive service virtualization
solution makes it easy for users to create, scale,
and share virtual services.

Parasoft Virtualize easily creates complex test
conditions (such as “what-if,” security, failover,
performance, and negative test scenarios),
and uncovers hidden performance issues in
your application under test by controlling the
performance of the service, for load testing
or slow network simulation. Users can easily
configure a variety of scenarios by dynamically
data-driving service virtualization from external
data sources, including Parasoft’s powerful data
repository infrastructure.

One of the largest challenges to realistic service
virtualization is test data management. Parasoft’s
test data solution doesn’t require users to learn
a brand-new discipline. Test data is created from
the previously recorded API traffic used to create
virtual services. Parasoft Virtualize can store
and manage all the data in the proprietary data
repository system. This lightweight data storage
mechanism makes it much easier to load and
utilize data without the tedious effort of creating
SQL queries.

By building a smaller virtual service from the
beginning and then loading it with all the
necessary data by generating synthetic data, it's
much easier to use and maintain virtual services
while reducing maintenance. Parasoft Virtualize
provides a snapshot for the “golden state” of the
test data, which, when altered through usage,
can be reset right back to its original starting
point with a series of simple API calls.

https://www.parasoft.com/solutions/functional-testing/salesforce-testing/
https://www.parasoft.com/solutions/functional-testing/guidewire-testing/
https://www.parasoft.com/products/parasoft-virtualize/
https://www.parasoft.com/products/parasoft-virtualize/
https://www.parasoft.com/solutions/functional-testing/load-performance-testing/

Develop a Strategy and Business Case for Test Automation
Whitepaper

17

OTHER CONSIDERATIONS
FOR IMPLEMENTING A
SUCCESSFUL TEST STRATEGY
To achieve a successful transformation of an
organization’s quality processes, there are some
key considerations needed in addition to the
calculation and communication of ROI.

	» 	Leadership support is critical in order to
obtain (and retain) the motivation, investment,
and direction needed to make quality
improvement a priority and lead the required
software development culture change.

	» 	Culture change is inevitable if software
organizations want to adopt a quality-first
approach and is key to achieving the promised
results of new tools and methods.

	» 	Quantifiable value is needed to keep
leadership support during the investment
stages of the organization’s transformation.
The techniques in this paper should help
with communicating this in order to keep the
quality-first approach on track.

	» 	Business partner strategic alignment is
critical to make sure the services, tools, and
resources you rely on are aligned with your
new long-term, quality-first goals. Specifically,
you need partners that are going to adapt and
react to the changes in your organization and
the industry as a whole.

	» 	Ongoing maintenance is often overlooked
but test suites and strategies must be
maintained for efficiency, and tools and
services that improve and reduce the cost of
maintenance should be prioritized.

SUMMARY
Calculating and communicating the business
value of test automation is a critical part of
enabling the leadership support and cultural
change needed to adopt a quality-first software
development approach. However, there is more
to this transition, and organizations should
be prepared for a multi-year journey with
incremental improvements.

Although value is immediately recognizable in
the early stages, the payoff comes from more
mature adoption of tools and techniques over
time. The investment goes beyond the cost of
tools and encompasses training, new roles, and
new strategies. These costs soon turn into gains
when downtime, defects, rework, and customer
support issues decrease.

Software organizations need to adopt a scalable
test strategy while investing in their team,
tools, and processes. As maturity and familiarity
increases, so does the desire to measure success
and the return on investment for their efforts.
Understanding just how much money is saved
is important to keep organizational momentum
during the investment stages. As our customer,
Caesars Entertainment, discovered, the return on
investment significantly grows year over year and
the value they received goes beyond tools to a
transformation of the development organization.

Parasoft helps software teams recognize the
value of improved software quality through
a comprehensive, integrated suite of tools
that reduce the overhead of manual testing
and accelerate and improve the creation,
maintenance, and execution of automated tests.
With comprehensive reporting and analytics,
all the essential pieces are in place to make the
move to test automation achieve the desired
business value.

Develop a Strategy and Business Case for Test Automation
Whitepaper

18

TAKE THE NEXT STEP
Learn more about the results Caesars Entertainment achieved after
successfully implementing test automation practices to define and measure
ROI. Read the case study.

ABOUT PARASOFT

Parasoft helps organizations continuously deliver quality software with its
market-proven, integrated suite of automated software testing tools. Supporting
the embedded, enterprise, and IoT markets, Parasoft’s technologies reduce
the time, effort, and cost of delivering secure, reliable, and compliant software
by integrating everything from deep code analysis and unit testing to web
UI and API testing, plus service virtualization and complete code coverage,
into the delivery pipeline. Bringing all this together, Parasoft’s award winning
reporting and analytics dashboard delivers a centralized view of quality enabling
organizations to deliver with confidence and succeed in today’s most strategic
ecosystems and development initiatives — security, safety-critical, Agile,
DevOps, and continuous testing.

https://www.parasoft.com/wp-content/uploads/2021/01/Case-Study-Caesars.pdf
https://www.parasoft.com/

