
How to Approach
DISA-ASD-STIG

Compliance for
Software

Development

W H I T E P A P E R

How to Approach DISA-ASD-STIG Compliance for Software Development

PARASOFT.COM

2

WHAT DOES COMPLIANCE
WITH DISA-ASD-STIG MEAN?
Compliance to the guidelines is evaluated against
product and process documentation as well as
observing and verifying functionality:

2.1.2 Functionality

When reviewing an application, aspects of application

functionality must be evaluated to ensure the appropriate

controls exist to protect the application and the application

data. Items to consider include the type of data processed by the

application such as classified, unclassified, and publicly releasable

or Personally Identifiable Information (PII) data. The application’s

network connections, network access controls, data entry/egress

points, application authentication mechanisms, application

access controls, and application auditing mechanisms. These

items will vary based upon application architecture, design, and

data protection requirements.

– ASD STIG Overview, V4R9

In other words, the STIG requires “proof” of
secure design and implementation through
documentation, verification, and validation of all
aspects of the software development lifecycle,
including deployment and operation. These
guidelines apply throughout the lifetime of the
product including configuration, maintenance, and
end-of-life.

DISA-ASD-STIG requires the use of application
code scanners (Overview, Section 4.1) “…an
automated tool that analyzes application source
code for security flaws, malicious code, and back
doors.” In more common terminology this is static
application security testing (SAST) implemented

Defense Information Systems Agency (DISA),
Application Security and Development (ASD), and
Security Technical Implementation Guides (STIG)
is a set of guidelines for securing desktop and
enterprise applications used by the Department
of Defense. The guidelines cover in-house
application development and the evaluation of
third-party applications. They don’t, however,
cover commercial off-the-shelf software.

Achieving compliance to the DISA-ASD-STIG
guidelines requires proof, usually in the form of
documentation, that satisfies auditors. This paper
discusses Parasoft’s recommended approach to
achieving compliance in an efficient, less risky,
and cost-effective manner. To achieve this, a
three-level approach is required:

Application scanning with static analysis tools
to ensure vulnerabilities are detected and
remediated in the application. The DISA-ASD-
STIG has specific guidelines on what classes of
vulnerabilities to detect and remediate.

Application testing for security with functional
and penetration testing tools to verify and
validate DISA-ASD-STIG requirements.

Shift-left compliance with preventative
processes, which eliminates poor coding
practices that lead to vulnerabilities. This wider
swath of detection includes application scanning
and the application of industry coding standards
such as SEI CERT C/C++. It also includes
guidelines like the removal of “code smells”, which
are poor practices known to be the root cause of
software vulnerabilities.

This 1-2-3 punch is the key to achieving compliance
by verification and documentation with the goal
of maturing the process beyond detection into
prevention of security vulnerabilities.

Figure 1:
DISA-ASD-STIG vulnerability categories

DISA Category Code Guidelines

CAT I	 Any vulnerability, the exploitation of which
will directly and immediately result in loss of
Confidentiality, Availability, or Integrity.

CAT II	 Any vulnerability, the exploitation of which has
a potential to result in loss of Confidentiality,
Availability, or Integrity.

CAT III	 Any vulnerability, the existence of which degrades
measures to protect against loss of Confidentiality,
Availability, or Integrity.

How to Approach DISA-ASD-STIG Compliance for Software Development

PARASOFT.COM

3

HOW TO LOOK AT A STIG
REQUIREMENT
All STIG requirements are stored as XML and not
in human-readable form. A Java-based viewer
is supplied in order to view the requirements.
The viewer is shown below with each key
area of the UI labeled. The requirements are
searchable and filtered in the UI, and each
requirement lists associated vulnerabilities. The
details of each vulnerability contain a description
describing each along with how to confirm the
vulnerability doesn’t exist in the software. There
is a useful video describing how to use the tool.

