
How to Choose
the Right Service

Virtualization Solution
Key Capabilities to Make Your Organization
Successful in Today’s Testing Environments

W H I T E P A P E R

How to Choose the Right Service Virtualization Solution
Whitepaper

2

WHAT IS SERVICE VIRTUALIZATION?
Providing an effective way to simulate dependent services that are out of your control for testing,
service virtualization is a key enabler to any test automation project. By creating stable and predictable
test environments, your test automation will be reliable and accurate. But there are several different
approaches and tools available on the market. What should you look for in a service virtualization
solution to make sure that you’re maximizing your return on investment?

Use this guide to help you identify the key features and capabilities needed for your successful
enterprise deployment and adoption of service virtualization. It’s more important than ever to choose
a solution that’s right for you and your organization.

THE SERVICE VIRTUALIZATION TOOL LANDSCAPE

The service virtualization tooling landscape breaks down into two types of service virtualization
solutions.

Lightweight Tools

Free or open-source tools (such as Traffic Parrot
and Mockito) are great tools for beginners
because they help you get started in a very ad
hoc way, so you can quickly learn the benefits of
service virtualization. These solutions are usually
sought out by individual development teams to
“try out” service virtualization, brought in for a
very specific project or reason.

The downside of the lightweight tools is they
struggle to garner full organizational traction
because they lack the breadth of capability and
ease of use required for less technical users to
be successful. Additionally, while these tools
are free in the short term, they become more
expensive as you start to look into maintenance
and customization

Enterprise Tools

More heavyweight tooling is available through
vendor-supported tools, designed to support
power users that want daily access to create
comprehensive virtual services. These solutions
are often designed with deployment and team
usage in mind.

When an organization wants to implement
virtualization as a part of their continuous
integration and DevOps pipeline, enterprise
solutions integrate tightly through native plugins
into their build pipelines. Additionally, these
solutions can handle large volumes of traffic
while still being performant. Obviously, these
solutions are not free, so an organization needs
to make the right decision when moving into this
level of usage.

How Do You Choose the Solution That’s Right for You?

Most organizations won’t self-identify into a specific tooling category such as lightweight or
enterprise, but rather have specific needs from their solution. The honest answer is that you need the
best of both of these worlds, so the best way to choose a service virtualization solution that’s right
for you is to look at the different features and capabilities that you may require and ensure that your
tooling choice has those capabilities. Additionally, you may identify other areas of capability that you
may need in the future. Use this guide as a checklist to determine those capabilities that are most
important to you both now and in the future.

How to Choose the Right Service Virtualization Solution
Whitepaper

3

CORE CAPABILITIES FOR
EASE OF USE
	» SCRIPTLESS FUNCTIONALITIES

	» ABILITY TO RAPIDLY CREATE VIRTUAL
SERVICES BEFORE THE REAL SERVICE IS
AVAILABLE

	» INTELLIGENT RESPONSE CORRELATION

	» DATA-DRIVEN RESPONSES

	» ABILITY TO REUSE SERVICES

	» A CUSTOM EXTENSIBILITY FRAMEWORK

	» SUPPORT FOR AUTHENTICATION &
SECURITY

	» CONFIGURABLE PERFORMANCE
ENVIRONMENTS

	» SUPPORT FOR CLUSTERING & SCALING

SCRIPTLESS FUNCTIONALITIES

For optimal ease of use, you should be able to
build virtual services without having to write
any code. A visual tooling system is best for this
because quite often the person who requires
a virtual service will not be the person who
originally developed the service and will not
have intimate knowledge of its implementation.

This is important to think about because you
will be implementing a lot of business logic
into your virtual services, in order to make
sure they behave like the real services. Having
a visual tooling system allows you to easily
approach that task, as well as easily share
the implementation with a broader audience
because it will be easier to understand.
Everybody’s coding style is different, and with a
purely code-driven implementation it’s difficult
to look at the virtual service and understand
what it is doing. With a scriptless visual system,
you can grasp its concept and borrow pieces of
the implementation in a much easier way.

A solution that’s intuitive and scriptless also
enables a large body of nontechnical users
to build the right virtual services quickly.
By reducing the reliance on a strictly coded
implementation, non-developers will be able to
help build virtual services, fostering a shift-left
approach to virtualization usage and helping it
become widely adopted more quickly.

