
DO-178C SOFTWARE
COMPLIANCE FOR

AEROSPACE & DEFENSE

Contents
3	 Overview

3	 Aerospace Industry Outlook for Commercial
& Defense

9	 What Is RTCA DO-178C?

32	 Requirements for Compliance in Testing
32	 Static Analysis

46	 Unit Testing

52	 Regression Testing

56	 Software Integration Testing

65	 Software System Testing

68	 Structural Code Coverage

74	 Requirements & the Traceability Matrix

80	 A Unified, Fully Integrated Testing Solution for
C/C++ Software Development
80	 Tool Qualification for Safety-Critical Airborne Systems

86	 Reporting & Analytics for Safety-Critical Airborne Systems

93	 More Resources
93	 Safety-Critical Airborne Systems Software Development

2

Overview
Aerospace Industry Outlook for Commercial
& Defense
The aerospace industry is one of, if not the most technically complex and sophisticated,
industries that exist. Much of it has to do with the diversity of the aircraft that are
created for commercial as well as defense purposes. There's a large overlap in the latest
trends in technology used by the aerospace industry, but there are also interesting areas
that differ and are worth mentioning. However, one of the main contributors to changes
and trends in the aerospace industry is cost.

The average passenger airliner costs between $82 and $350 million, and based on
the type of military aircraft, it can cost between $82 and $2.1 billion. A Boeing 787-10
goes for $340 million and a Northrop Grumman B-2 Spirit Stealth Bomber will set
you back $2.1 billion.

Commercial aircraft cost a significant amount due to factors like extensive research,
development, production, and operations. Developing a new commercial aircraft
involves substantial R&D efforts, including designing and testing new technologies,
aerodynamics, materials, and safety features. This phase often spans several years and
requires a substantial investment in skilled engineers, scientists, and facilities. This
is the same for military aircraft, but in addition, they often pioneer new technologies
and innovations that lead to higher R&D costs as well as the need for very specialized
engineering talent.

DO-178C Software Compliance for Aerospace & Defense

3

Another factor in the cost of commercial aircraft is testing and certification. Extensive
testing and certification processes are required to ensure that an aircraft meets safety,
performance, and environmental standards. Similarly, military aircraft must undergo
rigorous testing and certification processes to ensure their performance, safety, and
compliance with military standards are achieved.

These and other influences, like supply chain complexities, material used (advanced
composites and titanium), commercial use customizations (cabin layout, in-flight
entertainment system, galley arrangements, and so on), or military customizations
like weaponry, avionics, stealth, survivability, and other mission-specific equipment,
can drive up costs.

Open Systems Architectures
One of the approaches being used by the aerospace industry to mitigate costs is the
adoption of open architectures and interoperability. Open systems architecture is a
system design approach that aims to produce systems, such as software and hardware,
that are inherently interoperable and connectable without recourse to retrofit and
redesign. The Future Airborne Capability Environment (FACE™) Consortium has
established an open procurement environment that facilitates reuse to meet four
core goals:

1.	 Improve affordability.

2.	 Increase speed.

3.	 Improve agility

4.	 Deliver excellence.

Future Airborne Capability Environment

The FACE™ Consortium is a government and industry partnership dedicated to
accomplishing the four core goals using open industry standards, advanced integration,
and maintenance technologies. Military and commercial organizations can purchase
FACE-certified products found in the FACE registry.

DO-178C Software Compliance for Aerospace & Defense

4

https://www.opengroup.org/face
https://www.facesoftware.org/registry

Artificial Intelligence & Machine Learning
The use of artificial intelligence (AI) and machine learning (ML) comes up at aerospace
events, and one thought is to replace the commercial airline copilot with an AI copilot.
There are some hefty safety hurdles to overcome before this scenario can be realized.
Nonetheless, analytical AI can be applied in aerospace to predict when a part is going

to fail through anomaly detection or by tracking,
scheduling, and managing maintenance based on
historical data and predictive analytics. However,
this is completely the opposite for defense.

The U.S. is developing AI capabilities for a broad
range of military functions that will have a significant
impact on the defense sector. AI technologies are
rapidly evolving. Defense primes are advancing their
AI capabilities organically and through acquisitions.

AI is being applied in operations like intelligence,
surveillance, reconnaissance (ISR), logistics,

cyber, command and control, and drone swarms. Perhaps the most publicized and
controversial AI application in defense concerns autonomous vehicles and weapon
systems. AI technology will make military operations more efficient, accurate, and
powerful while also offering long-term cost-cutting potential.

Urban Air Mobility
In the commercial space, one of the major trends is the push towards more sustainable
and environmentally friendly aviation. This refers to the development of electric and
hybrid electric propulsion systems.

The FAA has put out the Urban Air Mobility (UAM)
Concept of Operations in support of developing air
transportation for a wide range of passenger, cargo,
and other operations within and between urban
and rural environments using new and innovative
aircraft. Vehicles such as electric vertical takeoff and
landing (eVTOL) types of aircraft are currently under
development. Nevertheless, the U.S. military is also
embracing eVTOL for military missions.

