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An essential start to the journey of delivering high-quality, real-time embedded software systems is 
incorporating static analysis into the development workflow. With static analysis, software engineers 
can enhance the reliability, performance, and security of their software. At the same time, they can 
reduce the cost and time associated with identifying and fixing defects later in the development cycle. 

Static analysis identifies errors in the code at an early stage in the development process, long before 
the software runs on the target hardware. This includes detecting syntax errors, logic errors, and 
potential runtime errors. Security is also paramount in embedded systems, especially those that are 
part of a critical infrastructure or the Internet of things (IoT) devices. Static analysis can uncover 
vulnerabilities such as buffer overflows, input validation flaws, and other security weaknesses that 
could be exploited by attackers.

In addition, most development teams will agree that unit testing is also essential to embedded 
software development despite the effort and costs. Unit testing helps developers truly understand 
the code they're developing and provides a solid foundation to a verification and validation regimen 
needed to satisfy safety and security goals for a product. Building on this foundation of unit tests 
enables teams to accelerate agile development while mitigating risk of defects slipping into later 
stages of the pipeline.

Why Automated Testing?
Static Analysis  

Automating static analysis into the software development workflow provides significant benefits.  

 » Integrates into developer IDEs and CI/CD pipelines. Integrating static analysis into the build 
process for the entire development organization is a best practice. With automation, teams can 
integrate static analysis into developers' IDEs for quick analysis as they write the code. When 
teams integrate static analysis into CI/CD pipelines, code is automatically analyzed each time they 
submit code changes.  

Figure 1:  
Continuous integration 
pipeline for a solid modern 
development foundation.
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This ensures that issues are detected and addressed immediately, maintaining code quality 
throughout the development process, which is essential for large teams or projects with rapid 
development cycles. It will enforce coding standards across the entire code base, eliminating 
human error and bias in code reviews. This proactive approach will also ensure security by 
identifying potential vulnerabilities to be mitigated before they can be exploited. 

 » Ensures continuous compliance. Automated static analysis ensures continuous compliance with 
relevant standards like MISRA, CERT, for industries such as automotive, medical devices, and 
aerospace with strict regulatory requirements. This is crucial for passing audits and certifications 
that require static analysis.  

 » Eliminates repetitive, mundane tasks. Developers don’t have to perform repetitive and mundane 
tasks of reviewing code and assigning identified coding violations to fix. Parasoft applies 
patented AI and ML solutions to the static analysis workflow to prioritize rule violation findings 
and streamline remediation steps, immediately reducing team effort in adopting static analysis. 
Developers can focus on more complex and creative aspects of software development, which 
leads to increased job satisfaction and productivity. 

Unit Testing 

While static analysis provides valuable insights into code quality and potential issues without 
execution, unit testing verifies the actual behavior and correctness of the code in execution. Using 
both techniques together ensures a more robust and reliable software development process, as they 
complement each other and cover a wider range of potential problems. 

However, despite the benefits, development teams often struggle with performing sufficient unit 
testing. The constraints on the amount of testing are due to multiple factors such as the pressure 
to rapidly deliver increased functionality and the complexity and time-consuming nature of creating 
valuable unit tests.

Common reasons developers cite that limit the efficiency of unit testing as a core development 
practice include the following.

 »  It's difficult to understand, initialize, and/or isolate the dependencies of the unit under test.

 »  Determining what to validate and defining appropriate assertions is time consuming and often 
requires intelligent guess work.

 »  There's a lot of manual coding involved, often even more than was required to implement a 
specific feature or enhancement.

 »  It’s just not that interesting. Developers don’t want to feel like testers. They want to spend time 
delivering more functionality.

Unit test automation tools universally support some sort of test framework, which provides the 
harness infrastructure to execute units in isolation while satisfying dependencies via stubs. This 
includes the automated generation of test harnesses and the executable components needed for 
host and target-based testing. 
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Static Analysis in Embedded Systems 
Static code analysis provides a variety of metrics that help assess different 
aspects of embedded code safety, security, reliability, performance, and 
maintainability. They each offer valuable information about various aspects 
of the code’s health. One of these metrics is cyclomatic complexity, which 
measures the number of linearly independent paths through a program’s  
source code.  