THE ROLE OF STATIC
ANALYSIS TOOLS IN
DISA-ASD-STIG
The previous version (v3.x) of the DISA-ASD-
STIG required the use of static code analysis
along with specific static analysis guidelines to
check against. However, this is not the case with
the current version.

The latest revision uses the term “application
scanning”, which amounts to static code analysis
and related technologies such as software
composition analysis. In addition to the general
requirement for vulnerability assessment via
static code analysis, there are requirements for:

» OWASP Top 10 (V-69513)

» Overflows (V-70277)

» Race conditions (V-70185)

» Error handling (V-70391)

Although this looks like a small set of
vulnerabilities, the reality is this translates into
many related software weaknesses. For example,
the OWASP Top 10 translates to 53 CWEs, each
of which have multiple related weaknesses.
Although this is the set of vulnerabilities specific
for compliance, it’s prudent to consider a wider
swath of vulnerabilities to detect.

The viewer is mentioned here because it’s a critical
resource needed by software organizations as the
go-to source for STIG requirements and hopefully
more used and useful than paper documentation.

As stated, vulnerabilities listed in the DISA-ASD-
STIG are categorized by severity with most being
in Cat II, which means the vulnerability has the
potential to cause a loss of integrity, availability,
and confidentiality. There are relatively fewer
CAT I vulnerabilities, which are the most critical.

Figure 3:
Distribution
of vulnerability
categories

through static code analysis and “should be
utilized whenever possible. Particularly in the
development environment where code that has
been identified as requiring remediation can be
addressed prior to release.”

The DISA-ASD-STIG also requires the use of
active vulnerability testing (like penetration
testing tools) to test executable software. These
tools are required during development and
deployment to support vulnerability assessments.

Figure 2:
Java-based STIG viewer

https://public.cyber.mil/stigs/srg-stig-tools/
https://www.youtube.com/watch?v=LdBfJZ7aK9w
https://cwe.mitre.org/data/definitions/1026.html
https://www.parasoft.com/how-does-static-analysis-prevent-defects-and-accelerate-delivery/

How to Approach DISA-ASD-STIG Compliance for Software Development

PARASOFT.COM

4

IMPROVING SECURITY WITH STATIC ANALYSIS
AND OWASP TOP 10
The Open Web Application Security Project (OWASP), as the name implies, is an organization that is
committed to improving the security of web applications. Their OWASP Top 10 project provides a list
of the most common and high-impact web application security vulnerabilities.

The latest version of OWASP Top 10 is directly correlated to specific CWE IDs. It’s now much easier
to implement as a coding standard while still using it for penetration testing and DAST tools.

Compliance to the OWASP Top 10 centers
around making reasonable efforts to avoid the
most common and critical security issues facing
web applications today. While it’s possible to
use static analysis tools to detect most of the
issues, some are not statically analyzable. A9,
for example, is related to Software Composition
Analysis (SCA).

SCA is another term for analyzing the software
supply chain. For example, when using open
source in a project, it’s important to make sure
any known vulnerabilities in the code (such
as CVEs) are fixed in the version being used.
This is now commonly being used as a security
requirement in medical, safety-critical, and
government projects. Parasoft supports this by
integrating the OWASP dependency checker
with Parasoft’s static analysis output into a single
report that provides full Top 10 coverage.

Parasoft static analysis has out-of-the-box
support for OWASP Top 10 through pre-
configured settings and specific web dashboard
reports for C/C++. Java and C#/.NET. OWASP
reporting in Parasoft tools provides a fully
auditable compliance framework for projects.
These reports are integrated into a standards-
specific dashboard like the one in Figure 5 for
DISA-ASD-STIG.

