
IMPROVE UNIT TESTING FOR
JAVA WITH AUTOMATION

BEST PRACTICES FOR JAVA DEVELOPERS

03	 Introduction:	Improve	Unit	Testing
	 03	 What	Is	Unit	Testing?

	 03	 Improve	Unit	Testing	With	Automated	Testing	Tools

04	 Best	Practices	for	Developers
 04	 Unit	Testing	Best	Practices:	How	to	Get	the	Most	
	 	 out	of	Your	Test	Automation

	 10	 JUnit	Tutorial:	Setting	Up,	Writing,	and	Running	Java	Unit	Tests

	 17	 Mocking	in	Java:	How	to	Automate	a	Java	Unit	Test,	
	 	 Including	Mocking	and	Assertions

	 24	 How	to	Create	JUnit	Parameterized	Tests

	 34	 Get	More	Out	of	Unit	Testing	and	Reduce	Maintenance	
	 	 Efforts	With	Runtime	Analysis

Table of Contents

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

2

Introduction: Improve Unit Testing
WHAT IS UNIT TESTING?
Unit	testing	is	the	practice	of	testing	individual	units	or	components	of	an	
application	in	order	to	validate	that	each	of	those	units	is	working	properly.	
Generally,	a	unit	should	be	a	small	part	of	the	application	—	in	Java	it's	often	
a	single	class.	Note	that	there	is	no	strict	definition	of	"unit"	here,	and	it	is	
up	to	the	developer	to	decide	the	scope	of	tested	code	for	each	test.

People	sometimes	contrast	the	term	"unit	testing"	with	"integration	testing"	
or	"end-to-end	testing".	The	difference	is	that,	generally,	unit	testing	is	done	to	
validate	the	behavior	of	an	individual	testable	unit,	whereas	integration	tests	are	
validating	the	behavior	of	multiple	components	together,	or	the	application	as	
a	whole.	As	mentioned	above,	the	definition	for	what	constitutes	a	"unit"	is	not	
strictly	defined,	and	it's	up	to	you	to	decide	the	scope	for	each	test.	If	the	scope	
is	too	broad,	it	may	not	be	possible	to	determine	why	a	test	failure	occurred.	

With	these	challenges,	unit	testing	just	isn't	easy.	It	requires	a	lot	of	
development	skill	and	effort,	and	it	takes	commitment	and	time	to	maintain	
test	suites.	This	ebook	provides	helpful	tips	and	techniques	as	well	as	best	
practices	to	help	you	improve	unit	testing	with	JUnit	and	Parasoft	Jtest.

IMPROVE UNIT TESTING
WITH AUTOMATED TESTING TOOLS
With	automated	testing	tools,	developers	are	able	to	reduce	late-cycle	defects	
with	better	unit	tests	and	automated	static	code	analysis.	They	can	focus	more	
time	on	new	feature	development	for	the	business.	Developers	also	benefit	
from	immediate	feedback.	They're	able	to	rapidly	identify	whether	their	code	
changes	are	breaking	functionality	in	the	application	and	addressing	it	quickly.	

Parasoft	has	focused	on	improving	automated	testing	for	over	30	years.	
Parasoft	Jtest	is	a	key	enabler	of	delivering	quality	at	speed	for	unit	testing.	
This	integrated	Java	solution	enables	development	teams	to	be	agile	and	
deliver	faster	without	sacrificing	quality,	making	the	business	successful.	

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

3

https://www.parasoft.com/products/parasoft-jtest/

Best Practices for Developers
UNIT TESTING BEST PRACTICES: HOW TO GET
THE MOST OUT OF YOUR TEST AUTOMATION
Unit	testing	is	a	well-known	practice,	but	there's	lots	of	room	for	improvement!	
This	section	will	cover	the	most	effective	unit	testing	best	practices,	including	
approaches	for	maximizing	your	automation	tools	along	the	way.	It	will	also	
discuss	code	coverage,	mocking	dependencies,	and	overall	testing	strategies.

WHY	UNIT	TEST?
Unit	testing	is	a	proven	technique	for	ensuring	software	quality,	with	plenty	
of	benefits.	Here	are	(more	than)	a	few	great	reasons	to	unit	test:

 » Unit	testing	validates	that	each	piece	of	your	software	not	
only	works	properly	today,	but	continues	to	work	in	the	future,	
providing	a	solid	foundation	for	future	development.

 » Unit	testing	identifies	defects	at	early	stages	of	the	production	process,	which	
reduces	the	costs	of	fixing	them	in	later	stages	of	the	development	cycle.

 » Unit-tested	code	is	generally	safer	to	refactor,	since	tests	can	be	
re-run	quickly	to	validate	that	behavior	has	not	changed.

 » Writing	unit	tests	forces	developers	to	consider	how	well	the	production	
code	is	designed	in	order	to	make	it	suitable	for	unit	testing,	and	makes	
developers	look	at	their	code	from	a	different	perspective,	encouraging	them	
to	consider	corner	cases	and	error	conditions	in	their	implementation.

 » Including	unit	tests	in	the	code	review	process	can	reveal	how	
the	modified	or	new	code	is	supposed	to	work.	Plus,	reviewers	
can	confirm	whether	the	tests	are	good	ones	or	not.

It's	unfortunate	that	all	too	often,	developers	either	don't	write	unit	tests	at	all,	
don't	write	enough	tests,	or	they	don't	maintain	them.	Unit	tests	can	sometimes	
be	tricky	to	write,	or	time-consuming	to	maintain.	Sometimes	there's	a	deadline	
to	meet,	and	it	feels	like	writing	tests	will	make	us	miss	that	deadline.	But	not	
writing	enough	unit	tests	or	not	writing	good	unit	tests	is	a	risky	trap	to	fall	into.

So	please	consider	the	following	best-practice	recommendations	on	
how	to	write	clean,	maintainable,	automated	tests	that	give	you	all	the	
benefits	of	unit	testing,	with	a	minimum	amount	of	time	and	effort.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

4

https://www.parasoft.com/what-is-shift-left-testing/

UNIT	TESTING	BEST	PRACTICES
Let’s	look	at	some	best	practices	for	building,	running,	and	
maintaining	unit	tests,	to	achieve	the	best	results.

Unit	Tests	Should	Be	Trustworthy
The	test	must	fail	if	the	code	is	broken	and	only	if	the	code	is	broken.	
If	it	doesn't,	we	cannot	trust	what	the	test	results	are	telling	us.

Unit	Tests	Should	Be	Maintainable	and	Readable
When	production	code	changes,	tests	often	need	to	be	updated,	and	
possibly	debugged	as	well.	So,	it	must	be	easy	to	read	and	understand	
the	test,	not	only	for	whoever	wrote	it,	but	for	other	developers	as	well.	
Always	organize	and	name	your	tests	for	clarity	and	readability.

Unit	Tests	Should	Verify	a	Single	Use	Case
Good	tests	validate	one	thing	and	one	thing	only,	which	means	that	typically,	
they	validate	a	single	use-case.	Tests	that	follow	this	best	practice	are	
simpler	and	more	understandable,	and	that	is	good	for	maintainability	and	
debugging.	Tests	that	validate	more	than	one	thing	can	easily	become	
complex	and	time-consuming	to	maintain.	Don't	let	this	happen.

Another	best	practice	is	to	use	a	minimal	number	of	assertions.	Some	people	
recommend	just	one	assertion	per	test	(this	may	be	a	little	too	restrictive);	the	idea	
is	to	focus	on	validating	only	what	is	needed	for	the	use-case	you	are	testing.

Unit	Tests	Should	Be	Isolated
Tests	should	be	runnable	on	any	machine,	in	any	order,	without	affecting	
each	other.	If	possible,	tests	should	have	no	dependencies	on	environmental	
factors	or	global/external	state.	Tests	that	have	these	dependencies	are	
harder	to	run	and	usually	unstable,	making	them	harder	to	debug	and	fix,	
and	end	up	costing	more	time	than	they	save	(see	trustworthy,	above).

Martin	Fowler,	a	few	years	ago,	wrote	about	"solitary"	vs	"sociable"	code,	to	
describe	dependency	usage	in	application	code,	and	how	tests	need	to	be	
designed	accordingly.	In	his	article,	"solitary"	code	doesn't	depend	on	other	
units	(it's	more	self-contained),	whereas	"sociable"	code	does	interact	with	other	
components.	If	the	application	code	is	solitary,	then	the	test	is	simple,	but	for	
sociable	code	under	test,	you	can	either	build	a	"solitary"	or	"sociable"	test.	A	
"sociable	test"	would	rely	on	real	dependencies	in	order	to	validate	behavior,	
whereas	a	"Solitary	test"	isolates	the	code	under	test	from	dependencies.	This	is	
visually	shown	in	Figure	1.	You	can	use	mocks	to	isolate	the	code	under	test	and	
build	a	"solitary"	test	for	"sociable"	code.	We'll	look	at	how	to	do	that	below.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

5

In	general,	using	mocks	for	dependencies	makes	our	life	easier	as	testers,	because	we	
can	generate	"solitary	tests"	for	sociable	code.	A	sociable	test	for	complex	code	may	
require	a	lot	of	set	up	and	may	violate	the	principles	of	being	isolated	and	repeatable.	
But	since	the	mock	is	created	and	configured	in	the	test,	it	is	self-contained,	and	we	
have	more	control	over	the	behavior	of	dependencies.	Plus,	we	can	test	more	code	
paths.	For	instance,	you	can	return	custom	values	or	throw	exceptions	from	the	mock,	
in	order	to	cover	boundary	or	error	conditions.