Higher complexity indicates higher potential for bugs and harder to read, 
maintain, and test. Other values that static analysis can provide that aren’t 
quality measures by themselves, but give a sense of maintainability, include: 

 » Total number of lines of code 

 » Comment density 

Test data generation and management, however, is the biggest challenge in unit testing and test 
generation. Test cases need to cover a gamut of validation roles such as ensuring functional 
requirements, detecting unpredictable behavior, and assuring security, and safety requirements.  
All while satisfying test coverage criteria. 

Automated test generation decreases the inefficiencies of unit testing by removing the difficulties 
with initialization, isolation, and managing dependencies. It also removes much of the manual coding 
required while helping to manage the test data needed to drive verification and validation. 

 » Class coupling or cohesion 

 » Function length 

Interesting metrics that static analysis can provide but aren’t generally applied 
include code coverage and performance metrics. Though code coverage is 
commonly captured by unit tests, static analysis can provide this metric and 
even find dead code. The performance metric is measured by identifying code 
that may lead to performance issues, such as inefficient loops or recursive calls. 
There are many other metrics around resource usage, duplication, null pointer, 
and divide by zero. 

By taking advantage of these provided metrics, static code analysis helps 
developers identify potential issues early in the development cycle, improve 
code quality and maintainability, and ensure adherence to coding standards and 
best practices.

Unit Testing in Embedded Systems
Software verification and validation is an inherent part of embedded software development, and 
testing is a key way to demonstrate correct software behavior. Unit testing is the verification of 
module design. It ensures that each software unit does what it's required to do. 

In addition, safety and security requirements may require that software units don’t behave in 
unexpected ways and are not susceptible to manipulation with unexpected data inputs. 
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In terms of the classic V model of development, unit test execution is a validation practice to ensure 
module design is correct. Many safety-specific development standards have guidelines for what 
needs to be tested for unit testing. For example, IEC 61508 and related standards, have specific 
guidelines for testing in accordance with safety integrity level where requirements-based testing and 
interface testing are highly recommended for all levels. Fault injection and resource usage tests are 
recommended at lower integrity levels and highly recommended at the highest SIL (Safety Integrity 
Levels) levels. Similarly, the method of driving test cases is also specified with recommended practices. 

Test Case Drivers

Analysis of Requirements 

Every requirement drives—at minimum—a single unit test case. Although test automation tools 
don't generate tests directly from requirements, they must support two-way traceability from 
requirements to code and requirements to test. And maintain requirements, tests, and code  
coverage information.

Generation & Analysis of Equivalence Classes 

Test cases must ensure that units behave in the same manner for a range of inputs not just cherry 
picked inputs for each unit. Test automation tools must support test case generation using data 
sources to efficiently use a wide range of input values. 

Analysis of Boundary Values 

Automatically generated test cases, such as heuristic values, boundary values, employ data sources 
to use a wide range of input values in tests. 

Error Guessing 

This method uses the function stubs mechanism to inject fault conditions into tested code flow 
analysis results and can be used to write additional tests. 

Automated Test Execution
Test automation provides large benefits to embedded software. Moving away from test suites that 
require a lot of manual intervention means that testing can be done quicker, easier, and more often. 

Offloading this manual testing effort frees up time for better test coverage and other safety and 
quality objectives. An important requirement for automated test suite execution is being able to run 
these tests on both host and target environments. 

Target-Based Testing for Embedded Systems 

Automating testing for embedded software is more challenging due to the complexity of initiating 
and observing tests on target hardware. Not to mention the limited access to target hardware that 
software teams have. 
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Figure 2:  
A high-level view of 
deploying, executing, and 
observing tests from host 
to embedded target.

Structural Code Coverage

Collecting and analyzing code coverage metrics is an important aspect of safety-critical software 
development. Code coverage measures the completion of test cases and executed tests. It 
provides evidence that validation is complete, at least as specified by the software design. It also 
identifies dead code. This is code that can logically never be reached. It demonstrates the absence 
of unintended behavior. Code that isn’t covered by any test is a liability because its behavior and 
functionality are unknown. 

The amount and extent of code coverage depends on the safety integrity level. The higher the 
integrity level, the higher the rigor used, and inevitably the number and complexity of test cases. 
Regardless of the level of coverage required, automated test case generation can increase test 
coverage over time.

