
The Essential Guide to
Automated Test Generation for

Embedded Software Systems

W H I T E P A P E R

The Essential Guide to Automated Test Generation for Embedded Software Systems
Whitepaper

2

An essential start to the journey of delivering high-quality, real-time embedded software systems is
incorporating static analysis into the development workflow. With static analysis, software engineers
can enhance the reliability, performance, and security of their software. At the same time, they can
reduce the cost and time associated with identifying and fixing defects later in the development cycle.

Static analysis identifies errors in the code at an early stage in the development process, long before
the software runs on the target hardware. This includes detecting syntax errors, logic errors, and
potential runtime errors. Security is also paramount in embedded systems, especially those that are
part of a critical infrastructure or the Internet of things (IoT) devices. Static analysis can uncover
vulnerabilities such as buffer overflows, input validation flaws, and other security weaknesses that
could be exploited by attackers.

In addition, most development teams will agree that unit testing is also essential to embedded
software development despite the effort and costs. Unit testing helps developers truly understand
the code they're developing and provides a solid foundation to a verification and validation regimen
needed to satisfy safety and security goals for a product. Building on this foundation of unit tests
enables teams to accelerate agile development while mitigating risk of defects slipping into later
stages of the pipeline.

Why Automated Testing?
Static Analysis

Automating static analysis into the software development workflow provides significant benefits.

 » Integrates into developer IDEs and CI/CD pipelines. Integrating static analysis into the build
process for the entire development organization is a best practice. With automation, teams can
integrate static analysis into developers' IDEs for quick analysis as they write the code. When
teams integrate static analysis into CI/CD pipelines, code is automatically analyzed each time they
submit code changes.

Figure 1:
Continuous integration
pipeline for a solid modern
development foundation.

The Essential Guide to Automated Test Generation for Embedded Software Systems
Whitepaper

3

This ensures that issues are detected and addressed immediately, maintaining code quality
throughout the development process, which is essential for large teams or projects with rapid
development cycles. It will enforce coding standards across the entire code base, eliminating
human error and bias in code reviews. This proactive approach will also ensure security by
identifying potential vulnerabilities to be mitigated before they can be exploited.

 » Ensures continuous compliance. Automated static analysis ensures continuous compliance with
relevant standards like MISRA, CERT, for industries such as automotive, medical devices, and
aerospace with strict regulatory requirements. This is crucial for passing audits and certifications
that require static analysis.

 » Eliminates repetitive, mundane tasks. Developers don’t have to perform repetitive and mundane
tasks of reviewing code and assigning identified coding violations to fix. Parasoft applies
patented AI and ML solutions to the static analysis workflow to prioritize rule violation findings
and streamline remediation steps, immediately reducing team effort in adopting static analysis.
Developers can focus on more complex and creative aspects of software development, which
leads to increased job satisfaction and productivity.

Unit Testing

While static analysis provides valuable insights into code quality and potential issues without
execution, unit testing verifies the actual behavior and correctness of the code in execution. Using
both techniques together ensures a more robust and reliable software development process, as they
complement each other and cover a wider range of potential problems.

However, despite the benefits, development teams often struggle with performing sufficient unit
testing. The constraints on the amount of testing are due to multiple factors such as the pressure
to rapidly deliver increased functionality and the complexity and time-consuming nature of creating
valuable unit tests.

Common reasons developers cite that limit the efficiency of unit testing as a core development
practice include the following.

 » It's difficult to understand, initialize, and/or isolate the dependencies of the unit under test.

 » Determining what to validate and defining appropriate assertions is time consuming and often
requires intelligent guess work.

 » There's a lot of manual coding involved, often even more than was required to implement a
specific feature or enhancement.

 » It’s just not that interesting. Developers don’t want to feel like testers. They want to spend time
delivering more functionality.

Unit test automation tools universally support some sort of test framework, which provides the
harness infrastructure to execute units in isolation while satisfying dependencies via stubs. This
includes the automated generation of test harnesses and the executable components needed for
host and target-based testing.

The Essential Guide to Automated Test Generation for Embedded Software Systems
Whitepaper

4

Static Analysis in Embedded Systems
Static code analysis provides a variety of metrics that help assess different
aspects of embedded code safety, security, reliability, performance, and
maintainability. They each offer valuable information about various aspects
of the code’s health. One of these metrics is cyclomatic complexity, which
measures the number of linearly independent paths through a program’s
source code.