Unit	Tests	Should	Be	Automated
Make	sure	tests	are	being	run	in	an	automated	process.	This	can	be	daily,	or	every	
hour,	or	in	a	Continuous	Integration	or	Delivery	process.	The	reports	need	to	be	
accessible	to	and	reviewed	by	everyone	on	the	team.	As	a	team,	talk	about	which	
metrics	you	care	about:	code	coverage,	modified	code	coverage,	number	of	tests	being	
run,	performance,	etc.	A	lot	can	be	learned	by	looking	at	these	numbers,	and	a	big	shift	
in	those	numbers	often	indicates	regressions	that	can	be	addressed	immediately.

Use	a	Good	Mixture	of	Unit	and	Integration	Tests
Michael	Cohn's	book,	Succeeding	with	Agile:	Software	Development	Using	Scrum,	
addresses	this	using	a	testing	pyramid	model	(see	illustration	in	Figure	2).	This	is	a	
commonly	used	model	to	describe	the	ideal	distribution	of	testing	resources.	The	
idea	is	that	as	you	go	up	the	pyramid,	tests	are	usually	more	complex	to	build,	more	
fragile,	slower	to	run,	and	slower	to	debug.	Lower	levels	are	more	isolated	and	more	
integrated,	faster,	and	simpler	to	build	and	debug.	Therefore,	automated	unit	tests	
should	make	up	the	bulk	of	your	tests.

Figure 1:
Comparison of Sociable
and Solitary Tests.
Source: Martin Fowler,
2014, "UnitTest"

Figure 2:
Testing Pyramid Model

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

6

https://www.goodreads.com/book/show/6707987-succeeding-with-agile
https://www.martinfowler.com/bliki/UnitTest.html

Unit	tests	should	validate	all	of	the	details,	the	corner	cases	and	boundary	conditions,	
etc.	Component,	integration,	UI,	and	functional	tests	should	be	used	more	sparingly,	
to	validate	the	behavior	of	the	APIs	or	application	as	a	whole.	Manual	tests	should	be	
a	minimal	percentage	of	the	overall	pyramid	structure	but	are	still	useful	for	release	
acceptance	and	exploratory	testing.	This	model	provides	organizations	with	a	high	level	
of	automation	and	test	coverage,	so	that	they	can	scale	up	their	testing	efforts	and	
keep	the	costs	associated	with	building,	running,	and	maintaining	tests	at	a	minimum.

Unit	Tests	Should	Be	Executed	Within	an	Organized	Test	Practice
In	order	to	drive	the	success	of	your	testing	at	all	levels,	and	make	the	unit	
testing	process	scalable	and	sustainable,	you	will	need	some	additional	practices	
in	place.	First	of	all,	this	means	writing	unit	tests	as	you	write	your	application	code.	
Some	organizations	write	the	tests	before	the	application	code	(test-driven
or behavior-driven	programming).	The	important	thing	is	that	tests	go	hand-in-hand	
with	the	application	code.	The	tests	and	application	code	should	even	be	reviewed	
together	in	the	code	review	process.	Reviews	help	you	understand	the	code	being	
written	(because	they	can	see	the	expected	behavior)	and	improve	tests	too!

Writing	tests	along	with	code	isn't	just	for	new	behavior	or	planned	changes,	it’s	
critical	for	bug	fixes	too.	Every	bug	you	fix	should	have	a	test	that	verifies	the	bug	
is	fixed.	This	ensures	that	the	bug	stays	fixed	in	the	future.

Adopt	a	zero-tolerance	policy	for	failing	tests.	If	your	team	is	ignoring	test	results,	
then	why	have	tests	at	all?	Test	failures	should	indicate	real	issues	so	address	
those	issues	right	away	—	before	they	waste	QA's	time,	or	worse,	they	get	into	the	
released	product.

The	longer	it	takes	to	address	failures,	the	more	time	and	money	those	failures	will	
ultimately	cost	your	organization.	So,	you	should	run	tests	during	refactoring,	run	tests	
right	before	you	commit	code,	and	don't	let	a	task	be	considered	"done"	until	the	tests	
are	passing	too.

Finally,	maintain	those	tests.	As	mentioned	previously,	if	you're	not	keeping	those	
tests	up	to	date	when	the	application	changes,	they	lose	their	value.	Especially	if	they	
are	failing,	failing	tests	are	costing	time	and	money	to	investigate	each	time	they	fail.	
Refactor	the	tests	as	needed,	when	the	code	changes.

As	you	can	see,	maximizing	your	returns	on	money	and	time	invested	in	your	unit	tests	
requires	some	investment	in	applying	best	practices.	But	in	the	end,	the	rewards	are	
worth	the	initial	investment.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

7

https://www.parasoft.com/4-tips-for-adopting-test-driven-development-tdd-in-your-organization/
https://www.parasoft.com/how-and-why-to-adopt-bdd-in-software-development/

WHAT	ABOUT	CODE	COVERAGE?
In	general,	code	coverage	is	a	measurement	of	how	much	of	the	production	code	
is	executed	while	your	automated	tests	are	running.	By	running	a	suite	of	tests	and	
looking	at	code	coverage	data,	you	can	get	a	general	sense	of	how	much	of	your	
application	is	being	tested.

There	are	many	kinds	of	code	coverage	—	the	most	common	ones	are	line	coverage	
and	branch	coverage.	Most	tools	focus	online	coverage,	which	just	tells	you	if	a	specific	
line	was	covered.	Branch	is	more	granular,	as	it	tells	you	if	each	path	through	the	code	
is	covered.

Code	coverage	is	an	important	metric	but	remember	that	increasing	it	is	a	means	to	
an	end.	It’s	great	for	finding	gaps	in	testing,	but	it's	not	the	only	thing	to	focus	on.	Be	
careful	not	to	spend	too	much	effort	trying	to	achieve	100%	coverage	–	it	may	not	
even	be	possible	or	feasible,	and	really	the	quality	of	your	tests	is	the	important	thing.	
That	being	said,	achieving	at	least	60%	coverage	for	your	projects	is	a	good	starting	
point,	and	80%	or	more	is	a	good	goal	to	set.	Obviously,	it's	up	to	you	to	decide	what	
that	goal	should	be.

It's	also	valuable	if	you	have	automated	tools	that	not	only	measure	code	coverage	but	
also	keep	track	how	much	modified	code	is	being	covered	by	tests,	because	this	can	
provide	visibility	into	whether	enough	tests	are	being	written	along	with	changes	in	
production	code.

Figure	3	shows	an	example	code	coverage	report	from	Parasoft	DTP,	the	reporting	
and	analytics	hub,	that	you	can	navigate	through	if	you	are	using	Parasoft	Jtest	for	
your	unit	testing:

Figure 3:
Example Code
Coverage Report

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

8

https://www.parasoft.com/products/parasoft-dtp/
https://www.parasoft.com/products/parasoft-jtest/
https://www.parasoft.com/products/parasoft-jtest/java-unit-testing/

Another	thing	to	keep	in	mind	is	that,	when	writing	new	tests,	be	careful	of	focusing	
online	coverage	alone,	as	single	lines	of	code	can	result	in	multiple	code	paths,	so	make	
sure	your	tests	validate	these	code	paths.	Line	coverage	is	a	useful	quick	indicator,	but	
it	isn't	the	only	thing	to	look	for.

The	most	obvious	way	to	increase	coverage	is	simply	to	add	more	tests	for	more	
code	paths,	and	more	usecases	of	the	method	under	test.	A	powerful	way	to	increase	
coverage	is	to	use	parameterized	tests.	For	JUnit	4,	there	was	the	built	in	JUnit	4	
Parameterized	functionality	and	third-party	libraries	like	JunitParams.	JUnit	5	has	
built-in	parameterization.

Finally,	if	you	aren't	already	tracking	test	coverage,	we	highly	recommend	you	start.	
There	are	plenty	of	tools	that	can	help,	like	Parasoft	Jtest.	Start	by	measuring	your	
current	coverage	numbers,	then	set	goals	for	where	it	should	be,	address	important	
gaps	first,	and	then	work	from	there.

SUMMARY	OF	UNIT	TESTING	BEST	PRACTICES
Although	unit	testing	is	a	proven	technique	for	ensuring	software	quality,	it’s	still	
considered	a	burden	to	developers	and	many	teams	are	still	struggling	with	it.	In	order	
to	get	the	most	out	of	testing	and	automated	testing	tools,	tests	must	be	trustworthy,	
maintainable,	readable,	self-contained,	and	be	used	to	verify	a	single	use	case.	
Automation	is	key	to	making	unit	testing	workable	and	scalable.