Advanced unit test automation tools should measure these code coverage metrics. In addition, it’s 
necessary that this data collection works on host and target testing and accumulates test coverage 
history over time. This code coverage history can span unit, integration, and system testing to ensure 
coverage is complete and traceable at all levels of testing.

Listening Agent

Download/Test

Parasoft Runtime Library 
Jtag, Serial, Ethernet…  

Communication

Instrumented  Application

Software test automation is essential to make embedded testing workable on a continuous basis 
from host development system to target system. Testing embedded software is particularly time 
consuming. Automating the regression test suite provides considerable time and cost savings. In 
addition, test results and code coverage data collection from the target system are essential for 
validation and standards compliance. 

Traceability between test cases, test results, source code, and requirements must be recorded and 
maintained. So, data collection is critical in test execution. 
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Figure 3:  
The V-model of system 
development with 
traceability overlay.

Requirements-Based Test Case Generation

Although test automation tools can’t derive requirements tests from documentation, they can help 
make the creation of test cases, stubs, and mocks easier and more efficient. In addition, automation 
greatly improves test case data management and tool support for parameterized tests also reduces 
manual effort. 

Particularly important is traceability from requirements to code to tests and test results. Manually 
managing traceability is nearly impossible and automation makes two traceability a reality. 

While requirements are being decomposed, traceability must be maintained throughout the phases 
of development as customer requirements decompose into system, high-level, and low-level 
requirements. The coding or implementation phase realizes the low-level requirements. Consider  
the typical V diagram of software.

Types of Automated Test Case Generation
For practical purposes, automated tools should generate test cases in existing well-known formats 
like CppUnit. By default, one test suite per source/header file makes sense, but tools should support 
one test suite per function or one test suite per source file if needed.

Another important consideration is the automatic stub definitions to replace "dangerous" functions, 
which includes system I/O routines such as rmdir(), remove(), rename(), and so on. In addition, stubs 
can be automatically generated for missing function and variable definitions. User-defined stubs can 
be added as needed. 

Each phase drives the subsequent phase. In turn, the work items or refined requirements in each phase 
must satisfy the requirements from the previous phase. Architectural requirements that have been 
created or decomposed from system design must satisfy the system design/requirements, and so on. 

Traceability proves that each phase is satisfying the requirements of each subsequent phase. 
Developers write code that implements or realizes each requirement and for safety-critical 
applications, links for traceability to test cases and down to the code are established. Therefore, if a 
customer requirement changes or is removed, the team knows what it impacts down the line, all the 
way to the code and tests that validate the requirements.
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Figure 4:  
Parasoft traceability 
matrix of Jama 
requirements to tests 
and code.

Code Coverage-Based Test Case Generation

The creation of productive unit tests has always been a challenge. Functional safety standards 
compliance demands high-quality software, which drives a need for test suites that affect and 
produce high code coverage statistics. Teams require unit test cases that help them achieve 100% 
code coverage. This is easier said than done. Analyzing branches in the code and trying to find 
reasons why certain code sections are not covered continues to steal cycles from development teams. 

Unit test automation tools can be used to fill in the coverage gaps in test suites. For example, 
advanced static code analysis (data and control flow analysis) is used to find values for the input 
parameters required to execute specific lines of uncovered code.

It’s also valuable if you have automated tools that not only measure code coverage but also keep 
track of how much modified code is being covered by tests, because this can provide visibility into 
whether enough tests are being written along with changes in production code. See the following 
example code coverage report.

Industry standards like DO-178B/C, ISO 26262, IEC 62304, IEC 61508, EN 50716, and others require 
the construction of a traceability matrix for identification of any gaps in the design and verification of 
requirements. This helps achieve the ultimate goal of building the right product. More than that, it’s 
to ensure the product has the quality, safety, and security to ensure it remains the right product.

https://www.parasoft.com/blog/requirements-management-and-the-traceability-matrix/
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Figure 5:  
Aggregation of code 
coverage from various 
testing methods in 
Parasoft DTP.