Higher complexity indicates higher potential for bugs and harder to read,
maintain, and test. Other values that static analysis can provide that aren’t
quality measures by themselves, but give a sense of maintainability, include:

 » Total number of lines of code

 » Comment density

Test data generation and management, however, is the biggest challenge in unit testing and test
generation. Test cases need to cover a gamut of validation roles such as ensuring functional
requirements, detecting unpredictable behavior, and assuring security, and safety requirements.
All while satisfying test coverage criteria.

Automated test generation decreases the inefficiencies of unit testing by removing the difficulties
with initialization, isolation, and managing dependencies. It also removes much of the manual coding
required while helping to manage the test data needed to drive verification and validation.

 » Class coupling or cohesion

 » Function length

Interesting metrics that static analysis can provide but aren’t generally applied
include code coverage and performance metrics. Though code coverage is
commonly captured by unit tests, static analysis can provide this metric and
even find dead code. The performance metric is measured by identifying code
that may lead to performance issues, such as inefficient loops or recursive calls.
There are many other metrics around resource usage, duplication, null pointer,
and divide by zero.

By taking advantage of these provided metrics, static code analysis helps
developers identify potential issues early in the development cycle, improve
code quality and maintainability, and ensure adherence to coding standards and
best practices.

Unit Testing in Embedded Systems
Software verification and validation is an inherent part of embedded software development, and
testing is a key way to demonstrate correct software behavior. Unit testing is the verification of
module design. It ensures that each software unit does what it's required to do.

In addition, safety and security requirements may require that software units don’t behave in
unexpected ways and are not susceptible to manipulation with unexpected data inputs.

The Essential Guide to Automated Test Generation for Embedded Software Systems
Whitepaper

5

In terms of the classic V model of development, unit test execution is a validation practice to ensure
module design is correct. Many safety-specific development standards have guidelines for what
needs to be tested for unit testing. For example, IEC 61508 and related standards, have specific
guidelines for testing in accordance with safety integrity level where requirements-based testing and
interface testing are highly recommended for all levels. Fault injection and resource usage tests are
recommended at lower integrity levels and highly recommended at the highest SIL (Safety Integrity
Levels) levels. Similarly, the method of driving test cases is also specified with recommended practices.

Test Case Drivers

Analysis of Requirements

Every requirement drives—at minimum—a single unit test case. Although test automation tools
don't generate tests directly from requirements, they must support two-way traceability from
requirements to code and requirements to test. And maintain requirements, tests, and code
coverage information.

Generation & Analysis of Equivalence Classes

Test cases must ensure that units behave in the same manner for a range of inputs not just cherry
picked inputs for each unit. Test automation tools must support test case generation using data
sources to efficiently use a wide range of input values.

Analysis of Boundary Values

Automatically generated test cases, such as heuristic values, boundary values, employ data sources
to use a wide range of input values in tests.

Error Guessing

This method uses the function stubs mechanism to inject fault conditions into tested code flow
analysis results and can be used to write additional tests.

Automated Test Execution
Test automation provides large benefits to embedded software. Moving away from test suites that
require a lot of manual intervention means that testing can be done quicker, easier, and more often.

Offloading this manual testing effort frees up time for better test coverage and other safety and
quality objectives. An important requirement for automated test suite execution is being able to run
these tests on both host and target environments.

Target-Based Testing for Embedded Systems

Automating testing for embedded software is more challenging due to the complexity of initiating
and observing tests on target hardware. Not to mention the limited access to target hardware that
software teams have.

The Essential Guide to Automated Test Generation for Embedded Software Systems
Whitepaper

6

Figure 2:
A high-level view of
deploying, executing, and
observing tests from host
to embedded target.

Structural Code Coverage

Collecting and analyzing code coverage metrics is an important aspect of safety-critical software
development. Code coverage measures the completion of test cases and executed tests. It
provides evidence that validation is complete, at least as specified by the software design. It also
identifies dead code. This is code that can logically never be reached. It demonstrates the absence
of unintended behavior. Code that isn’t covered by any test is a liability because its behavior and
functionality are unknown.

The amount and extent of code coverage depends on the safety integrity level. The higher the
integrity level, the higher the rigor used, and inevitably the number and complexity of test cases.
Regardless of the level of coverage required, automated test case generation can increase test
coverage over time.