In	addition,	software	teams	need	to	practice	good	testing	techniques,	such	as	writing	
and	reviewing	tests	alongside	application	code,	maintaining	tests,	and	ensuring	that	
failed	tests	are	tracked	and	remediated	immediately.	Adopting	these	unit	testing	best	
practices	can	quickly	improve	your	unit	testing	outcomes.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

9

JUNIT TUTORIAL: SETTING UP, WRITING,
AND RUNNING JAVA UNIT TESTS
This	tutorial	will	help	you	understand	the	basics	and	scale	your	unit	testing	practice	
like	a	pro.

Before	we	go	into	JUnits,	let's	talk	a	little	bit	about	unit	testing	and	regression	testing	
and	why	they	matter	in	general.	We'll	get	into	some	good	examples	as	we	go	on.

UNIT	TESTING	
Unit	testing	is	a	form	of	white	box	testing,	in	which	test	cases	are	based	on	internal	
structure.	The	tester	chooses	inputs	to	explore	particular	paths	and	determines	
the	appropriate	output.	The	purpose	of	unit	testing	is	to	examine	the	individual	
components	or	piece	of	methods/classes	to	verify	functionality,	ensuring	the	behavior	
is	as	expected.

The	exact	scope	of	a	“unit”	is	often	left	to	interpretation,	but	a	nice	rule	of	thumb	is	
for	a	unit	to	contain	the	least	amount	of	code	that	performs	a	standalone	task	(e.g.	a	
single	method	or	class).	There	is	a	good	reason	that	we	limit	scope	when	unit	testing	
--	if	we	construct	a	test	that	incorporates	multiple	aspects	of	a	project,	we	have	shifted	
focus,	from	functionality	of	a	single	method,	to	interaction	between	different	portions	
of	the	code.	If	the	test	fails,	we	don't	know	why	it	failed,	and	we	are	left	wondering	
whether	the	point	of	failure	was	within	the	method	we	were	interested	in,	or	in	the	
dependencies	associated	with	that	method.

REGRESSION	TESTING
Complementing	unit	testing,	regression	testing	makes	certain	that	the	latest	fix,	
enhancement,	or	patch	did	not	break	existing	functionality,	by	testing	the	changes	
you've	made	to	your	code.	Changes	to	code	are	inevitable,	whether	they	are	
modifications	of	existing	code	or	adding	packages	for	new	functionality	--	your	code	
will	certainly	change.	It	is	in	this	change	that	the	most	danger	lies,	so	with	that	in	mind,	
regression	testing	is	a	must.

WHAT	IS	JUNIT?
JUnit	is	a	unit	testing	framework	for	the	Java	programming	language	that	plays	a	
big	role	in	regression	testing.	An	open-source	framework,	it	is	used	to	write	and	run	
repeatable	automated	tests.

As	with	anything	else,	the	JUnit	framework	has	evolved	over	time.	The	major	change	
to	make	note	of	is	the	introduction	of	annotations	that	came	along	with	the	release	of	
JUnit	4,	which	provided	an	increase	in	organization	and	readability	of	JUnits.	The	rest	
of	this	blog	post	will	be	written	from	usages	of	JUnit	4	and	5.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

10

HOW	TO	SET	UP	JUNIT
The	more	common	IDEs,	such	as	Eclipse	and	IntelliJ,	will	already	have	JUnit	
functionality	installed	by	default.	If	one	is	not	using	an	IDE	and	perhaps	relying	solely	
on	a	build	system	such	as	Maven	or	Gradle,	the	installation	of	JUnit	4/5	is	handled	via	
the	pom.xml	or	build.gradle,	respectively.	It	is	important	to	note	that	JUnit	5	was	split	
into	three	modules,	one	of	those	being	a	vintage	module	that	supports	annotation/
syntax	of	JUnit	4.

JUNIT	4
To	add	JUnit	4	to	your	Maven,	build	the	following	to	the	pom.xml.	
Be	mindful	of	version:

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>
</dependency>

For	Gradle,	add	the	following	to	the	build.gradle:

apply plugin: 'java'

dependencies {
testCompile 'junit:junit:4.12'
}

JUNIT	5
Adding	JUnit	5	is	a	bit	different.	Because	of	the	modular	fashion	of	JUnit	5,	a	BOM	is	
used	to	import	all	aspects.	If	only	particular	classes	are	needed,	individual	groups	or	
artifacts	can	be	specified.

To	add	JUnit	5	to	Maven,	add	the	following	to	pom.xml:

<dependency>
<groupId>org.junit</groupId>
<artifactId>junit-bom</artifactId>
<version>5.2.0</version>
<scope>test</scope>
</dependency>

For	Gradle,	add	the	following	to	the	build.gradle:

apply plugin: 'java'

dependencies {
implementation 'org.junit:junit-bom:5.2.0'
}

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

11

Although	not	typically	needed,	the	raw	.jar	file,	which	allows	one	to	use	the	JUnit	
framework,	is	also	accessible	to	manually	put	on	the	class	path.	Git	houses	the	code	for	
JUnit.	JUnit	4	has	the	.jar	available	to	download	directly.	It	is	most	common	to	include	
the	JUnit	5	.jar	files	using	a	build	management	system,	like	Maven	or	Gradle.	See	the	
JUnit	5	docs	online	for	specifics.

WRITING	UNIT	TESTS:	THE	ANATOMY	OF	A	JUNIT
Now	that	we	talked	a	little	about	unit	testing	and	setup,	let's	move	on	to	actual	
construction	and	execution	of	these	tests.	To	best	illustrate	the	creation	of	JUnits,	
we	want	to	start	with	something	basic.	In	the	example	image	below,	we	have	a	
simple	method	(left)	that	converts	Fahrenheit	to	Celsius,	and	the	JUnit	(right)	
associated	with	our	method.	The	JUnits	are	numbered	in	sections	below	and	we'll	
discuss	each	in	detail.

Sections	1	and	2
These	are	imports	for	the	JUnit	libraries	needed	to	leverage	the	testing	framework.	
The	imported	libraries	can	be	specified	down	to	a	particular	functionality	of	JUnit	but	
are	commonly	imported	with	asterisks	to	have	access	to	all	functionality.

Section	3
This	has	the	start	of	our	test	class,	and	the	important	thing	to	take	note	of	here	is	the	
naming	convention	for	the	class,	which	follows	ClassNameTest.

Section	4
Here,	we	see	our	first	JUnit-specific	syntax,	an	annotation.	Annotations	are	extremely	
important	when	creating	JUnits.	This	is	how	JUnit	knows	what	to	do	with	the	
processing	section	of	code.	In	our	example	case,	we	have	an	@Test	annotation,	which	
tells	JUnit	that	the	public	void	method	to	which	it	is	attached	can	be	run	as	a	test	case.

Figure 4:
Example Code With
Example Unit Test

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

12

https://github.com/junit-team/junit5/

There	are	many	other	annotations,	but	the	more	common	are	@Before	(which	runs	
some	statement/precondition	before	@Test,	public	void),	@After	(which	runs	some	
statement	after	@Test,	public	void	e.g.	resetting	variables,	deleting	temporary	files,	
variables,	etc.),	and	@Ignore	(which	ignores	some	statement	during	test	execution	--	
note	that	@BeforeClass	and	@AfterClass	are	used	for	running	statements	before	and	
after	all	test	cases,	public	static	void,	respectively).

Section	5
The	takeaway	here	is	again	naming	convention.	Note	the	structure,	testMethodName.

Section	6
Here	we	construct	a	new	instance	of	our	class	object.	This	is	necessary	so	we	can	call	
the	method	we	are	testing	on	something.	Without	this	object	instance,	we	cannot	test	
the	method.

Section	7
Variables	associated	with	the	method	need	to	be	established,	so	here	we	declare	
variables	corresponding	to	our	method.	These	should	be	given	meaningful	values	
(note:	if	a	parameter	is	an	object,	one	can	instantiate	it,	or	mock	it),	so	that	our	test	
has	meaning.

Section	8
This	variable	declaration	could	be	argued	as	optional,	but	it's	worthwhile	for	the	sake	
of	organization	and	readability.	We	assign	the	results	of	our	method	being	tested	to	
this	variable,	using	it	as	needed	for	assertions	and	such.

Section	9
The	assert	methods	(which	are	part	of	the	org.junit.Assert	class)	are	used	in	
determining	pass/fail	status	of	test	cases.	Only	failed	assertions	are	recorded.	Like	
with	annotations,	there	are	many	assert	options.	In	our	example	JUnit	above,	we	use	
assertEquals(expected,	actual,	delta).	This	takes	in	the	expected	outcome,	which	the	
user	defines,	the	actual,	which	is	the	result	of	the	method	being	called,	and	the	delta,	
which	allows	for	implementing	an	allowed	deviation	between	expected	and	actual	
values.	The	purpose	of	an	assertion	is	validation.	Although	not	required	to	run	your	
JUnit,	failing	to	add	assertions	arguably	defeats	the	purpose	of	your	test.	Without	
assertions,	you	have	no	verification	and	at	most	a	smoke	test,	which	gives	feedback	
only	when	a	test	errors	out.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

13

HOW	TO	RUN	A	JUNIT
Choose	your	own	adventure!	Here,	we	will	look	at	three	ways	to	run	JUnits:	straight	
from	the	command	line,	from	the	IDE	(Eclipse	and	IntelliJ),	and	using	build	systems	
(Maven	and	Gradle).