OWASP Top 10 — 2017

A1:2017 — Injection

A5:2017 — Broken Access Control

A2:2017 — Broken Authentication

A6:2017 — Security Misconfiguration

A3:2017 — Sensitive Data Exposure

A7:2017 — Cross-Site Scripting (XSS)

A9:2017 — Using Components with Known Vulnerabilities

A4:2017 — XML External Entities (XXE)

A8:2017 — Insecure Deserialization

A10:2017 — Insufficient Logging & Monitoring
Figure 4:
OWASP Top 10

Figure 5:
Parasoft DISA-ASD-STIG dashboard

https://owasp.org
https://owasp.org/www-project-top-ten/
https://www.parasoft.com/solutions/compliance/owasp

How to Approach DISA-ASD-STIG Compliance for Software Development

PARASOFT.COM

5

The reports for OWASP compliance in the
Parasoft DISA-ASD-STIG dashboard use
the same risk rating methodology provided
by OWASP. This scoring provides quick
prioritization of reported violations to help
developers focus on the most important security
vulnerabilities first. Their methodology takes
into account:

» How difficult it is for someone
to exploit found weaknesses.

» How common the problem is.

» How easy it is for an attacker
to find the weaknesses.

» What happens if the weaknesses
were exploited.

This provides a solid basis to prioritize the
issues that are most important to your
organization and software.

Parasoft tools allow the level of enforcement to
match the goals of your project. It’s up to the
project team to decide, based on risk assessment,
which of the violations that appear in the code
they are most concerned about.

Compliance reports are available on demand.
Compliance criteria is flexible and specific to the
team’s project and codebase. Developers can
craft policies based on severity, risk, impact, age
of code, importance of components, and so on,
and easily use them to guide development and
show efforts to an auditor.

Although many vulnerabilities can be found
via application code scanning, there’s still a
requirement for a dynamic audit of the software—
application scanning. Security penetration testing
tools are one category of these tools but there is
also a place for verifying correct behavior through
manual and automated functional testing. In
addition, it’s important that teams expand their
focus beyond the guidelines in the DISA-ASD-
STIG to include preventative guidelines like those
included in secure coding standards.

Figure 6:
Parasoft OWASP
compliance report

https://owasp.org/www-project-risk-assessment-framework/

How to Approach DISA-ASD-STIG Compliance for Software Development

PARASOFT.COM

6

DISA-ASD-STIG VALIDATION METHODS
The DISA-ASD-STIG outlines ways to verify compliance with requirements, which include application
code scanning (already discussed), application scanning, manual review, and functional security testing.

Functional testing is verifying with automated tools or manual testing that the vulnerability is not
present in the software. In other words, “do something, check something” (i.e. check if the action
worked properly and was logged if necessary).

The functional verification of these STIGs looks
daunting, but it’s the familiar workflow that
testers are already doing in their functional tests
for software. For example, the UI login workflow
illustrated in Figure 8 is familiar to most testers.

The illustration shows the flow of a user trying to
log in to an application with the wrong password
more than three times in a row. Testers confirm
that the system locks the account, and that the
attempt is logged in the appropriate log file. In
other words, look at your policy, try the action,
confirm it was handled correctly, and verify it
was logged.

Figure 7:
STIG verification requirements

Figure 8:
Functional verification as
"do something, check something."

ADMIN CONSOLE

TESTING & MONITORING TOOLSAPPLICATION UI LOGIN

How to Approach DISA-ASD-STIG Compliance for Software Development

PARASOFT.COM

7

API TESTING AND
MESSAGING STANDARDS
A key area of test automation that benefits
DISA-ASD-STIG testing is verifying API
requirements and standards specified in the
STIG. API tests are highly automatable with
tools such as Parasoft SOAtest. For example,
consider the DISA-ASD-STIG vulnerability ID
V-69279, rule ID SV-83901r1, which states:
“Messages protected with WS_Security must use
timestamps with creation and expiration times.”

One way to test for this vulnerability is by
creating a test in SOAtest to examine SOAP
messages and verify their time stamps, as
illustrated below.

This test detects the lack of time stamps in the
SOAP message headers and displays errors:

It’s possible to examine large streams of data for
this vulnerability which would be tedious to do
manually. This fits the workflow of “do something
(automated), check something (automated.)” The
preceding approach is a late lifecycle test where
the software is nearly complete, and system and
UI testing are taking place.