Advanced unit test automation tools should measure these code coverage metrics. In addition, it’s
necessary that this data collection works on host and target testing and accumulates test coverage
history over time. This code coverage history can span unit, integration, and system testing to ensure
coverage is complete and traceable at all levels of testing.

Listening Agent

Download/Test

Parasoft Runtime Library
Jtag, Serial, Ethernet…

Communication

Instrumented Application

Software test automation is essential to make embedded testing workable on a continuous basis
from host development system to target system. Testing embedded software is particularly time
consuming. Automating the regression test suite provides considerable time and cost savings. In
addition, test results and code coverage data collection from the target system are essential for
validation and standards compliance.

Traceability between test cases, test results, source code, and requirements must be recorded and
maintained. So, data collection is critical in test execution.

The Essential Guide to Automated Test Generation for Embedded Software Systems
Whitepaper

7

Figure 3:
The V-model of system
development with
traceability overlay.

Requirements-Based Test Case Generation

Although test automation tools can’t derive requirements tests from documentation, they can help
make the creation of test cases, stubs, and mocks easier and more efficient. In addition, automation
greatly improves test case data management and tool support for parameterized tests also reduces
manual effort.

Particularly important is traceability from requirements to code to tests and test results. Manually
managing traceability is nearly impossible and automation makes two traceability a reality.

While requirements are being decomposed, traceability must be maintained throughout the phases
of development as customer requirements decompose into system, high-level, and low-level
requirements. The coding or implementation phase realizes the low-level requirements. Consider
the typical V diagram of software.

Types of Automated Test Case Generation
For practical purposes, automated tools should generate test cases in existing well-known formats
like CppUnit. By default, one test suite per source/header file makes sense, but tools should support
one test suite per function or one test suite per source file if needed.

Another important consideration is the automatic stub definitions to replace "dangerous" functions,
which includes system I/O routines such as rmdir(), remove(), rename(), and so on. In addition, stubs
can be automatically generated for missing function and variable definitions. User-defined stubs can
be added as needed.

Each phase drives the subsequent phase. In turn, the work items or refined requirements in each phase
must satisfy the requirements from the previous phase. Architectural requirements that have been
created or decomposed from system design must satisfy the system design/requirements, and so on.

Traceability proves that each phase is satisfying the requirements of each subsequent phase.
Developers write code that implements or realizes each requirement and for safety-critical
applications, links for traceability to test cases and down to the code are established. Therefore, if a
customer requirement changes or is removed, the team knows what it impacts down the line, all the
way to the code and tests that validate the requirements.

The Essential Guide to Automated Test Generation for Embedded Software Systems
Whitepaper

8

Figure 4:
Parasoft traceability
matrix of Jama
requirements to tests
and code.

Code Coverage-Based Test Case Generation

The creation of productive unit tests has always been a challenge. Functional safety standards
compliance demands high-quality software, which drives a need for test suites that affect and
produce high code coverage statistics. Teams require unit test cases that help them achieve 100%
code coverage. This is easier said than done. Analyzing branches in the code and trying to find
reasons why certain code sections are not covered continues to steal cycles from development teams.

Unit test automation tools can be used to fill in the coverage gaps in test suites. For example,
advanced static code analysis (data and control flow analysis) is used to find values for the input
parameters required to execute specific lines of uncovered code.

It’s also valuable if you have automated tools that not only measure code coverage but also keep
track of how much modified code is being covered by tests, because this can provide visibility into
whether enough tests are being written along with changes in production code. See the following
example code coverage report.

Industry standards like DO-178B/C, ISO 26262, IEC 62304, IEC 61508, EN 50716, and others require
the construction of a traceability matrix for identification of any gaps in the design and verification of
requirements. This helps achieve the ultimate goal of building the right product. More than that, it’s
to ensure the product has the quality, safety, and security to ensure it remains the right product.

https://www.parasoft.com/blog/requirements-management-and-the-traceability-matrix/

The Essential Guide to Automated Test Generation for Embedded Software Systems
Whitepaper

9

Figure 5:
Aggregation of code
coverage from various
testing methods in
Parasoft DTP.