How to Run a JUnit From the Command Line
To	run	a	JUnit	directly	from	the	command	line,	you	need	a	few	things:	JDK	on	your	
path,	raw	Junit	jar	file,	and	the	test	cases.	The	command	is	as	follows	(this	example	is	
for	JUnit	4):

java -cp /path/to/junit.jar org.junit.runner.JUnitCore <test
class name>

NOTE: it is unlikely in a professional setting that one would be running a test manually from the
command line, without some build system, but the ability is there.

How to Run a JUnit From the IDE
Eclipse
To	run	from	Eclipse,	from	your	Package	Explorer	locate	your	JUnit	test,	in	whichever	
folder	you	have	designated	it	to.	Right-click,	and	move	down	to	Run	As	JUnit	Test.	This	
will	execute	your	test	and	open	a	new	JUnit	window	if	not	already	open.

Figure 5:
Eclipse Menu to Run
as JUnit Test

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

14

IntelliJ
Running	a	test	in	IntelliJ	is	very	similar	to	Eclipse.	From	the	Project	window,	locate	test,	
right-click,	and	select	Run	‘testName’.	Like	Eclipse,	a	JUnit	window	will	open	with	the	
results	of	the	test.

Figure 6:
IntelliJ Menu to Run
a Unit Test

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

15

How to Run a JUnit Using Build Systems

Maven
Maven	made	running	tests	simple.	Ensure	you	are	in	the	proper	location	from	your	
command	line,	and	the	project	pom.xml	is	properly	configured.	Then	you	can	run	the	
following	to	execute	your	JUnits:

To	run	entire	test	suite:

mvn test

To	run	single/specific	test(s):

mvn -Dtest=TestName test

Gradle
Gradle,	like	Maven,	made	running	tests	simple.

To	run	entire	test	suite:

gradlew test

To	run	single/specific	test(s):

gradlew -Dtest.single=testName test

NOTE: Maven and Gradle are their own monster -- what is shown here is minimal to cover the basics.

CONTINUING	WITH	UNIT	TESTING
Our	example	ran	through	a	very	simple	snippet	of	code,	and	of	course,	this	is	just	the	
start	of	unit	testing.	More	complex	methods	call	databases	or	other	methods,	but	to	
reassure	functionality	we	need	isolation,	which	we	achieve	through	mocking.	Mocking	
helps	us	isolate	units	of	code	to	focus	our	validation.	Frameworks	commonly	used	for	
mocking	are	Mockito	and	PowerMock.	

The	benefits	of	unit	testing	are	clear:

 » Identify	defects	with	isolation	and	focused	testing.

 » Assure	behavior	of	individual	methods	or	pieces	of	methods.

 » Helps	to	ensure	addition	or	modification	of	code	does	not	break	the	application.

 » Boundary	analysis	makes	it	easier	to	check	for	invalid/bad	input.

 » Test	every	aspect	of	the	method	to	increase	code	coverage.

It's	helpful	to	deploy	powerful	unit	testing	tools	like	Parasoft	Jtest	that	can	remedy	
much	of	the	pain	associated	with	JUnits	and	save	developers	valuable	time.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

16

https://www.parasoft.com/products/parasoft-jtest/

MOCKING IN JAVA: HOW TO AUTOMATE
A JAVA UNIT TEST, INCLUDING MOCKING
AND ASSERTIONS
What	is	mocking	in	Java?	You	can	auto-generate	a	unit	test	with	a	single	button	click,	
including	all	of	the	mocking	and	validations.

Good	unit	tests	are	a	great	way	to	make	sure	that	your	code	works	today	and	
continues	to	work	in	the	future.	A	comprehensive	suite	of	tests,	with	good	code-based	
and	behavior-based	coverage,	can	save	an	organization	a	lot	of	time	and	headaches.	
And	yet,	it	is	not	uncommon	to	see	projects	where	not	enough	tests	are	written.	In	
fact,	some	developers	have	even	been	arguing	against	their	use	completely.

WHAT	MAKES	A	GOOD	UNIT	TEST?
There	are	many	reasons	why	developers	don’t	write	enough	unit	tests.	One	of	the	
biggest	reasons	is	the	amount	of	time	they	take	to	build	and	maintain,	especially	in	
large,	complex	projects.	In	complex	projects,	often	a	unit	test	needs	to	instantiate	and	
configure	a	lot	of	objects.	This	takes	a	lot	of	time	to	set	up	and	can	make	the	test	as	
complex	(or	more	complex)	than	the	code	it	is	testing,	itself.

Let’s	look	at	an	example	in	Java:

public LoanResponse requestLoan(LoanRequest loanRequest,
LoanStrategy strategy)
{
 LoanResponse response = new LoanResponse();
 response.setApproved(true);
if (loanRequest.getDownPayment().compareTo(loanRequest.
getAvailableFunds()) > 0)
{
 response.setApproved(false);
 response.setMessage("error.insufficient.funds.for.down.
payment");
 return response;
}
 if (strategy.getQualifier(loanRequest)
< strategy.getThreshold(adminManager))
{
 response.setApproved(false);
 response.setMessage(getErrorMessage());
}
 return response;
}

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

17

Here	we	have	a	method	that	processes	a	LoanRequest,	generating	a	LoanResponse.	
Note	the	LoanStrategy	argument,	which	is	used	to	process	the	LoanRequest.	The	
strategy	object	may	be	complex	–	it	may	access	a	database,	an	external	system,	or	throw	a	
RuntimeException.	To	write	a	test	for	requestLoan(),	we	need	to	be	aware	of	which	
type	of	LoanStrategy	we're	testing	with	and	we	probably	need	to	test	the	method	with	
a	variety	of	LoanStrategy	implementations	and	LoanRequest	configurations.

A	unit	test	for	requestLoan()	may	look	like	this:

As	you	can	see,	there’s	a	whole	section	of	our	test	which	just	creates	objects	and	
configures	parameters.	It	wasn’t	obvious	looking	at	the	requestLoan()	method	what	
objects	and	parameters	need	to	be	set	up.	To	create	this	example,	we	had	to	run	the	
test,	add	some	configuration,	then	re-run	again	and	repeat	the	process	over	and	over.	
We	spent	too	much	time	figuring	out	how	to	configure	the	AdminManager	and	the	
LoanStrategy	instead	of	focusing	on	our	method	and	what	needed	to	be	tested	
there.	And	I	still	need	to	expand	our	test	to	cover	more	LoanRequest	cases,	more	
strategies,	and	more	parameters	for	AdminDao.

Additionally,	by	using	real	objects	to	test	with,	this	test	is	actually	validating	more	
than	just	the	behavior	of	requestLoan()	—	we're	depending	on	the	behavior	of	
AvailableFundsLoanStrategy,	AdminManagerImpl,	and	AdminDao	in	order	
for	our	test	to	run.	Effectively,	we're	testing	those	classes	too.	In	some	cases,	this	is	
desirable,	but	in	other	cases	it	is	not.	Plus,	if	one	of	those	other	classes	changes,	the	
test	may	start	failing	even	though	the	behavior	of	requestLoan()	didn’t	change.	For	
this	test,	we	would	rather	isolate	the	class	under	test	from	its	dependencies.

@Test public void testRequestLoan() throws Throwable
{
 // Set up objects
DownPaymentLoanProcessor processor = new
DownPaymentLoanProcessor();

LoanRequest loanRequest = LoanRequestFactory.create(1000, 100, 10000);
LoanStrategy strategy = new AvailableFundsLoanStrategy();

AdminManager adminManager = new AdminManagerImpl();
underTest.setAdminManager(adminManager);
Map<String, String> parameters = new HashMap<>();
parameters.put("loanProcessorThreshold", "20");

AdminDao adminDao = new InMemoryAdminDao(parameters);
adminManager.setAdminDao(adminDao);

 // Call the method under test
LoanResponse response = processor.requestLoan(loanRequest, strategy);

 // Assertions and other validations
}

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

18

MOCKING	IN	JAVA
One	solution	for	the	complexity	problem	is	to	mock	those	complex	objects.	For	this	
example,	let's	start	by	using	a	mock	for	the	LoanStrategy	parameter:

@Test
public void testRequestLoan() throws Throwable
{
 // Set up objects
 DownPaymentLoanProcessor processor = new
DownPaymentLoanProcessor();
 LoanRequest loanRequest = LoanRequestFactory.create(1000,
100, 10000);
 LoanStrategy strategy = Mockito.mock(LoanStrategy.class);

 Mockito.when(strategy.getQualifier(any(LoanRequest.class))).
thenReturn(20.0d);

 Mockito.when(strategy.getThreshold(any(AdminManager.
class))).thenReturn(20.0d);

 // Call the method under test
 LoanResponse response = processor.
requestLoan(loanRequest, strategy);

 // Assertions and other validations
}

Let’s	look	at	what’s	happening	here.	We	create	a	mocked	instance	of	LoanStrategy
using	Mockito.mock().	Since	we	know	that	getQualifier()	and	getThreshold()
will	be	called	on	the	strategy,	we	define	the	return	values	for	those	calls	using	
Mockito.when(…).thenReturn().	For	this	the	test,	we	don’t	care	what	the	
LoanRequest	instance’s	values	are,	nor	do	we	need	a	real	AdminManager	anymore	
because	AdminManager	was	only	used	by	the	real	LoanStrategy.