ABILITY TO RAPIDLY CREATE VIRTUAL
SERVICES BEFORE THE REAL SERVICE IS
AVAILABLE

Virtual services can be leveraged as prototypes,
which is a very powerful usage of virtualization.
This means creating interfaces for dependent
components of your application before they
are available. Since you won’t be able to use
record-and-playback to create these, your service
virtualization solution must be able to create
virtual services from service definitions such
as WSDL, Swagger, Open API (OAS3), schema,
example payloads, and so on.

With this capability, you can spin up virtual
services as soon as the service definitions have
been created, enabling a strategy in which
developers can build the virtual services as they
are building the real services, so that parallel
development can take place and out-of-sync agile
development doesn’t become a blocker.

Another powerful part of creating the
service before it is available is for test-driven
development (TDD). Testers can create a
simulation of what the service will be, and then
start to develop their tests against it so that
as the service becomes available, they get a
jumpstart on their test automation.

How to Choose the Right Service Virtualization Solution
Whitepaper

4

INTELLIGENT RESPONSE CORRELATION

Intelligent response correlation means that a
virtual service can respond differently depending
on the request coming in. The different types of
response correlation must be considered.

Deployment Correlation

Each virtual service should be deployed on
individual (or multiple) listeners (HTTP, MQ,
JMS, TCP, Kafka, and more). An individual virtual
service should only pick up messages that are
meant for it, so your virtualization solution
should be able to discern different messages
coming to different queues/paths.

Message Correlation

As individual messages come in, you may have
different operations or resources that should
be acted on differently. For example, “add
account” and “update account” should go to
different pieces of response logic, so your service
virtualization solution should be able to analyze
the incoming message for patterns and route the
messages appropriately.

Data Source Correlation

Once the message has been routed to the
appropriate response object, you may want to
further slice and dice the message depending on
key information in the request. A good example
of this would be responding differently to various
customer accounts. You may have 100 different
accounts that have different types of response
bodies, and you don’t want to create a response
object for every single ID, so your virtualization
solution needs to be able to correlate on data
in the incoming request and look it up in a data
source for response.

DATA-DRIVEN RESPONSES

Your virtualization solution should be flexible,
so you can create the logic in an abstracted
way from the data. Data-driven responses allow
you to connect your virtual services to data
sources like Excel, CSV, tabular, hierarchical, and
even to live databases for real-time data lookups.

Data will be one of the most important pieces of
your virtual service because it will be changing
all the time. With the ability to parameterize
response data in an external file, your virtual
services will become more flexible, as well as
provide you with the ability to offload some
of the response logic into the data source so
that it can be handled by the QA or Test Data
Management team.

You should also be able to leverage dynamic
data sources. An example of this would be if you
had transient data provided to your service as
a lookup, like an order number, you would want
to be able to respond back with the appropriate
data even if it didn’t exist in your data source.
By pulling dynamic data at runtime, as well as
storing that data in a stateful way, you will be
able to create flexible virtual services that aren’t
hindered by static data.

ABILITY TO REUSE SERVICES

In order to define core, common, or shared
services and reuse those templates and logic in
other virtual services, your service virtualization
solution should have the ability to repeatedly
leverage any virtual service logic you have
previously created. This will help the team
collaborate because you will be able to come to
consensus on what certain key service behaviors
should be. Mock that up once, and then use it
multiple times.

How to Choose the Right Service Virtualization Solution
Whitepaper

5

A CUSTOM EXTENSIBILITY FRAMEWORK

Should you need to write code to accomplish
tasks such as generating a proprietary token
or unique identifier, your service virtualization
solution should have the ability to use scripts
but not be limited to a single language. Different
testers and developers use different scripting
languages depending on the level of expertise
or preference. At a minimum, your service
virtualization solution should support Java,
Jython/Python, JavaScript, and Groovy.

Since new message formats and protocols show
up all the time, your service virtualization should
also include a framework that allows you to
extend the tool’s capability. This will enable you
to support any transport or protocol that your
organization is using, whether it’s an industry
standard or custom implementation.

SUPPORT FOR AUTHENTICATION & SECURITY

Virtual services need to behave just like the
real services, so that will include things like
authentication and security. Your virtualization
solution should give you the ability to validate
incoming transport layer security such as SSL
certificates, as well as interact with the live
services during recording, which could be
governed with authentication mechanisms such
as oAuth, Basic Auth, Digest, Kerberos, NTLM,
and so on.