Using Code Analysis to Drive Coverage-Based Test Cases

In complex code, there are always those elusive code statements of which it's exceedingly difficult
to obtain coverage. It’s likely there are multiple input values with various permutations and possible
paths that make it mind twisting and time consuming to decipher. But only one combination can get
you the coverage you need. Combining test automation and static analysis makes it easy to obtain
coverage of those difficult to reach lines of code. An example of test preconditions calculated with
code analysis is shown in the Coverage Advisor.

Figure 6:
Code coverage analysis
feedback from Parasoft
C/C++test.

The Essential Guide to Automated Test Generation for Embedded Software Systems
Whitepaper

10

Defect Test Case Generation

Another class of test are those created to induce an error condition in the unit under test. The input
parameters in these cases are often out of bounds and are just at the boundary conditions for data
types, such as using the highest 32-bit positive and negative integers for test data. Other examples
are fuzz testing where these boundary conditions are mixed with random data designed to create an
error condition or trigger a security vulnerability.

These test cases validate nonfunctional requirements since they fall outside the scope of product
requirements, but are essential for determining performance, security, safety, reliability, and other
product qualities. Automation is essential since these tests can be numerous (fuzz testing) and rely on
repeated execution (performance testing) to help discover quality issues. Test case generation helps
reduce the manual effort needed to create these test suites.

Regression Testing
As part of most software development processes, regression testing is done after changes are made
to software. These tests determine if the new changes had an impact on the existing operation
of the software. Managing and executing regression tests are a large part of the effort and cost in
testing. Even with automated test generation, test execution, gathering results, and re-running tests
is very time consuming. Regression testing encompasses test case maintenance, code coverage
improvements and traceability.

Regression tests are necessary, but they only indicate that recent code changes have not caused
tests to fail. There's no assurance that these changes will work. In addition, the nature of the changes
that motivate the need to do regression testing can go beyond the current application and include
changes in hardware, operating system, and operating environment.

In fact, all previously created test cases may need to be executed to ensure that no regressions exist
and that a new dependable software version release is constructed. This is critical because each new
software system or subsystem release is built or developed upon. If you don't have a solid foundation
the whole thing can collapse.

To prevent this, it’s important to create regression testing baselines that are an organized collection
of tests and will automatically verify all outcomes. These tests are run automatically on a regular
basis to verify whether code modifications change or break the functionality captured in the
regression tests. If any changes are introduced, these test cases will fail to alert the team to the
problem. During subsequent tests, Parasoft C++test will report tasks if it detects changes to the
behavior captured in
the initial test.

How to Decide What to Test

The key challenge with regression testing is determining what parts of an application to test. It's
common to default to executing all regression tests when there’s doubt on what impacts recent
code changes have had—the all or nothing approach.

The Essential Guide to Automated Test Generation for Embedded Software Systems
Whitepaper

11

For large software projects, this becomes a huge undertaking and drags down the productivity of
the team. This inability to focus testing hinders much of the benefits of iterative and continuous
processes, potentially exacerbated in embedded software where test targets are a limited resource.

A couple of tasks are required here.

1. Identify which tests need to be re-executed.

2. Focus the testing efforts (unit testing, automated functional testing, and manual testing) on
validating the features and related code impacted by the most recent changes.

Test Impact Analysis

Test Impact Analysis (TIA) uses data collected during test runs and changes in code between builds to
determine which files have changed and which specific tests touched those files. Parasoft’s analysis
engine can analyze the delta between two builds and identify the subset of regression tests that
need to be executed. It also understands the dependencies on the units modified to determine what
ripple effect the changes have made on other units.

Focus on the Risk

Due to the complexity of today’s codebases, every code change, however innocuous, can subtly
impact application stability and ultimately “break the system.” These unintended consequences
are impossible to discover through manual inspection, so testing is critical to mitigate the risk
they represent. Unless it’s understood what needs to be re-rested, efficient testing practice can’t
be achieved. If there is too much testing in each sprint or iteration, the efficiency brought by test
automation is reduced. Testing too little is not an option.

The best approach is to identify which tests need to be re-executed and focus the testing efforts
(unit testing, automated functional testing, and manual testing) on validating the features and related
code that are impacted by the most recent changes. This is discovered with TIA and planning testing
based on a data-driven approach called change-based testing.

TIA needs a repository of already-completed tests that are already executed against each build,
either as part of a fully automated test process (such as a CI-driven build step) or while testing the
new functionality. This analysis provides insight into where in the code the changes occurred, how
the existing tests correlate to those changes, and where testing resources need to focus. Following is
an example of a TIA.