Additionally,	since	we	aren't	using	a	real	LoanStrategy,	we	don’t	care	what	the	
concrete	implementations	of	LoanStrategy	might	do.	We	don’t	need	to	set	up	
test	environments,	dependencies,	or	complex	objects.	We	are	focused	on	testing	
requestLoan()	–	not	LoanStrategy	or	AdminManager.	The	code-flow	of	the	method	
under	test	is	directly	controlled	by	the	mock.

This	test	is	a	lot	easier	to	write	with	Mockito	than	having	to	create	a	complex	
LoanStrategy	instance.	But	there	are	still	some	challenges.

 » For	complex	applications,	tests	may	require	lots	of	mocks.

 » If	you	are	new	to	Mockito,	you	need	to	learn	its	syntax	and	patterns.

 » You	may	not	know	which	methods	need	to	be	mocked.

 » When	the	application	changes,	the	tests	(and	mocks)	need	to	be	updated	too.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

19

SOLVING	MOCKING	CHALLENGES	WITH	A	JAVA	UNIT	TEST	GENERATOR
We	designed	Parasoft	Jtest	to	help	address	the	challenges	above	and	manage	the	risks	
of	Java	software	development.

On	the	unit	testing	side	of	things,	Parasoft	Jtest	helps	you	automate	some	of	the	
most	difficult	parts	of	creating	and	maintaining	unit	tests	with	mocks.	For	the	above	
example,	it	can	auto-generate	a	test	for	requestLoan()	with	a	single	button-click,	
including	all	of	the	mocking	and	validations	you	see	in	the	example	test.

Below,	the	“Regular”	action	in	the	Parasoft	Jtest	Unit Test Assistant	Toolbar	generates	
the	following	test:

@Test public void testRequestLoan() throws Throwable
{
 // Given DownPaymentLoanProcessor underTest = new
DownPaymentLoanProcessor();
 // When
double availableFunds = 0.0d; // UTA: default value
double downPayment = 0.0d; // UTA: default value
double loanAmount = 0.0d; // UTA: default value

LoanRequest loanRequest =
LoanRequestFactory.create(availableFunds, downPayment,
loanAmount);
LoanStrategy strategy = mockLoanStrategy();
LoanResponse result = underTest.requestLoan(loanRequest,
strategy);
 // Then
 // assertNotNull(result);
}

All	the	mocking	for	this	test	happens	in	a	helper	method:

private static LoanStrategy mockLoanStrategy() throws
Throwable
{
 LoanStrategy strategy = mock(LoanStrategy.class);
 double getQualifierResult = 0.0d; // UTA: default value
 when(strategy.getQualifier(any(LoanRequest.class))).
thenReturn(getQualifierResult);

 double getThresholdResult = 0.0d; // UTA: default value

Figure 7:
Test Generation
With Parasoft Jtest

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

20

https://www.parasoft.com/products/parasoft-jtest/

 when(strategy.getThreshold(any(AdminManager.class))).
thenReturn(getThresholdResult);

 return strategy;
}

All	the	necessary	mocking	is	set	up	for	us	—	Parasoft	Jtest	detected	the	method	
calls	to	getQualifier()	and	getThreshold()	and	mocked	the	methods.	Once	we	
configure	values	in	the	unit	test	for	availableFunds, downPayment,	etc,	the	test	is	
ready	to	run	(we	could	also	generate	a	parameterized	test	for	better	coverage!).	Note	
also	that	the	assistant	provides	some	guidance	as	to	which	values	to	change	by	its	
comments,	“UTA:	default	value”,	making	testing	easier.

This	saves	a	lot	of	time	in	generating	tests,	especially	if	we	don’t	know	what	needs	to	
be	mocked	or	how	to	use	the	Mockito	API.

HANDLING	CODE	CHANGES
When	the	application	logic	changes,	the	tests	often	need	to	change	also.	If	the	test	is	
well-written,	it	should	fail	if	you	update	the	code	without	updating	the	test.	Often,	the	
biggest	challenge	in	updating	the	test	is	understanding	what	needs	to	be	updated,	and	
how	exactly	to	perform	that	update.	If	there	are	lots	of	mocks	and	values,	it	can	be	
difficult	to	track	down	what	the	necessary	changes	are.

To	illustrate	this,	let’s	make	some	changes	to	the	code	under	test:

public LoanResponse requestLoan(LoanRequest loanRequest,
LoanStrategy strategy)
{
 ...
 String result = strategy.validate(loanRequest);
 if (result != null && !result.isEmpty()) {
 response.setApproved(false);
 response.setMessage(result);
 return response;
 }
 ...
 return response;
}

We	have	added	a	new	method	to	LoanStrategy – validate(),	and	are	now	
calling	it	from	requestLoan().	The	test	may	need	to	be	updated	to	specify	what	
validate()	should	return.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

21

Without	changing	the	generated	test,	let’s	run	it	within	the	Parasoft	Jtest	Unit	
Test	Assistant:

Parasoft	Jtest	detected	that	validate()	was	called	on	the	mocked	LoanStrategy
argument	during	our	test	run.	Since	the	method	has	not	been	set	up	for	the	mock,	the	
assistant	recommends	that	we	mock	the	validate()	method.	The	“Mock	it”	quick-fix	
action	updates	the	test	automatically.	This	is	a	simple	example	–	but	for	complex	code	
where	it	isn’t	easy	to	find	the	missing	mock,	the	recommendation	and	quick-fix	can	
save	us	a	lot	of	debugging	time.

After	updating	the	test	using	the	quick	fix,	we	can	see	the	new	mock	and	set	the	
desired	value	for	validateResult:

private static LoanStrategy mockLoanStrategy() throws
Throwable {

 LoanStrategy strategy = mock(LoanStrategy.class);
 String validateResult = ""; // UTA: default value

 when(strategy.validate(any(LoanRequest.class))).
thenReturn(validateResult);
 double getQualifierResult = 20.0d;

 when(strategy.getQualifier(any(LoanRequest.class))).
thenReturn(getQualifierResult);
 double getThresholdResult = 20.0d;

 when(strategy.getThreshold(any(AdminManager.class))).
thenReturn(getThresholdResult);
 return strategy;
}

We	can	configure	validateResult	with	a	non-empty	value	to	test	the	use	case	where	
the	method	enters	the	new	block	of	code,	or	we	can	use	an	empty	value	(or	null)	to	
validate	behavior	when	the	new	block	is	not	entered.

Figure 8:
Example of Mocking
in Parasoft Jtest

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

22

ANALYZING	THE	TEST	FLOW
The	assistant	also	provides	some	useful	tools	for	analyzing	the	test	flow.	For	instance,	
here	is	the	flow	tree	for	our	test	run:

SUMMARY	OF	MOCKING	IN	JAVA
You	can	automate	many	aspects	of	unit	testing.	Parasoft	Jtest	helps	you	generate	
unit	tests	with	less	time	and	effort,	reducing	the	complexity	associated	with	mocking.	
It	also	makes	many	other	recommendations	to	improve	existing	tests	based	on	
runtime	data,	and	has	support	for	parameterized	tests,	Spring	Application	tests,	and	
PowerMock	(for	mocking	static	methods	and	constructors).	

Figure 9:
The Parasoft Jtest Unit
Test Assistant’s Flow Tree,
showing calls made during
test execution.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

23

https://www.parasoft.com/products/parasoft-jtest/

HOW TO CREATE JUNIT PARAMETERIZED TESTS
Parameterized	tests	are	a	good	way	to	define	and	run	multiple	test	cases,	where	the	
only	difference	between	them	is	the	data.	Here,	we	look	at	three	different	frameworks	
commonly	used	with	JUnit	tests.

When	writing	unit	tests,	it	is	common	to	initialize	method	input	parameters	and	
expected	results	in	the	test	method	itself.	In	some	cases,	using	a	small	set	of	inputs	
is	enough;	however,	there	are	cases	in	which	we	need	to	use	a	large	set	of	values	
to	verify	all	of	the	functionality	in	our	code.	Parameterized	tests	are	a	good	way	to	
define	and	run	multiple	test	cases,	where	the	only	difference	between	them	is	the	
data.	They	can	validate	code	behavior	for	a	variety	of	values,	including	border	cases.	
Parameterizing	tests	can	increase	code	coverage	and	provide	confidence	that	the	code	
is	working	as	expected.