It’s also possible to test this rule in development.
The vulnerability gets removed earlier in the
lifecycle when it’s easier and cheaper to fix.

In the development phase, real clients are
unavailable. This must be simulated by the
tools and missing services can be virtualized if
dependencies need to be met. Looking at the
above example, we can create a client that sends
SOAP requests to a secure server with the
required WS-Security SOAP header.

When running this test, we discover that the
SOAP request succeeds despite it being insecure
due to missing time stamps. We’re alerted by the
tool. The expected behavior is for the service
to send a SOAP fault message. If this doesn’t
happen, we get an error and we know the service
is vulnerable.

This type of testing can be used for each
API in the system; validating the security by
checking for the listed vulnerabilities in the
DISA-ASD-STIG. The benefit of this automated
approach is the ability to clone and modify
existing tests to suit other services, and the
repeatability of the tests. Regression tests
of this sort are completely automatable.

Figure 9:
Parasoft
SOAtest
example

Figure 11:
SOAtest
example
that
simulates
SOAP
messages

Figure 10:
Parasoft
SOAtest
error
message
when
vulnerability
detected

Figure 12:
SOAtest error message when missing
required information in SOAP header

https://www.parasoft.com/products/soatest

How to Approach DISA-ASD-STIG Compliance for Software Development

PARASOFT.COM

8

WHAT TO LOOK FOR IN
SOFTWARE DEVELOPMENT
AUTOMATION TOOLS FOR
DISA-ASD-STIG COMPLIANCE
KEY FEATURES OF STATIC ANALYSIS TOOLS
Not all static analysis tools are created equally
and there is more to each tool than just the
analysis engine. The quality and depth of the
analysis matter, and so does the storage and
analysis of the results.

Integrations with other development tools
such as IDEs and CI/CD pipeline tools are also
important. Here are some of the key features
that improve quality and security, and also speed
up the adoption of the tools into the software
development workflow:

» Support to run in your IDE: Static analysis
works best when it catches coding violations,
bugs and security vulnerabilities as the code
is written. It’s also critical that developers
get access to the results of the current full-
project build analysis and results.

» Support to run on build servers and CI
systems: Running static analysis at the
project level is also important since the
scope of analysis includes all or most of the
source code. Complex analysis such as data
flow analysis works best in this mode. It’s
also important that the analysis integrates
with an existing continuous integration and
deployment toolchain and workflow.

Additionally, the tools must keep track of
each analysis on a per-file and per-build
basis. Along with running in the IDE, you
can implement a “trust but verify” policy. It’s
effective and doesn’t impact your workflow
negatively, unlike the way some strictly gated
CI security implementations do.

» Centralized configuration control: Central
control of testing and analysis configuration
is critical for deploying the standards to all
developers on the team. It’s also the best
way to tweak settings and deploy them
consistently to the entire team. You can’t rely
on everyone having the correct standards.
Using a centralized system enforces the same
standards always.

How to Approach DISA-ASD-STIG Compliance for Software Development

PARASOFT.COM

9

» Centralized reporting, audit, and analytics:
One of the crucial aspects of static
analysis tools is the reporting and analytics
capabilities. Projects create a large amount of
data in terms of warnings and are multiplied
build by build. How this data is managed is
key to the successful adoption and return on
investment for static analysis tools.

Dashboards, reports, and conformance
tuned for each coding standard and security
guideline are critical. Analytics that leverage
risk models and help prioritize dramatically
reduce the mountain of violations that
information “straight out of the tool” (SOOT)
can produce.

» Full range of checkers: A comprehensive set
of checkers is important in order to support
various use cases for static analysis. The set
should include:

» Checkers that detect errors
and vulnerabilities

» Checkers for prevention
» Checkers for so-called “bad smells”

(code that doesn’t look right on the first
inspection and requires a closer look)

Supporting complex advanced checkers using
data flow analysis is important and helps
detect hard to find bugs. These bugs help you
shift security left by testing earlier. To really
harden your code, however, you also need
to have checkers that prevent problems in
the first place. For example, a checker that
enforces input validation rather than just
trying to find all possible ways to taint data.
It’s equally important to have comprehensive
preventative checkers such as industry-
standard security and safety guidelines like
CERT, MISRA, OWASP, and CWE.