The Essential Guide to Automated Test Generation for Embedded Software Systems
Whitepaper

12

Benefits of Automated Test Generation
Automated test case generation removes the human effort, errors, and tedium from unit testing and
benefits embedded software development in several ways.

 » Reduces labor costs.

 » Shortens time to market.

 » Satisfies compliance to standards.

 » Increases quality, security, and safety.

Reduce Labor Costs

Unit test automation by itself is a productivity booster for embedded software development because
manual testing on target hardware is time consuming. It's also difficult to ascertain code coverage
and requirements traceability. Automated test case generation further increases developer and test
productivity and eliminates manual effort of creating and maintaining unit test.

In conjunction with smart test execution, there's a high ROI for the automation investment. In
addition, as teams and products mature, these benefits grow over time as the foundation of test
assets grows, team expertise increases and product quality, security, and safety improve.

Shorten Time to Market

The productivity improvements from test automation save money and decrease the time for a
software product to converge on the final shipping product. Increased coverage, more frequent
and thorough testing, and completed requirements traceability arrive sooner than more ad
hoc techniques. Time to market further improves when combining these practices with Agile
development, CI/CD, and DevSecOps pipelines. Moreover, customers report higher quality products
and discover fewer bugs.

Satisfy Compliance to Standards

Compliance to industry standards for safety and security requires use of automation to be feasible.
Whether it's coding, development, or testing, automation is required for documenting the process,
capturing traceability, and proving adequate verification and validation.

For safety-critical devices, validation is crucial as the burden is on the developer to prove they’ve
met more than just product requirements but also ensured the level of safety and security expected
by the industry. Unit test generation is a valuable tool for increasing coverage, expanding testing to
discover possible error conditions, and fulfilling requirements validation.

Increase Quality, Security, & Safety

Improved code coverage and better testing for security, performance, and reliability are all achieved
with more test cases aided by automatic test case generation. This improved test regimen is made
possible through automation with higher productivity and more testing in the same development
schedule. The end result is improved safety, security, and quality. Software organizations generally
mature their process over time. These improvements span more than just one product and the
benefits continue throughout product life cycles, which are significantly longer for embedded devices.

The Essential Guide to Automated Test Generation for Embedded Software Systems
Whitepaper

13

How a Medical Devices Leader Uses Automated Test Generation
for Safe, High-Quality Delivery
Smiths Medical is a leading global manufacturer of specialty medical devices that provides innovative
and lifesaving solutions for the world’s healthcare markets. The company specializes in infusion
therapy, vascular access, and vital care. Its products are found in hospital, emergency, home, and
specialty care environments and are used during critical and intensive care, surgery, post-operative
care, and for support in managing chronic illness.

Delivering safe, high-quality software for their medical
devices is imperative. For that reason, Smiths Medical
builds its safety-critical medical devices with a rigorous
engineering process where software testing plays a
critical role for verification and validation.

Developing medical device software is difficult due the
safety and security requirements. Software verification
and validation plays an important role in proving the
intended functionality has been implemented and safety
and security have been incorporated into the products.

Test automation is an important foundation of Smiths
Medical’s testing approach. Previous attempts at
adopting tools weren’t fully successful. The development
team was looking for a solution to support their entire
testing effort with a new approach and mindset of test-
driven development (TDD).

The Solution: Evolving to Test Driven Development

Smiths Medical recognized that they needed to go further than just adopting unit test automation.
Their plan was to move the team to test-driven development where design/refactoring and testing are
tightly interwoven and rely heavily on automated test generation. Tests are written as a description of
the expected unit functionality and code is written and factored to make sure tests pass.

Although the move to TDD can incur some upfront costs, there are significant benefits downstream
in terms of lower defect rates, including:

 » A fast feedback loop for developers.

 » Less time spent debugging.

 » Building solid code with clean interfaces.

An important part of making the move to TDD was test automation and tools that support this
process. Test automation, including test generation made tests more valuable in terms of their
relationship and traceability to requirements, code coverage, work items, builds, and other artifacts.

The Essential Guide to Automated Test Generation for Embedded Software Systems
Whitepaper

14

The benefits of moving to automated test generation meant reduced test maintenance costs and lower
costs for medical device pre-market approval. Flexible support for target and host-based testing with
comprehensive code coverage was essential for their product development.