There	are	a	number	of	good	parameterization	frameworks	for	Java.	In	this	article,	
we	will	look	at	three	different	frameworks	commonly	used	with	JUnit	tests,	with	a	
comparison	between	them	and	examples	of	how	the	tests	are	structured	for	each.	
Finally,	we	will	explore	how	to	simplify	and	expedite	the	creation	of	parameterized	tests.

JUNIT	PARAMETERIZED	TEST	FRAMEWORKS
Let’s	compare	the	3	most	common	frameworks:	JUnit	4,	JunitParams,	and	JUnit	5.	
Each	JUnit	parameterization	framework	has	its	own	strengths	and	weaknesses.

JUnit	4
Pros
»	 This	is	the	parameterization	framework	built	into	JUnit	4,	so	it	requires	no	additional	
	 external	dependencies.
»	 It	supports	older	versions	of	Java	(JDK	7	and	older).

Cons
»	 Test	classes	use	fields	and	constructors	to	define	parameters,	which	make	tests	
	 more	verbose.
»	 It	requires	a	separate	test	class	for	each	method	being	tested.

JunitParams
Pros
»	 Simplifies	parameter	syntax	by	allowing	parameters	to	be	passed	directly	
	 to	a	test	method.
»	 Allows	multiple	test	methods	(each	with	their	own	data)	per	test	class.
»	 Supports	CSV	data	sources,	as	well	as	annotation-based	values	
	 (no	method	required).

Cons
»	 Requires	the	project	to	be	configured	with	the	JunitParams	dependency.
»	 When	running	and	debugging	tests,	all	tests	within	the	class	must	be	run	—	it	
	 is	not	possible	to	run	a	single	test	method	within	a	test	class.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

24

JUnit	5
Pros
»	 This	parameterization	framework	is	built	into	JUnit	5	and	improves	what	was	
	 included	with	JUnit	4.
»	 Has	a	simplified	parameter	syntax	like	JunitParams.
»	 Supports	multiple	data-set	source	types,	including	CSV	and	annotation	
	 (no	method	required).
»	 Even	though	no	extra	dependencies	are	required,	more	than	one	.jar	is	needed.

Consideration
»	 Requires	newer	versions	of	Java	and	your	preferred	build	system	(e.g.	Gradle	
	 or	Maven	Surefire).	Check	the	JUnit	5	specifications	for	details.

EXAMPLE	OF	A	JUNIT	PARAMETERIZED	TEST
As	an	example,	suppose	that	we	have	a	method	that	processes	loan	requests	for	
a	bank.	We	might	write	a	unit	test	that	specifies	the	loan	request	amount,	down	
payment	amount,	and	other	values.	We	would	then	create	assertions	that	validate	the	
response	—	the	loan	may	be	approved	or	rejected,	and	the	response	may	specify	the	
terms	of	the	loan.

public LoanResponse requestLoan(float loanAmount, float
downPayment, float availableFunds)

{
LoanResponse response = new LoanResponse();
response.setApproved(true);

if (availableFunds < downPayment) {
response.setApproved(false);
response.setMessage("error.insufficient.funds.for.down.
payment");

return response;
}

if (downPayment / loanAmount < 0.1) {
response.setApproved(false);
response.setMessage("error.insufficient.down.payment");
}

return response;
}

View	raw.
View	parameterized	test	example.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

25

https://gist.githubusercontent.com/ParasoftExamples/8b28da81e3a3717041169fbf880cb26b/raw/7af7a49d6a82b6e958772f95814ff4cd3f1e9250/parameterized_test_example_1.java
https://gist.github.com/ParasoftExamples/8b28da81e3a3717041169fbf880cb26b#file-parameterized_test_example_1-java

First,	let’s	look	at	a	regular	test	for	the	above	method:

@Test
public void testRequestLoan() throws Throwable
{

// Given|
LoanProcessor underTest = new LoanProcessor();

// When
LoanResponse result = underTest.requestLoan(1000f, 200f,
250f);

// Then
assertNotNull(result);
assertTrue(result.isApproved());
assertNull(result.getMessage());
}

View	raw.
View	parameterized	test	example	2.

In	this	example,	we	are	testing	our	method	by	requesting	a	$1000	loan,	with	a	
$200	down	payment	and	indicating	that	the	requestor	has	$250	in	available	funds.	
The	test	then	validates	that	the	loan	was	approved	and	didn’t	provide	a	message	in	
the	response.

In	order	to	make	sure	that	our	requestLoan()	method	is	tested	thoroughly,	we	need	
to	test	with	a	variety	of	down	payments,	requested	loan	amounts,	and	available	funds.	
For	instance,	let’s	test	a	$1	million	loan	request	with	zero	down	payment,	which	should	
be	rejected.	We	could	simply	duplicate	the	existing	test	with	different	values,	but	since	
the	test	logic	would	be	the	same,	it	is	more	efficient	to	parameterize	the	test	instead.

We	will	parameterize	the	requested	loan	amount,	down	payment,	and	available	funds,	
as	well	as	the	expected	results:	whether	the	loan	was	approved,	and	the	message	
returned	after	validation.	Each	set	of	request	data,	along	with	its	expected	results,	
will	become	its	own	test	case.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

26

https://gist.githubusercontent.com/ParasoftExamples/5a4210eb830dd8bcda0abcc20ffa3832/raw/5261999e865c88073aa50caa84f0da9a8c7ec387/parameterized_test_example_2.java
https://gist.github.com/ParasoftExamples/5a4210eb830dd8bcda0abcc20ffa3832#file-parameterized_test_example_2-java

AN	EXAMPLE	OF	A	PARAMETERIZED	TEST	USING	JUNIT	4	PARAMETERIZED
Let’s	start	with	a	JUnit	4	Parameterized	example.	To	create	a	parameterized	
test,	we	first	need	to	define	the	variables	for	the	test.	We	also	need	to	include	
a	constructor	to	initialize	them:

@RunWith(Parameterized.class)
public class LoanProcessorParameterizedTest {

float loanAmount;
float downPayment;
float availableFunds;
boolean expectApproved;
String expectedMessage;

public LoanProcessorParameterizedTest(float loanAmount, float
downPayment,

float availableFunds, boolean expectApproved, String
expectedMessage)

{
this.loanAmount = loanAmount;
this.downPayment = downPayment;
this.availableFunds = availableFunds;
this.expectApproved = expectApproved;
this.expectedMessage = expectedMessage;
}

// ...

}

View	raw.
View	parameterized	test	example	3.

Here,	we	see	that	the	test	uses	the	@RunWith	annotation	to	specify	that	the	test	will	
run	with	the	JUnit	4	Parameterized	runner.	This	runner	knows	to	look	for	a	method	
which	will	provide	the	value-set	for	the	test	(annotated	with	@Parameters),	initialize	
the	test	properly,	and	run	the	tests	with	multiple	rows.

Note	that	each	parameter	is	defined	as	a	field	in	the	test	class,	and	the	constructor	
initializes	these	values	(you	can	also	inject	values	into	fields	using	the	@Parameter
annotation	if	you	don’t	want	to	create	a	constructor).	For	each	row	in	the	value-set,	
the	Parameterized	runner	will	instantiate	the	test	class	and	run	each	test	in	the	class.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

27

https://gist.githubusercontent.com/ParasoftExamples/b6f712fc7328d00a175a1b244a9365c4/raw/f7103b147a4a29c715b1a62b326561d93f803f7e/parameterized_test_example_3.java
https://gist.github.com/ParasoftExamples/b6f712fc7328d00a175a1b244a9365c4#file-parameterized_test_example_3-java

Let’s	add	a	method	which	provides	the	parameters	to	the	Parameterized	runner:

@Parameters(name = "Run {index}: loanAmount={0},
downPayment={1}, availableFunds={2}, expectApproved={3},
expectedMessage={4}")

public static Iterable<Object[]> data() throws Throwable

{
return Arrays.asList(new Object[][] {

{ 1000.0f, 200.0f, 250.0f, true, null }
});
}

View	raw.
View	parameterized	test	example	4.

The	value-sets	are	built	as	a	List of Object	arrays	by	the	data()	method,	which	is	
annotated	with	@Parameters.	Note	that	@Parameters	sets	the	name	of	the	test	
using	placeholders,	which	will	be	replaced	when	the	test	runs.	This	makes	it	easier	to	
see	values	in	test	results,	as	we	will	see	later.	Currently,	there	is	only	one	row	of	data,	
testing	a	case	where	the	loan	should	be	approved.	We	can	add	more	rows	to	increase	
coverage	of	the	method	under	test.