Additionally, your service virtualization solution
needs to be able to negotiate and emulate
message layer security. Examples of this include
payload encryption, SAML, signatures, and others.
By being able to emulate the security mechanism,
you can create the most realistic virtual services
possible and ensure that any defects related to
authentication or security are identified.

CONFIGURABLE PERFORMANCE
ENVIRONMENTS

One of the most powerful applications of
service virtualization is enabling performance
testing. You can laser-focus on specific
component SLAs by using virtual services
to emulate out of scope dependencies. You
can create performance environments by
surrounding your application with virtual
services. This allows you to do earlier stage
performance testing and reduces your exclusive
reliance on full performance environments.

In order to do this, your service virtualization
solution must be able to adjust performance
delays. You should be able to configure baseline
performance delay times based on static values
as well as be able to adjust performance delays
dynamically as the virtual service is used (more
hits = increasingly slower performance).

Additionally, it is valuable to be able to leverage
your existing application monitoring profiles for
your virtual services, so it’s important for your
virtualization solution to understand and import
performance delays from solutions like App
Dynamics or Dynatrace.

SUPPORT FOR CLUSTERING & SCALING

As your service virtualization solution becomes
adopted by the performance team, or general
usage increases, you will need your solution to
enable scaling. Scaling can manifest in two forms:
high throughput and fault tolerance.

To support scaling, you will want your service
virtualization solution to be easily clustered
behind a load balancer so that you can
distribute the load given to your virtualization
infrastructure appropriately, and your service
virtualization solution should be able to
maintain asset parity as you adjust different
virtual services on individual nodes. This can
be accomplished by coordinating your virtual
services through a source control system or by
having a centralized asset authority that deploys
the appropriate virtual services in the right
configuration to each node in the cluster.

How to Choose the Right Service Virtualization Solution
Whitepaper

6

OPTIMIZED WORKFLOWS
	» RECORD & PLAYBACK

	» AI-POWERED ASSET CREATION

	» TEST DATA MANAGEMENT & GENERATION

	» DATA REUSE

	» SERVICE TEMPLATES

	» MESSAGE ROUTING

	» FAILOVER TO LIVE SYSTEM

	» STATEFUL BEHAVIOR EMULATION

RECORD & PLAYBACK

Creating virtual services from actual transactions
in your environment is the best way to build
virtual services that emulate the real behavior
of your live services. To do so, your service
virtualization solution should be able to capture
traffic from your environment, either natively
or through integrations with solutions like
Wireshark or Fiddler, enabling nontechnical users
to capture their specific use cases into virtual
services without intimate knowledge of the real
back-end services.

Look for a service virtualization solution that
gives you the ability to not only process the
traffic, but capture that traffic into a service
template, so that any decisions that you make
during the traffic processing workflow can be
captured into a reusable model.

AI-POWERED ASSET CREATION

If your service virtualization solution has
intelligence built into the asset creation process,
it will be able to make decisions about things
you commonly do when creating your virtual
services. An example of this is in automatically
determining the appropriate transport, message,
and data source correlation to apply when
processing traffic.

Artificial intelligence allows solutions to analyze
all of the available requests, looking for patterns
and relationships, and then determining the best
way to group that information while at the same
time identifying and automatically generating
a data source for the parameterizable values.
With AI-powered asset creation, your solution
will do the majority of the decision-making
automatically, enabling nontechnical users to
create virtual services quickly.

TEST DATA MANAGEMENT & GENERATION

Often the services that are identified as
candidates for service virtualization are actually
suffering from data challenges, so test data
management and service virtualization go
hand-in-hand.

In addition to creating virtual services, your
service virtualization solution can generate the
test data you need, tightly coupled with your test
data management/generation solution so that
you can capture data from your environments,
mask that data for privacy reasons, abstract
transactions into a data model, and then
generate and subset data in those models.

Having a test data management solution that is
deeply integrated with your service virtualization
solution will allow you to tackle any virtualization
opportunity with greater flexibility. For example,
to create an early stage virtual service without
the required data on hand, you can use your
virtualization solution to create the virtual
service from the service definition and then
abstract that into a data model. You can then
apply business rules into the data and generate
the appropriate data to cover all of the various
behaviors you are looking for.

Test data management can be a key enabler for
your service virtualization solution, so having
one that’s easy to understand and adopt will
ultimately help the entire virtualization initiative
gain traction and provide ROI as soon as possible.