Using Code Analysis to Drive Coverage-Based Test Cases

In complex code, there are always those elusive code statements of which it's exceedingly difficult 
to obtain coverage. It’s likely there are multiple input values with various permutations and possible 
paths that make it mind twisting and time consuming to decipher. But only one combination can get 
you the coverage you need. Combining test automation and static analysis makes it easy to obtain 
coverage of those difficult to reach lines of code. An example of test preconditions calculated with 
code analysis is shown in the Coverage Advisor. 

Figure 6:  
Code coverage analysis 
feedback from Parasoft  
C/C++test.
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Defect Test Case Generation

Another class of test are those created to induce an error condition in the unit under test. The input 
parameters in these cases are often out of bounds and are just at the boundary conditions for data 
types, such as using the highest 32-bit positive and negative integers for test data. Other examples 
are fuzz testing where these boundary conditions are mixed with random data designed to create an 
error condition or trigger a security vulnerability. 

These test cases validate nonfunctional requirements since they fall outside the scope of product 
requirements, but are essential for determining performance, security, safety, reliability, and other 
product qualities. Automation is essential since these tests can be numerous (fuzz testing) and rely on 
repeated execution (performance testing) to help discover quality issues. Test case generation helps 
reduce the manual effort needed to create these test suites.

Regression Testing
As part of most software development processes, regression testing is done after changes are made 
to software. These tests determine if the new changes had an impact on the existing operation 
of the software. Managing and executing regression tests are a large part of the effort and cost in 
testing. Even with automated test generation, test execution, gathering results, and re-running tests 
is very time consuming. Regression testing encompasses test case maintenance, code coverage 
improvements and traceability. 

Regression tests are necessary, but they only indicate that recent code changes have not caused 
tests to fail. There's no assurance that these changes will work. In addition, the nature of the changes 
that motivate the need to do regression testing can go beyond the current application and include 
changes in hardware, operating system, and operating environment. 

In fact, all previously created test cases may need to be executed to ensure that no regressions exist 
and that a new dependable software version release is constructed. This is critical because each new 
software system or subsystem release is built or developed upon. If you don't have a solid foundation 
the whole thing can collapse. 

To prevent this, it’s important to create regression testing baselines that are an organized collection 
of tests and will automatically verify all outcomes. These tests are run automatically on a regular 
basis to verify whether code modifications change or break the functionality captured in the 
regression tests. If any changes are introduced, these test cases will fail to alert the team to the 
problem. During subsequent tests, Parasoft C++test will report tasks if it detects changes to the 
behavior captured in  
the initial test. 

How to Decide What to Test

The key challenge with regression testing is determining what parts of an application to test. It's 
common to default to executing all regression tests when there’s doubt on what impacts recent 
code changes have had—the all or nothing approach. 
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For large software projects, this becomes a huge undertaking and drags down the productivity of 
the team. This inability to focus testing hinders much of the benefits of iterative and continuous 
processes, potentially exacerbated in embedded software where test targets are a limited resource. 

A couple of tasks are required here. 

1. Identify which tests need to be re-executed. 

2. Focus the testing efforts (unit testing, automated functional testing, and manual testing) on 
validating the features and related code impacted by the most recent changes. 

Test Impact Analysis

Test Impact Analysis (TIA) uses data collected during test runs and changes in code between builds to 
determine which files have changed and which specific tests touched those files. Parasoft’s analysis 
engine can analyze the delta between two builds and identify the subset of regression tests that 
need to be executed. It also understands the dependencies on the units modified to determine what 
ripple effect the changes have made on other units. 

Focus on the Risk

Due to the complexity of today’s codebases, every code change, however innocuous, can subtly 
impact application stability and ultimately “break the system.” These unintended consequences 
are impossible to discover through manual inspection, so testing is critical to mitigate the risk 
they represent. Unless it’s understood what needs to be re-rested, efficient testing practice can’t 
be achieved. If there is too much testing in each sprint or iteration, the efficiency brought by test 
automation is reduced. Testing too little is not an option. 

The best approach is to identify which tests need to be re-executed and focus the testing efforts 
(unit testing, automated functional testing, and manual testing) on validating the features and related 
code that are impacted by the most recent changes. This is discovered with TIA and planning testing 
based on a data-driven approach called change-based testing.