@Parameters(name = "Run {index}: loanAmount={0},
downPayment={1}, availableFunds={2}, expectApproved={3},
expectedMessage={4}")

public static Iterable<Object[]> data() throws Throwable

{
return Arrays.asList(new Object[][] {

{ 1000.0f, 200.0f, 250.0f, true, null },

{ 1000.0f, 50.0f, 250.0f, false, "error.insufficient.down.
payment" },

{ 1000.0f, 200.0f, 150.0f, false, "error.insufficient.funds.for.
down.payment" }
});
}

View	raw.
View	parameterized	test	example	5.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

28

https://gist.githubusercontent.com/ParasoftExamples/85f9efae920bae0881b1f1fdfa93ed1e/raw/339b15e40eefe579ba664d42af7bf47dace620bc/parameterized_test_example_4.java
https://gist.github.com/ParasoftExamples/85f9efae920bae0881b1f1fdfa93ed1e#file-parameterized_test_example_4-java
https://gist.githubusercontent.com/ParasoftExamples/7d3ef919eb158feb2ff1b54f3bc1d3b4/raw/1ba4b0edc34771f7ab46c6a039f04d932f21a956/parameterized_test_example_5.java
https://gist.github.com/ParasoftExamples/7d3ef919eb158feb2ff1b54f3bc1d3b4#file-parameterized_test_example_5-java

Here,	we	have	one	test	case	where	the	loan	would	be	approved,	and	two	cases	in	
which	it	should	not	be	approved	for	different	reasons.	We	may	want	to	add	rows	in	
which	zero	or	negative	values	are	used,	as	well	as	test	boundary	conditions.

We	are	now	ready	to	create	the	test	method:

@Test

public void testRequestLoan() throws Throwable

 {
// Given
LoanProcessor underTest = new LoanProcessor();

// When
LoanResponse result = underTest.requestLoan(loanAmount,
downPayment, availableFunds);

// Then
assertNotNull(result);
assertEquals(expectApproved, result.isApproved());
assertEquals(expectedMessage, result.getMessage());
}

View	raw.
Parameterized	test	example	6.

Here,	we	reference	the	fields	when	invoking	the	requestLoan()	method	and	
validating	the	results.

JUNITPARAMS	EXAMPLE
The	JunitParams	library	simplifies	parameterized	test	syntax	by	allowing	parameters	
to	be	passed	directly	to	the	test	method.	The	parameter	values	are	provided	by	a	
separate	method	whose	name	is	referenced	in	the	@Parameters	annotation.

@RunWith(JUnitParamsRunner.class)
public class LoanProcessorParameterizedTest2 {

@Test

@Parameters(method = "testRequestLoan _ Parameters")
public void testRequestLoan(float loanAmount, float
downPayment, float availableFunds,
boolean expectApproved, String expectedMessage) throws
Throwable
{
 ...
}

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

29

https://gist.githubusercontent.com/ParasoftExamples/304155114c112e784753d467b6a5fd02/raw/3eea16f88ed907054c656a81ac6bcf9601c3441d/parameterized_test_example_6.java
https://gist.github.com/ParasoftExamples/304155114c112e784753d467b6a5fd02#file-parameterized_test_example_6-java

@SuppressWarnings("unused")
private static Object[][] testRequestLoan _ Parameters() throws
Throwable {

// Parameters: loanAmount={0}, downPayment={1},
availableFunds={2}, expectApproved={3}, expectedMessage={4}

return new Object[][] {

{ 1000.0f, 200.0f, 250.0f, true, null },
{ 1000.0f, 50.0f, 250.0f, false, "error.insufficient.down.
payment"},
{ 1000.0f, 200.0f, 150.0f, false, "error.insufficient.funds.for.
down.payment" }
};
}
}

View	raw.
View	parameterized	test	example	7.

JunitParams	has	the	additional	benefit	that	it	supports	using	CSV	files	to	provide	
values	in	addition	to	providing	the	values	in	code.	This	allows	the	test	to	be	decoupled	
from	the	data	and	data	values	to	be	updated	without	updating	the	code.

JUNIT	5	EXAMPLE
JUnit	5	addresses	some	of	the	limitations	and	shortcomings	of	JUnit	4.		Like	
JunitParams,	JUnit	5	also	simplifies	the	syntax	of	parameterized	tests.	The	most	
important	changes	in	syntax	are:

 » The	test	method	is	annotated	with	@ParameterizedTest	instead	of	@Test.

 » The	test	method	accepts	parameters	directly,	instead	of	using	fields	
and	a	constructor.

 » The @RunWith	annotation	is	no	longer	needed.

Defining	the	same	example	in	JUnit	5	would	look	like	this:

public class LoanProcessorParameterizedTest {

@ParameterizedTest(name="Run {index}: loanAmount={0},
downPayment={1}, availableFunds={2}, expectApproved={3},
expectedMessage={4}")

@MethodSource("testRequestLoan _ Parameters")
public void testRequestLoan(float loanAmount, float
downPayment, float availableFunds,

boolean expectApproved, String expectedMessage) throws
Throwable

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

30

https://gist.githubusercontent.com/ParasoftExamples/a4f09960f5fb3e4addb0f539cf2152c9/raw/505a53e894c3b7311309404f143fd9f512fedc46/parameterized_test_example_7.java
https://gist.github.com/ParasoftExamples/a4f09960f5fb3e4addb0f539cf2152c9#file-parameterized_test_example_7-java

{
...
}

static Stream<Arguments> testRequestLoan _ Parameters() throws
Throwable {

return Stream.of(

Arguments.of(1000.0f, 200.0f, 250.0f, true, null),

Arguments.of(1000.0f, 50.0f, 250.0f, false, "error.insufficient.
down.payment"),

Arguments.of(1000.0f, 200.0f, 150.0f, false, "error.insufficient.
funds.for.down.payment")
);
}
}

View	raw.
View	parameterized	test	example	8.

EFFICIENTLY	CREATE	PARAMETERIZED	TESTS
As	one	might	imagine,	writing	the	above	parameterized	test	can	be	a	bit	of	work.	
For	each	parameterized	test	framework	there	is	some	boilerplate	code	that	needs	to	
be	written	correctly.	It	can	be	hard	to	remember	the	correct	structure,	and	it	takes	
time	to	write	out.	To	make	this	much	easier,	you	can	use	Parasoft	Jtest	to	generate	
parameterized	tests,	automatically,	like	the	ones	described	above.	To	do	this,	simply	
select	the	method	you	want	to	generate	a	test	for	(in	Eclipse	or	IntelliJ):

The	test	is	generated,	using	default	values	and	assertions.	You	can	then	configure	
the	test	with	real	input	values	and	assertions	and	add	more	data	rows	to	the	
data()	method.

Figure 10:
Select Parameterized
Test Generation in
Parasoft Jtest

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

31

https://gist.githubusercontent.com/ParasoftExamples/94a71f99d280bfb4f876769e8e87b686/raw/10cbae5901846c383da6e00a5df89322fbe33010/parameterized_test_example_8.java
https://gist.github.com/ParasoftExamples/94a71f99d280bfb4f876769e8e87b686#file-parameterized_test_example_8-java
https://www.parasoft.com/products/parasoft-jtest/

RUNNING	THE	PARAMETERIZED	TEST
Parasoft	Jtest	can	run	parameterized	tests	directly	in	both	Eclipse	and	IntelliJ.

Note	that	the	name	of	each	test,	as	shown,	includes	input	values	from	the	dataset	and	
expected	result	values.	This	can	make	debugging	the	test	much	easier	when	it	fails,	
since	the	input	parameters	and	expected	outputs	are	shown	for	each	case.

You	can	also	use	the	Run	All	action	from	Parasoft	Jtest:

It	analyzes	the	test	flow	and	provides	detailed	information	about	the	previous	test	run.	
This	allows	you	to	see	what	happened	in	the	test	without	needing	to	rerun	the	test	
with	breakpoints	or	debugging	statements.	For	instance,	you	can	see	parameterized	
values	in	the	Variables	view:

Figure 11:
The JUnit View in Eclipse

Figure 12:
The Flow Tree View
in Parasoft Jtest

Figure 13:
The Variables View
in Parasoft Jtest

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

32

SUMMARY	OF	CREATING	JUNIT	PARAMETERIZED	TESTS
Each	of	the	three	frameworks	that	we	reviewed	are	fine	choices	and	work	well.	If	using	
JUnit	4,	JunitParams	is	preferred	over	the	built-in	JUnit	4	Parameterized	framework,	
due	to	the	cleaner	design	of	the	test	classes	and	the	ability	to	define	multiple	test	
methods	in	the	same	class.	However,	if	using	JUnit	5,	we	recommend	the	built-in	JUnit	
5	framework	since	it	addresses	the	shortcomings	in	JUnit	4	and	requires	no	extra	
libraries.	We	also	like	using	Parasoft	Jtest’s	unit	testing	capabilities	to	make	creation,	
execution,	and	debugging	of	parameterized	tests	more	efficient.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

33

GET MORE OUT OF UNIT TESTING AND REDUCE
MAINTENANCE EFFORTS WITH RUNTIME ANALYSIS
To	realize	the	benefits	of	unit	testing,	you	can	observe	a	unit	test	during	its	execution	
via	runtime	analysis.	Runtime	analysis	during	unit	test	execution	is	critical	to	improving	
test	efficiency	and	effectiveness.