Figure 13:
Parasoft Jtest
integration with
Eclipse

 Open file in editor Check in
 files browser 23

 Results1

https://www.martinfowler.com/bliki/CodeSmell.html

How to Approach DISA-ASD-STIG Compliance for Software Development

PARASOFT.COM

10

KEY FEATURES OF FUNCTIONAL
TEST AUTOMATION TOOLS

Broad and simple creation: codeless and
AI-powered. Your API testing tool should not
require you to have any experience writing code.
A codeless testing tool with an intuitive user
interface will empower a large body of testers
(at a variety of experience levels) to use the tool
productively. API testing can be overlooked
when developers push it to QA, and QA focuses
on manual testing. Having an API testing tool
that is visual and scriptless will enable testers to
adopt this critical testing practice without having
to spend lots of time on training and enablement.

Your API testing solution also needs to work
with authentication, encryption, and access
control. Many of your services will be deployed
via an encrypted protocol such as SSL, as well
as having a security policy such as OAuth, Basic
auth, Kerberos, payload encryption, SAML,
Signatures, etc. Additionally, you will need to
validate that your security is working properly, so
your API testing tool should have a mechanism
to ensure that the standards are implemented
properly and work flawlessly.

Test flow logic. Your API testing tool should have
a mechanism for controlling test flow based on
conditions. Not all test scenarios will execute
in a linear fashion, so you may need to make
automatic decisions at runtime that will affect
how your test executes. An example of this might
be ensuring that a response contains a specific
element prior to moving to the next test step.
Additionally, you may want to pause execution

and poll a web service for a while to ensure a
process has taken place. Your API testing solution
must have the ability to analyze responses for
key criteria and then use that information to
control the rest of the test execution.

Test data management. Testers can spend a lot
of time gathering adequate test data. Your API
testing tool should support you in this activity by
providing workflows for connecting to various
data sources as well as generating test data
itself. Your solution should have the ability to
understand the types of data you require for
given scenarios and build on that test data with
additional use cases so that your test cases can
be as flexible as possible.

Event monitoring. To enable end-to-end testing,
your API testing solution must be able to monitor
events as they flow through your system. You
can validate inputs and expected outputs and
understand how transactions transform as they
move through your application. With multi-step
validation by plugging into your application
internals via JMS messaging, database
monitoring, and so on, your solution will be able
to provide greater levels of test coverage.

Support a large gamut of communication
protocols. Modern software applications are
comprised of a series of subsystems with many
different message formats and protocols in place.
You need functional test automation tools that
go beyond supporting common HTTP based
REST/JSON and SOAP/XML interfaces to cover
everything from traditional interfaces (such as
EDI, MQ, JMS, and SQL/Databases) to modern
microservices and IoT protocols (such as Kafka,
MQTT, AMQP) and beyond.

Integration into CI/CD pipelines and build
systems. CI/CD is a critical component of
DevOps/DevSecOps and accelerating delivery.
To get the feedback you need to modernize
the development process, integrate into the
build process through scripted command line
execution and into the CI/CD pipeline with
native plugins.

How to Approach DISA-ASD-STIG Compliance for Software Development

PARASOFT.COM

11

A PRAGMATIC APPROACH TO DISA-ASD-STIG COMPLIANCE
The reality of software development for DoD, which requires DISA-ASD-STIG, is that you must
test for all rules and vulnerabilities. It can be a daunting task, but automation is possible to lift
some of the burden.