The Results: Increased Code Coverage, Better Test Stability, Decreased Test Failures

Smiths Medical has evolved their testing to test-driven development and seen numerous positive
results from their adoption of automated test generation for their safety-critical software
development, including:

Improved test stability. Unit tests are code. Just like any code, they’re prone to mistakes and bugs
and require maintenance. Smiths Medical was struggling with test failures that required too much
debugging time to figure out if the unit under test was broken or if it was the test itself. Once they
moved to TDD and automation with Parasoft C/C++test, their test stability increased dramatically.
Test maintenance was easier and test failures decreased in general.

Better code coverage and decreased code complexity. Increasing code coverage was critical for
Smiths Medical due to the safety aspect of their products. They needed to show due diligence in
testing their software and demonstrating appropriate code coverage is part of that. To this end,
they used Parasoft C/C++test to instrument the code and capture their code coverage, and Parasoft
DTP to track the code coverage and code complexity metrics. In both cases, the trends have been
improving over time. Code coverage is now over 70%. Code complexity decreased below 15 based
on McCabe’s cyclomatic complexity measurements. In fact, it was now easier than ever to increase
coverage because of automated test generation, execution, and results collection.

Open to closed defect ratio trending to zero. Smiths Medical observed that the number of tests was
increasing due to efforts in obtaining better code coverage, which was directly attributed to their new
processes and automation. However, instead of test failures going up in tandem with the increased
tests, they were dropping. Also, the ratio of open to closed defects was trending towards zero. This
meant that test case quality was improving in terms of clarity and properly set expected test results.
There were more tests and more tests passed. There was also a reduction in manual work needed to
fix defects or the tests themselves.

Figure 8:
Smiths Medical test
results trend over time.
Total tests are increasing
but the ratio of failures is
decreasing.

The Essential Guide to Automated Test Generation for Embedded Software Systems
Whitepaper

15

Summary
Testing is essential to embedded software development. It fosters true understanding of the code
being developed and provides a solid foundation to a verification and validation regimen needed to
satisfy safety and security goals for a product.

Static analysis is a crucial technique in software development that involves examining source code
without executing it to identify potential issues and improve overall code quality. When teams use it
from the get-go, static analysis:

 » Provides valuable insights into code complexity, maintainability, security vulnerabilities, and
adherence to coding standards.

 » Helps prevent bugs.

 » Optimizes performance.

 » Ensures compliance with best practices and regulatory requirements.

Integrating static analysis into the development workflow leads to a more robust and maintainable
codebase. Doing so must be done in conjunction with unit testing so as not to be seen as a damper
on productivity.

The constraints on testing productivity are due to multiple factors such as the pressure and time it
takes to deliver increased functionality, and the complexity and time-consuming nature of creating
valuable tests.

Test data generation and management is by far the biggest challenge in unit testing and test
generation. Test cases are particularly important in safety-critical software development because
they must ensure functional requirements and test for unpredictable behavior, security, and safety
requirements. All while satisfying test coverage criteria.

Automated test generation decreases the inefficiencies of unit testing by removing the difficulties
with initialization and isolation and managing dependencies. It also removes much of the manual
coding required while helping to manage the test data needed to drive verification and validation.
This improves quality, safety, and security. It also reduces test time, costs, and time to market.

The Essential Guide to Automated Test Generation for Embedded Software Systems
Whitepaper

16

Take the Next Step
Talk to an expert about automating static analysis and unit test generation for your embedded
software development team.

About Parasoft

Parasoft helps organizations continuously deliver quality software with its market-proven, integrated
suite of automated software testing tools. Supporting the embedded, enterprise, and IoT markets,
Parasoft’s technologies reduce the time, effort, and cost of delivering secure, reliable, and compliant
software by integrating everything from deep code analysis and unit testing to web UI and API
testing, plus service virtualization and complete code coverage, into the delivery pipeline. Bringing
all this together, Parasoft’s award winning reporting and analytics dashboard delivers a centralized
view of quality enabling organizations to deliver with confidence and succeed in today’s most
strategic ecosystems and development initiatives — security, safety-critical, Agile, DevOps, and
continuous testing.

https://www.parasoft.com/contact/
https://www.parasoft.com/