TIA needs a repository of already-completed tests that are already executed against each build, 
either as part of a fully automated test process (such as a CI-driven build step) or while testing the 
new functionality. This analysis provides insight into where in the code the changes occurred, how 
the existing tests correlate to those changes, and where testing resources need to focus. Following is 
an example of a TIA.
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Benefits of Automated Test Generation
Automated test case generation removes the human effort, errors, and tedium from unit testing and 
benefits embedded software development in several ways.

 » Reduces labor costs.

 » Shortens time to market.

 »  Satisfies compliance to standards.

 »  Increases quality, security, and safety.

Reduce Labor Costs 

Unit test automation by itself is a productivity booster for embedded software development because 
manual testing on target hardware is time consuming. It's also difficult to ascertain code coverage 
and requirements traceability. Automated test case generation further increases developer and test 
productivity and eliminates manual effort of creating and maintaining unit test. 

In conjunction with smart test execution, there's a high ROI for the automation investment. In 
addition, as teams and products mature, these benefits grow over time as the foundation of test 
assets grows, team expertise increases and product quality, security, and safety improve.

Shorten Time to Market

The productivity improvements from test automation save money and decrease the time for a 
software product to converge on the final shipping product. Increased coverage, more frequent 
and thorough testing, and completed requirements traceability arrive sooner than more ad 
hoc techniques. Time to market further improves when combining these practices with Agile 
development, CI/CD, and DevSecOps pipelines. Moreover, customers report higher quality products 
and discover fewer bugs.

Satisfy Compliance to Standards

Compliance to industry standards for safety and security requires use of automation to be feasible. 
Whether it's coding, development, or testing, automation is required for documenting the process, 
capturing traceability, and proving adequate verification and validation. 

For safety-critical devices, validation is crucial as the burden is on the developer to prove they’ve 
met more than just product requirements but also ensured the level of safety and security expected 
by the industry. Unit test generation is a valuable tool for increasing coverage, expanding testing to 
discover possible error conditions, and fulfilling requirements validation.

Increase Quality, Security, & Safety 

Improved code coverage and better testing for security, performance, and reliability are all achieved 
with more test cases aided by automatic test case generation. This improved test regimen is made 
possible through automation with higher productivity and more testing in the same development 
schedule. The end result is improved safety, security, and quality. Software organizations generally 
mature their process over time. These improvements span more than just one product and the 
benefits continue throughout product life cycles, which are significantly longer for embedded devices.
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How a Medical Devices Leader Uses Automated Test Generation 
for Safe, High-Quality Delivery 
Smiths Medical is a leading global manufacturer of specialty medical devices that provides innovative 
and lifesaving solutions for the world’s healthcare markets. The company specializes in infusion 
therapy, vascular access, and vital care. Its products are found in hospital, emergency, home, and 
specialty care environments and are used during critical and intensive care, surgery, post-operative 
care, and for support in managing chronic illness.

Delivering safe, high-quality software for their medical 
devices is imperative. For that reason, Smiths Medical 
builds its safety-critical medical devices with a rigorous 
engineering process where software testing plays a 
critical role for verification and validation.

Developing medical device software is difficult due the 
safety and security requirements. Software verification 
and validation plays an important role in proving the 
intended functionality has been implemented and safety 
and security have been incorporated into the products.

Test automation is an important foundation of Smiths 
Medical’s testing approach. Previous attempts at 
adopting tools weren’t fully successful. The development 
team was looking for a solution to support their entire 
testing effort with a new approach and mindset of test-
driven development (TDD).

The Solution: Evolving to Test Driven Development

Smiths Medical recognized that they needed to go further than just adopting unit test automation. 
Their plan was to move the team to test-driven development where design/refactoring and testing are 
tightly interwoven and rely heavily on automated test generation. Tests are written as a description of 
the expected unit functionality and code is written and factored to make sure tests pass.

Although the move to TDD can incur some upfront costs, there are significant benefits downstream 
in terms of lower defect rates, including:

 »  A fast feedback loop for developers.

 »  Less time spent debugging.

 »  Building solid code with clean interfaces.

An important part of making the move to TDD was test automation and tools that support this 
process. Test automation, including test generation made tests more valuable in terms of their 
relationship and traceability to requirements, code coverage, work items, builds, and other artifacts. 
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The benefits of moving to automated test generation meant reduced test maintenance costs and lower 
costs for medical device pre-market approval. Flexible support for target and host-based testing with 
comprehensive code coverage was essential for their product development. 