Parasoft’s recommendation on how to approach complying with DISA-ASD-STIG is to leverage
automation where it makes the most sense and use pre-emptive techniques to prevent
vulnerabilities. It’s more expensive and time-consuming to detect and fix vulnerabilities when
software is almost complete versus during development. For this reason, Parasoft’s approach is to
“shift left” the vulnerability assessment, detection, and remediation earlier in the lifecycle.

FOR DEVELOPERS
Developers are less concerned with the larger
scope of DISA-ASD-STIG requirements.
However, there are critical steps they can take
to make their life easier and reduce the backend
workload during audits. A preventive, shift-left
approach that makes use of automation is the
key for developers.

Shift-left testing with code analysis. Using static
analysis right from the start of development
prevents vulnerabilities from making their way
into the software in the first place. It’s also a
good way to assess the quality and security of
legacy or third-party source code.

Turn on “code smells” and preventative
standards checkers to harden the code. Beyond
direct detection of bugs and vulnerabilities, it’s
important to prevent poor coding styles that can
end up being a problem later.

Use static analysis for OWASP Top 10, overflow,
race, and error handling. DISA-ASD-STIG
specifically requires scanning for certain types
of vulnerabilities. These should be done with an
advanced static analysis tool that collates and
analyzes results for later reporting and audits.

Use dynamic analysis and testing as needed for
an audit. Software developers should leverage
available tools as they can while the project
progresses. As soon as code is testable, dynamic
analysis and penetration tests should be started.
Where a strong, secure coding practice has been
established, use these tests to primarily validate
the software is secure, rather than to find
security issues.

FOR TESTERS
Testers in this environment are responsible
for functional tests and for testing the
STIG rules that require “do something,
check something” validation. In some
cases, test automation can help, while in
others manual validation is required.

Build automated regression tests for STIG
rules as is practical using functional API testing
and service virtualization as necessary.

Manually test STIG rules that
can’t be automated.

https://www.parasoft.com/how-shift-left-testing-reduces-software-development-risks/

How to Approach DISA-ASD-STIG Compliance for Software Development

PARASOFT.COM

12

SUMMARY
The DISA-ASD-STIG presents a fairly daunting set of requirements for securing software for DoD
applications. There are various methods of demonstrating compliance with the rules outlined in the
STIG—usually through audits of documentation, and reports and manual effort to use an application
and check its logs. There are opportunities for automation in key areas outlined in the STIG such
as application code and application scanning. Some of these are achieved through static analysis.
Others through functional testing with a “do something, check something” approach to compliance.

A pragmatic approach that emphasizes preventative techniques that remove vulnerabilities early
in the project lifecycle is recommended. Parasoft’s static analysis provides early detection of
vulnerabilities, and enforces code style and quality to prevent poor security practices as early
as possible. Automating other STIG rules to the fullest with functional testing tools reduces the
tedious manual testing to the max.

TAKE THE NEXT STEP
Detect vulnerabilities early and build quality into your software process from the beginning.

Talk to one of our experts to get started today.

LEARN MORE

How to Select and Implement the Right Secure Coding Standard

How to Choose a Modern Static Analysis Tool

ABOUT PARASOFT

Parasoft helps organizations continuously deliver quality software
with its market-proven, integrated suite of automated software testing
tools. Supporting the embedded, enterprise, and IoT markets, Parasoft’s
technologies reduce the time, effort, and cost of delivering secure, reliable,
and compliant software by integrating everything from deep code analysis
and unit testing to web UI and API testing, plus service virtualization and
complete code coverage, into the delivery pipeline. Bringing all this together,
Parasoft’s award winning reporting and analytics dashboard delivers a
centralized view of quality enabling organizations to deliver with confidence
and succeed in today’s most strategic ecosystems and development initiatives
— cybersecure, safety-critical, agile, DevOps, and continuous testing.

https://alm.parasoft.com/hubfs/Whitepaper%20How%20to%20Select%20and%20Implement%20the%20Right%20Secure%20Coding%20Standard.pdf
https://alm.parasoft.com/en/how-to-choose-a-modern-static-analysis-tool
https://www.parasoft.com/contact/