Unit	testing	is	a	best	practice	to	test	individual	units/components	of	a	software,	but	
it	can	be	tedious	and	costly	for	Java	developers.	It's	painstaking	to	test	each	unit	
for	correct	behavior	with	manual	assertions,	and	isolate	each	method	with	mocking,	
and	unit	testing	itself	is	open	to	bugs	and	misunderstood	behavior.	To	improve	this	
situation,	you	can	use	a	runtime	analysis	tool	to	detect	data	and	control	flow,	external	
dependencies,	and	to	calculate	test	code	coverage.

With	this	collected	data	from	the	runtime	analysis,	an	enterprise-grade	solution	
like	Parasoft	Jtest	can	prompt	the	developer	about	how	to	improve	the	tests,	by	
automatically	recommending	assertions	for	correct	behavior,	and	methods	for	mocking	
to	improve	test	isolation.	This	integration	between	automatic	unit	test	generation	and	
runtime	analysis	reduces	the	manual	intervention	required	for	unit	testing	for	Java.

BENEFITS	OF	UNIT	TESTING
Unit	testing	is	a	well-known	practice,	but	its	implementation	requires	improvement	in	
many	projects.	Unit	testing,	done	well,	improves	the	agility	of	agile	process,	increases	
quality	and	security,	and	brings	long-term	cost	savings.

Unfortunately,	regardless	of	these	benefits,	developers	can	still	struggle	with	unit	
testing,	despite	the	desire	to	achieve	better	results.	The	amount	of	time	and	effort	
needed	for	test	creation	and	maintenance	can	be	too	much	to	justify	increasing	
testing	efforts.	Often,	test	suites	are	fragile	because	of	poor	unit/object	isolation	from	
dependencies.	Proper	mocking	of	dependencies	becomes	the	bane	of	software	testers,	
as	does	creating	the	assertions	needed	to	determine	correct	program	logic.	Even	
parameterizing	tests	for	scenarios	can	be	tedious	and	time	consuming.

Software	development	teams	must	address	these	problems	with	test	creation,	
isolation,	and	maintenance	if	they	want	to	achieve	the	benefits	of	thorough	unit	
testing.	The	answer	starts	with	test	automation	tools,	but	simply	automating	the	
execution	of	tests	and	collecting	results	isn’t	enough.	Runtime	analysis,	the	process	
of	observing	a	running	executable	and	recording	key	metrics,	is	an	innovative	way	
to	help	improve	unit	testing	creation,	mocking,	and	test	stability.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

34

https://www.parasoft.com/products/parasoft-jtest/

RUNTIME	ANALYSIS	CAN	IMPROVE	UNIT	TESTING
In	most	cases,	developers	don’t	consider	runtime	analysis	important	in	early	stages	
of	unit	testing.	Most	tools	are	used	for	catching	errors	that	unit	testing	missed,	or	
simply	in	calculating	code	coverage.	But	while	these	benefits	are	important,	runtime	
analysis	can	also	observe	the	execution	of	the	first	iteration	of	a	unit	test	to	make	
recommendations	to	improve	the	test	and	detect	changes	to	the	test	runtime	
environment	that	interfere	with	test	stability.

Test	frameworks	such	as	JUnit	create	sparse	code	that	requires	further	developer	
input.	This	work	is	tedious,	so	it	can	be	automated	to	fill	in	more	of	the	details	
based	on	the	observed	program	logic.	For	example,	the	following	unit	test	can	be	
automatically	generated	by	Parasoft	Jtest:

Figure 14:
Unit Test Generation
in Parasoft Jtest

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

35

Similarly,	for	unit	tests	with	parameterized	inputs,	shown	below:

Since	the	created	tests	are	executable	from	the	start,	they	can	be	observed	by	runtime	
analysis	for	both	results	and	execution	flow.	For	example,	a	test	may	fail	due	to	a	
raised	exception,	shown	below.

DETECTING	DEPENDENCIES	AND	MOCKING	WITH	RUNTIME	ANALYSIS
In	addition,	runtime	tools	observe	the	execution	path	into	dependencies	and	recommend	
potential	mocks	to	increase	the	isolation	of	the	test.	Although	visual	inspection	of	an	
object	under	test	will	reveal	its	dependencies,	automating	the	detection	and	mocking	of	
these	dependencies	saves	lots	of	tedious	and	error-prone	work.

Figure 15: P
arameterized Test
Generation in
Parasoft Jtest

Figure 16:
Exception Error Shown in
Parasoft Jtest Unit Test
Assistant

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

36

In	the	example	below,	Parasoft	Jtest	offers	the	developer	a	choice	of	what	to	mock	
based	on	the	execution	trace	of	the	unit	test:

In	this	case,	adding	a	mockable	method	pattern	adds	the	method	to	a	list	of	mocks	to	
be	handled	by	a	mocking	framework	such	as	PowerMock.

Mocking	static	constructors	are	also	possible,	as	shown	below.

IMPROVING	TESTING	FIDELITY	WITH	RUNTIME	ANALYSIS
With	full	knowledge	of	the	execution	flow,	plus	parameters	used	in	method	calls,	
runtime	analysis	can	be	used	to	provide	useful	recommendations	to	the	developer	
to	improve	the	test	code.	Although	assertions	are	provided,	statically,	when	a	
test	is	created,	they	may	not	be	enabled	or	correct.	At	test	execution,	failed	and	
missing	assertions	trigger	warnings	which	then	lead	to	recommendations	to	remedy	
the	problem.

Figure 17:
Execution Trace
of Unit Test

Figure 18:
Example for Mocking
Constructors

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

37

For	example,	after	creating	a	new	test,	and	no	recommended	assertions	have	been	
uncommented,	you	would	see	the	following:

Whatever	happens,	it	is	the	constant	feedback	about	corrective	action	for	assertions	
that	closes	the	loop	on	test	creation	to	complete	unit	testing.	Additionally,	as	the	unit	
under	test	is	changed,	these	changes	can	be	dealt	with	in	the	same	manner,	continually	
reducing	the	manual	test	maintenance	required.

Or	if	an	assertion	fails,	for	example,	the	following	is	displayed:

Figure 19:
Example of Assertion
Recommendations

Figure 20:
Example of Assertion
Failure

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

38

IMPROVING	TEST	STABILITY	WITH	RUNTIME	ANALYSIS
Runtime	analysis	can	also	detect	changes	in	the	test	environment	during	execution	
that	impact	the	ability	to	recreate	an	identical	test	environment	for	subsequent	tests.	
Tests	that	pass	at	one	time	and	fail	later	can	be	a	cause	of	great	frustration	and	lost	
time	and	effort.	Some	examples	of	instabilities	that	you	can	detect	with	runtime	
analysis	include	the	following:

 » A	changed	system	property	during	a	test	that	hasn't	changed	back	to	its	original	
state.	A	subsequent	test	may	rely	on	this	property.

 » Additional	execution	threads	in	the	background	that	may	interfere	with	a	test	run.

 » A	new	file	creation	during	test	execution	that	might	impact	subsequent	runs	if	they	
rely	on	the	file	and	its	contents.

 » Modified	static	fields	that	might	impact	future	tests	that	use	these	same	fields.

It’s	critical	that	each	test	execution	has	an	identical	starting	point,	to	ensure	reliable	
results.	Preventing	test	instability	with	runtime	detection	removes	guesswork	from	the	
test	debug	phase.

CONCLUSION
You	can	see	that	runtime	analysis	isn't	just	for	computing	code	coverage.	Runtime	
analysis	during	test	execution	is	critical	to	improving	test	efficiency	and	effectiveness.	
Monitoring	execution	paths	provides	information	about	dependencies	to	improve	
the	handling	of	dependencies	and	mocking.	Assertions	can	be	monitored,	and	
automatic	recommendations	improve	test	fidelity.	Detecting	changes	in	the	runtime	
test	environment	that	affect	test	stability	removes	frustration	and	reduces	debugging	
cycles	for	test	code.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

39

TAKE THE NEXT STEP
Learn	how	Parasoft	Jtest	can	help	you	improve	your	Java	
code	quality	and	team	productivity.	Contact	us	today.

ABOUT	PARASOFT
Parasoft	helps	organizations	continuously	deliver	quality	software	with	its	
market-proven,	integrated	suite	of	automated	software	testing	tools.	Supporting	
the	embedded,	enterprise,	and	IoT	markets,	Parasoft’s	technologies	reduce	the	
time,	effort,	and	cost	of	delivering	secure,	reliable,	and	compliant	software	by	
integrating	everything	from	deep	code	analysis	and	unit	testing	to	web	UI	and	API	
testing,	plus	service	virtualization	and	complete	code	coverage,	into	the	delivery	
pipeline.	Bringing	all	this	together,	Parasoft’s	award	winning	reporting	and	analytics	
dashboard	delivers	a	centralized	view	of	quality	enabling	organizations	to	deliver	
with	confidence	and	succeed	in	today’s	most	strategic	ecosystems	and	development	
initiatives—cybersecure,	safety-critical,	agile,	DevOps,	and	continuous	testing.

Improve Unit Testing for Java With Automation
Best Practices for Java Developers

40

https://www.parasoft.com/products/parasoft-jtest/
https://www.parasoft.com/contact/