How to Choose the Right Service Virtualization Solution
Whitepaper

7

DATA REUSE

In the early stages of asset creation you may only
be able to record a subset of the actual services
behavior, so you should be able to rely on your
service virtualization solution to incrementally
add data to its data library. As you progress
through the development cycles, you may want
to add additional behavior and logic to your
service without starting over from scratch every
time. To facilitate this, you can choose a service
virtualization solution that allows you to re-
record new data and merge it into your existing
data structures.

It is also worth investigating whether your
service virtualization solution can incrementally
update its data library via automation. Doing
so will allow you to create a process where you
capture additional data and merge it into your
virtual services data library in an automated way.

SERVICE TEMPLATES

Service templates are critical to any service
virtualization solution. Virtual services are like
snowflakes — each one is different, and it can be
really complicated for a centralized team to create
virtual representations of an entire organizational
service library. A key to a truly scalable
governance process for service virtualization
will be adopting workflows that allow you to
incrementally maintain virtual services.

A service template can be thought of as an
abstraction of a virtual service’s creation logic,
containing things like its deployment mechanism,
data source connections, message correlation
logic, data source correlation logic, any associated
service definitions, data reuse strategy, target
deployment server location, and so on.

By templatizing these configuration details
into a reusable artifact, iteratively developing
new behavior on top of existing virtual services

MESSAGE ROUTING

Because virtual services are designed to
process incoming messages and determine
how to respond to them, that interrogation/
determination process can be repurposed as a
message router. There may be situations where
you want to route certain messages to the live
system, either because you want to capture
some real behavior under certain conditions
or you’ve decided not to virtualize pieces of
your application.

You can also provide different virtual responses
for different users by analyzing the incoming
request and routing those messages to different
virtual services. To enable this, your service
virtualization solution should be able to
repurpose any virtual service(s) into message
routers, so you can appropriately funnel
messages through your environment without
having to reconnect applications all the time.

becomes more manageable. Depending on
the service virtualization solution you choose,
service templates may manifest as different
offerings, but ultimately you should look for a
mechanism that allows you to abstract asset
information into a reusable area that can be
shared across the organization and updated.

How to Choose the Right Service Virtualization Solution
Whitepaper

8

FAILOVER TO LIVE SYSTEM

Service proxies that you create for recording
traffic can be repurposed as message routers
as well. Your service virtualization solution can
failover to the live system if your virtual service
does not have the appropriate data. This will
allow you to incrementally build your virtual
service to cover common use cases at first, while
still having all of the responses available even if
you haven’t captured them.

This technology can be used in the opposite
direction as well, so you can create a “failover
to virtual” scenario where the majority of your
traffic goes to the live service unless that service
goes down. At that point, the failover mechanism
will allow you to funnel information to your
virtual service so that when your environment
is intermittently unstable, you're still covered by
virtual services.

STATEFUL BEHAVIOR EMULATION

Stateful virtualization allows you to create virtual
services that behave just like the real services
and update themselves based on usage. Your
solution can make state-based modeling easy to
pick up by novice users, using simple interfaces
to add the necessary logic to Create, Read,
Update, and Delete data while using your virtual
services. You’ll be able to create more flexible
virtual services and reduce the overhead of data
management without all of that tedious mucking
about in databases. This is extremely valuable
when you want to build a process transaction
flow like the ones often used in shopping cart
applications and Open Banking API sandboxes.

How to Choose the Right Service Virtualization Solution
Whitepaper

9

SUPPORTED TECHNOLOGIES
	» REST API VIRTUALIZATION

	» SOAP API VIRTUALIZATION

	» ASYNCHRONOUS API MESSAGING

	» MQ/JMS VIRTUALIZATION

	» IOT & MICROSERVICE VIRTUALIZATION

	» DATABASE VIRTUALIZATION

	» WEBPAGE VIRTUALIZATION

	» FILE TRANSFER VIRTUALIZATION

	» MAINFRAME & FIXED LENGTH

	» EDI VIRTUALIZATION

	» FIX, SWIFT, & OTHER PROTOCOLS

REST API VIRTUALIZATION

Your service virtualization solution should be
able to emulate APIs using Representational
State Transfer (REST). This includes support
for service definition such as Open API (OAS
3), Swagger, or RAML. Your tool should be able
to simulate URL, method, path, parameter,
query, and JSON payload information as well as
emulating headers, mime-types, attachments,
and so on. Additionally, it needs to be able to
consume and process restful requests, so the
correlation can be applied on all of the message
options listed above.