The Results: Increased Code Coverage, Better Test Stability, Decreased Test Failures

Smiths Medical has evolved their testing to test-driven development and seen numerous positive 
results from their adoption of automated test generation for their safety-critical software 
development, including:

Improved test stability. Unit tests are code. Just like any code, they’re prone to mistakes and bugs 
and require maintenance. Smiths Medical was struggling with test failures that required too much 
debugging time to figure out if the unit under test was broken or if it was the test itself. Once they 
moved to TDD and automation with Parasoft C/C++test, their test stability increased dramatically. 
Test maintenance was easier and test failures decreased in general.

Better code coverage and decreased code complexity. Increasing code coverage was critical for 
Smiths Medical due to the safety aspect of their products. They needed to show due diligence in 
testing their software and demonstrating appropriate code coverage is part of that. To this end, 
they used Parasoft C/C++test to instrument the code and capture their code coverage, and Parasoft 
DTP to track the code coverage and code complexity metrics. In both cases, the trends have been 
improving over time. Code coverage is now over 70%. Code complexity decreased below 15 based 
on McCabe’s cyclomatic complexity measurements. In fact, it was now easier than ever to increase 
coverage because of automated test generation, execution, and results collection.

Open to closed defect ratio trending to zero. Smiths Medical observed that the number of tests was 
increasing due to efforts in obtaining better code coverage, which was directly attributed to their new 
processes and automation. However, instead of test failures going up in tandem with the increased 
tests, they were dropping. Also, the ratio of open to closed defects was trending towards zero. This 
meant that test case quality was improving in terms of clarity and properly set expected test results. 
There were more tests and more tests passed. There was also a reduction in manual work needed to 
fix defects or the tests themselves.

Figure 8:  
Smiths Medical test 
results trend over time. 
Total tests are increasing 
but the ratio of failures is 
decreasing.
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Summary
Testing is essential to embedded software development. It fosters true understanding of the code 
being developed and provides a solid foundation to a verification and validation regimen needed to 
satisfy safety and security goals for a product.

Static analysis is a crucial technique in software development that involves examining source code 
without executing it to identify potential issues and improve overall code quality. When teams use it 
from the get-go, static analysis:  

 » Provides valuable insights into code complexity, maintainability, security vulnerabilities, and 
adherence to coding standards.  

 » Helps prevent bugs. 

 » Optimizes performance. 

 » Ensures compliance with best practices and regulatory requirements.  

Integrating static analysis into the development workflow leads to a more robust and maintainable 
codebase. Doing so must be done in conjunction with unit testing so as not to be seen as a damper 
on productivity.

The constraints on testing productivity are due to multiple factors such as the pressure and time it 
takes to deliver increased functionality, and the complexity and time-consuming nature of creating 
valuable tests. 

Test data generation and management is by far the biggest challenge in unit testing and test 
generation. Test cases are particularly important in safety-critical software development because 
they must ensure functional requirements and test for unpredictable behavior, security, and safety 
requirements. All while satisfying test coverage criteria. 

Automated test generation decreases the inefficiencies of unit testing by removing the difficulties 
with initialization and isolation and managing dependencies. It also removes much of the manual 
coding required while helping to manage the test data needed to drive verification and validation. 
This improves quality, safety, and security. It also reduces test time, costs, and time to market. 
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Take the Next Step 
Talk to an expert about automating static analysis and unit test generation for your embedded 
software development team. 

About Parasoft

Parasoft helps organizations continuously deliver quality software with its market-proven, integrated 
suite of automated software testing tools. Supporting the embedded, enterprise, and IoT markets, 
Parasoft’s technologies reduce the time, effort, and cost of delivering secure, reliable, and compliant 
software by integrating everything from deep code analysis and unit testing to web UI and API 
testing, plus service virtualization and complete code coverage, into the delivery pipeline. Bringing 
all this together, Parasoft’s award winning reporting and analytics dashboard delivers a centralized 
view of quality enabling organizations to deliver with confidence and succeed in today’s most 
strategic ecosystems and development initiatives — security, safety-critical, Agile, DevOps, and 
continuous testing. 

https://www.parasoft.com/contact/
https://www.parasoft.com/