It is also important to be able to validate incoming
RESTful requests, so you can accept or reject
messages that do not conform to the appropriate
schema. This is an example of using service
virtualization as a powerful validation mechanism.

SOAP API VIRTUALIZATION

Simple Object Access Protocol (SOAP) is an
interface that is still widely used in applications
and is a good target for virtualization. Your service
virtualization solution must be able to interface
with SOAP APIs, including support for service

definition such as WSDL and schema/.XSD. It
must be able to respond to SOAP-compliant
messages including SOAP action, attachments,
WS policy, and relevant SOAP headers.

ASYNCHRONOUS API MESSAGING

Especially for reactive microservice
environments, your service virtualization
solution should be able to act asynchronously—
send requests and responses without waiting
for a corresponding reaction. An example of this
would be creating a virtual service that upon
invocation sends an asynchronous message
somewhere else in your environment.

MQ/JMS VIRTUALIZATION

Middleware systems often cause a lot of trouble
for our test environment and are therefore good
candidates for service virtualization. To reap the
benefits, your service virtualization solution must
be able to simulate various queue/topic patterns,
including point-to-point and publish/subscribe,
to allow you to validate complete end-to-end
scenarios and simulate systems that leverage
these technologies.

IOT & MICROSERVICE VIRTUALIZATION

IoT and microservices are bringing a host of new
testing challenges, including new complexities
in our test environments, especially the ability
to isolate individual microservices for testing.
Service virtualization allows you to create the
isolation you need for testing, so if you are using
these technologies or may in the future, your
service virtualization solution needs to be able to
communicate over the interfaces specific to IoT
and microservices (such as Websockets, MQTT,
AMQP/Rabbit MQ, Kafka, and Protocol Buffers).

DATABASE VIRTUALIZATION

Database virtualization is arguably one of the
quickest ways to get massive ROI from your
service virtualization deployment. Databases
are often bottlenecks in testing environments
because multiple testers are interacting with

How to Choose the Right Service Virtualization Solution
Whitepaper

10

them and potentially polluting our data sources.
Additionally, many databases may not contain
the proper data or behavior that we are looking
for given the different types of testing activities.

Simulating databases is a fast way to unblock an
individual and give them total control of the test
environment. To do so, your service virtualization
solution needs to be able to intercept calls that
are going to your databases, in order to record
and create virtual services for them. Your service
virtualization tool can also give you the ability
to switch between live and virtual databases
on demand. Coupling this with test data
management is one of the most powerful ways
to take control of your test environments and get
maximum ROI from service virtualization.

WEBPAGE VIRTUALIZATION

An increasingly popular activity, webpage
virtualization is a powerful way to provide
training or demo environments to your
organization and stakeholders. By backing a
webpage with a virtual service, you can provide
an experience through the web application that
is customized to an individual user, specific demo
flow, or to highlight new capability. Through
virtualization you can simulate this without
having to build all of the infrastructure in the
backend. Your service virtualization solution
can serve up HTML pages as well as be able to
correlate RESTful information provided from
interacting with the page, so that different pages
can be served up through the users’ journey.

FILE TRANSFER VIRTUALIZATION

Many legacy systems communicate by
exchanging files, and they can become a
bottleneck in your testing environments. As
organizations move through the different
maturity stages of service virtualization they
often find that the legacy systems, which can
be the most complicated, tend to provide the
biggest ROI for service virtualization.

File transfers are an example of a communication
mechanism that is difficult to emulate, so your
service virtualization solution needs to be able to
scan folders looking for files, pick up those files,
process them, and then provide the appropriate
response. This can either be a new file showing
up in a different folder or potentially an
asynchronous or JDBC call. This kind of process
emulation is very valuable when you have a
third-party system that you connect with, that
communicates via file transfers.

MAINFRAME & FIXED LENGTH
VIRTUALIZATION

For some industries in particular, mainframe
virtualization can serve as a very powerful
virtualization project. Mainframes are often
out of the control of open systems developers,
but hold a lot of the critical data needed to
make these systems work. Communication to
mainframes is often done through interfaces
like REST, MQ, or TCP, and communication from
mainframes to databases is often JDBC or DB2.

For mainframe virtualization, your service
virtualization solution needs to be able to
communicate over these mechanisms the COBOL
copybook message format. This will allow you
to approach mainframe virtualization initiatives
and free up open systems development by
decoupling mainframe dependencies.

How to Choose the Right Service Virtualization Solution
Whitepaper

11

EDI VIRTUALIZATION

EDI is a message format standard used to
communicate business information between
business entities. Businesses once used paper
for these transactions (such as purchase orders,
invoices, or in the healthcare industry, for
instance, enrollment forms), which was extremely
complicated and prone to error. To improve on
the process, EDI was designed to standardize
communications and make a “paperless
exchange.” Systems that communicate over EDI
are great candidates for virtualization, so if you
make use of EDI, your service virtualization
solution needs to be able to provide a
mechanism for sending messages in the correct
dialect, version, and standard. Additionally, by
combining EDI virtualization with file transfer
virtualization, you’ll be able to emulate legacy
systems often found in insurance, finance, and
medical industries.

FIX, SWIFT, & OTHER PROTOCOLS

There are hundreds of additional message
formats and protocols to consider out there.
This can be one of the hardest areas to clearly
identify when choosing a service virtualization
solution, but in order to fully cover all of the
dependencies your organization may have in the
future, it makes sense to take an inventory ahead
of time so that you can understand the message
formats and protocols that you will require.

To ensure you have the support that you need,
make sure that your service virtualization solution
has a custom extensibility framework, so that any
unknown future or proprietary interfaces can be
covered by creating a custom implementation.

How to Choose the Right Service Virtualization Solution
Whitepaper

12

AUTOMATION
	» CI INTEGRATION

	» BUILD SYSTEM PLUGINS

	» COMMAND LINE EXECUTION

	» OPEN APIS FOR DEVOPS INTEGRATION

	» CLOUD SUPPORT (EC2, AZURE)

CI INTEGRATION

To dynamically deploy virtual services as
a function of code check-in, your service
virtualization solution should be able to integrate
into your existing CI process. This will allow
you to surround your application with virtual
environments and execute your integrated test
scenarios as early as possible, defining virtual
service behavior such as specific data sources
and performance profiles as a part of your CI
configuration. This will allow you to deploy the
right virtual services, the right way, automatically,
and will greatly stabilize your CI pipeline.

BUILD SYSTEM PLUGINS

Many CI pipelines take advantage of build
systems such as Jenkins, Microsoft’s Azure
DevOps, Atlassian’s Bamboo, JetBrain's
TeamCity, and many more. To optimize
workflows, your service virtualization solution
should have native plugins into these build
systems so that you can accomplish your
automation tasks that involve virtualization as
a build step in your pipeline. This will not only
make environment management a much easier
task but will help build virtualization in as a part
of your DevOps process.

COMMAND LINE EXECUTION

If your service virtualization solution can execute
via command line invocation, you will be able to
dynamically start and stop your virtual servers
as needed when running your test cases. Your
command line interface should be dynamic as
well, so you can swap configuration details on
the fly.

OPEN APIS FOR DEVOPS INTEGRATION

Open APIs that enable you to programmatically
generate, configure, and deploy virtual
services, will allow you to set up a client/server
configuration for your DevOps pipeline and
your service virtualization platform. A series of
open APIs will provide you with the ability to set
up a scalable infrastructure nd reduce overall
licensing costs by programmatically making calls
to the virtualization server from multiple areas
of your organization as needed to configure the
right virtual services on demand.

CLOUD SUPPORT (EC2, AZURE)

If your service virtualization solution can be
deployed either on premise or into a cloud
environment such as Amazon EC2 or Microsoft
Azure, you will be able to swap out the underlying
hardware with ease. Containerization is a big
component of reference architectures as well, so
look for service virtualization that gives you the
ability to deploy the technology via Docker.

How to Choose the Right Service Virtualization Solution
Whitepaper

13

MANAGEMENT AND
MAINTENANCE
	» GOVERNANCE

	» ENVIRONMENT MANAGEMENT

	» MONITORING

	» PROCESS FOR MANAGING CHANGE

	» ON-PREMISES & BROWSER-BASED ACCESS

GOVERNANCE

As your service virtualization initiative scales, it
will be important to set up a governance process
around its usage, defining roles, responsibilities,
access levels, policies, procedures, SLAs, naming
standards, and more, so you can build a center
of excellence that can handle a large volume
of incoming virtualization requests without
becoming a bottleneck. To enable this, your
service virtualization solution should have
mechanisms for defining best practices as well
as utilization review, so you can identify who’s
using service virtualization and how, and audit
the usage. A side effect of this is the ability to
quantify your ROI through asset utilization,
understanding the value that teams are getting
from virtualization (and identifying the teams
that have stopped using it).

ENVIRONMENT MANAGEMENT

Once you’ve built a large inventory of
virtual services, your service virtualization
solution should help you manage virtual test
environments with a self service interface,
so users can define what virtual services are
connected to particular workflows, as well as
what configuration is required to enable test
automation of that flow. Instead of having to
wait on a centralized team to deploy the proper
virtual services, individual users will be able to
select the appropriate virtual environments for
their use cases, deploy them (on premises or into
the cloud), and test away.

MONITORING

Successful service virtualization is based on users
trusting that their virtual services are behaving
the way that they expect, so monitoring is
essential. DevOps engineers must trust that
the proper virtual service has been deployed,
and testers must trust that issues stemming
from environments with virtual services are not
causing false positives in their defect detection.
Your service virtualization solution should enable
you to monitor requests and responses that
flow through your virtualization infrastructure,
so you can identify errors out of the abundance
of transactions that take place, and proactively
identify and trace issues in your environments.

A PROCESS FOR MANAGING CHANGE

Many virtualization initiatives fall apart when it
comes to API change. Users have spent a lot of
time creating the necessary virtual services, and
when the real services change things become out
of sync. To solve this, your service virtualization
solution can natively integrate with source
control systems to enable maintenance of several
versions of your virtual services for forward and
backward compatibility.

Your service virtualization solution can also
understand the API change by automatically
mapping different versions of services to each
other. Through this capability, users can create a
change template that can be applied to impacted
virtual services and automatically update them
to the new version, maintaining data and logic
in the service while still rapidly adjusting to the
change. All in all, this will be one of the most
critical capabilities you must have for true
ownership of a long-term, successful service
virtualization deployment.

How to Choose the Right Service Virtualization Solution
Whitepaper

14

ON-PREMISES & BROWSER-BASED ACCESS

Your ad hoc users will want browser-based access so they don’t have to install
anything, and your center of excellence will want powerful virtualization
desktop clients that allow them to create the best virtual services possible. In
order to facilitate this, you need to choose a service virtualization solution that
allows you to do both, along with a centralized coordination platform that allows
you to link these two types of users together into a collaborative architecture to
prevent redundant asset creation.

SELECT THE TOOL THAT FITS YOUR TEAM'S NEEDS

Choosing the right service virtualization solution for your organization can be
a huge undertaking. Moving away from industry buzz and focusing on critical
features and capabilities that your organization will need is the best way to
identify the right solution. To get a solution that has all these capabilities and
more, discover Parasoft Virtualize . Learn more and get a free copy of the most
powerful service virtualization solution on the market.

PARASOFT VIRTUALIZE
CREATE, DEPLOY, & MANAGE VIRTUAL TEST ENVIRONMENTS ANYTIME,
ANYWHERE

When testing is at a standstill because systems are difficult to access, scale,
or configure, you can rapidly create virtual test environments with Parasoft
Virtualize. Use Virtualize to create, deploy, and manage simulated dev/test
environments and minimize constraints that ordinarily arise from inadequate
test data.

Unlike any other service virtualization solution, Virtualize can create realistic
simulations by monitoring existing behavior, enabling users with limited
expertise to quickly create reliable test environments.

https://www.parasoft.com/products/parasoft-virtualize/
https://software.parasoft.com/virtualize/community-edition/

How to Choose the Right Service Virtualization Solution
Whitepaper

15

TAKE THE NEXT STEP
Learn about the results Comcast achieved after successfully implementing
service virtualization. Read the case study.

ABOUT PARASOFT

Parasoft helps organizations continuously deliver quality software with its
market-proven, integrated suite of automated software testing tools. Supporting
the embedded, enterprise, and IoT markets, Parasoft’s technologies reduce
the time, effort, and cost of delivering secure, reliable, and compliant software
by integrating everything from deep code analysis and unit testing to web
UI and API testing, plus service virtualization and complete code coverage,
into the delivery pipeline. Bringing all this together, Parasoft’s award winning
reporting and analytics dashboard delivers a centralized view of quality enabling
organizations to deliver with confidence and succeed in today’s most strategic
ecosystems and development initiatives — security, safety-critical, Agile,
DevOps, and continuous testing.

https://www.parasoft.com/wp-content/uploads/2020/10/Case-Study-Comcast-20201014.pdf
https://www.parasoft.com/