DO-178C Software Compliance for Aerospace & Defense

5

https://www.faa.gov/sites/faa.gov/files/Urban%20Air%20Mobility%20%28UAM%29%20Concept%20of%20Operations%202.0_0.pdf
https://www.faa.gov/sites/faa.gov/files/Urban%20Air%20Mobility%20%28UAM%29%20Concept%20of%20Operations%202.0_0.pdf
https://builtin.com/transportation-tech/evtol-aircraft

Development & Design
Advancements in software solutions and practices are also making improvements in
productivity, quality, time to market, and costs. Other technologies, like cybersecurity,
have become of paramount concern. Here are a few that are having a powerful impact
on development and need mentioning.

PLAN

CODE

B
U

ILD

TEST

DELIVER

RELE
ASE

MONITOR

O
PE

R
A

TE

Digital Twin

The use of a virtual representation or virtual model of a physical
system that mimics the functionalities of the actual hardware and
software is referred to as a “digital twin.” Digital twins for an aircraft,
jet engine, or even a semiconductor subsystem offer the unique
capability of a shift-left approach to enable earlier design, analysis,
and verification.

Agile Methodologies

Agile methodologies such as DevOps and DevSecOps are being
adopted to improve the efficiency of software development. These
approaches emphasized iterative development, collaboration, and
continuous integration and delivery (CI/CD), enabling faster and more
reliable software delivery.

Adopting these agile development methodologies does not conflict
with DO-178C recommended software development processes.
DO-178C is a descriptive standard that informs and recommends
what should be done to ensure safety. The “how” is left up to the
organization to decide on evolving best practices and solutions.

Model-Based Systems Engineering

Aerospace companies have been increasingly adopting model-
based engineering (MBSE), which involves creating digital models
that can represent the entire system, including hardware, software,
and interactions. MBSE helps improve communication among
multidisciplinary teams and allows for better system understanding
and integration.

Cybersecurity

With the increasing connectivity of aerospace systems and the
reliance on software for critical functions, cybersecurity is a key
concern. The military and aerospace companies are focusing on
implementing robust cybersecurity measures to protect against cyber
threats and ensure the safety and security of aviation systems. RTCA
DO-326A and DO-355A are the de facto cybersecurity standards.

DO-178C Software Compliance for Aerospace & Defense

6

Mil/Def Aerospace
Specific to the aerospace and aviation sectors within the military/defense (Mil/Def)
industry, they are responsible for designing, developing, and manufacturing a wide
range of military aircraft, helicopters, and unmanned aerial vehicles (UAVs). These
vehicles serve various purposes, including reconnaissance, surveillance, combat,
and transport.

Military aircraft are equipped with
advanced avionics systems, high-
performance engines, and cutting-edge
weapon systems to ensure air superiority
and the effective deployment of military
operations. This sector is also involved
in space exploration and satellite
technologies. Military satellites are critical
for communication, intelligence gathering,
and navigation. They facilitate secure and
real-time communication between ground
troops, aircraft, and command centers.

Additionally, military space technology contributes to early warning systems, weather
monitoring, and global positioning capabilities. The military is not required to adapt
commercial aviation safety certification guidelines, but they do so because such
guidelines enable a more robust, safe, and secure aircraft for the warfighter.

The Role of Standards & Regulations
DO-178C, which is also published in Europe as EUROCAE ED-12C, is the standard for
“Software Considerations in Airborne Systems and Equipment Certification.” It's a core
standard for all avionics or airborne systems and a document by which certification
authorities such as the Federal Aviation Administration (FAA), European Union Safety
Agency (EASA), and Transport Canada approve and certify all commercial software-
based aerospace systems.

Avionics is an assembly of electronics subsystems integrated onboard freighter aircraft,
military aircraft, business jets, and other private-owned, chartered, and unscheduled
aircraft. These systems include engine controls, flight control systems, navigation,
communications, flight recorders, lighting systems, fuel systems, electro-optic (EO/IR)
systems, weather radar, and performance monitoring systems.

Without certification, commercial airborne software systems cannot be deployed.
The military is not required to adapt commercial aviation safety certification guidelines,
but they do so because such guidelines enable a more robust, safe, and secure aircraft
for the warfighter.

DO-178C Software Compliance for Aerospace & Defense

7

https://my.rtca.org/productdetails?id=a1B36000001IcmrEAC

As safety and security concerns grow due to advances in technology and their
application in avionic systems, one standard cannot address all solutions and best
practices. Therefore, there are supplemental RTCA guidance documents that
contain clarifications, frequently asked questions, discussion papers, and rationale
to DO-178C. Here are just a few:

	» DO-278A, Software Integrity Assurance Considerations for Communication,
Navigation, Surveillance and Air Traffic Management (CNS/ATM) Systems

	» DO-248C, Supporting Information for DO-178C and DO-278A

	» DO-333, Formal Methods Supplement to DO-178C and DO-278A

	» DO-326A, Airworthiness Security Process Specification

	» DO-355A, Information Security Guidance for Continuing Airworthiness

	» DO-330, Software Tool Qualification Considerations

	» DO-331, Model Based Development and Verification

	» DO-332, Object Oriented Technology and Related Techniques

	» DO-254, Design Assurance Guidance for Airborne Electronic Hardware

Though not part of the RTCA library, an important standard to include is SAE
AS9100D: Quality Management Systems - Requirements for Aviation, Space, and
Defense Organizations. It's the international quality standard used by the aerospace
industry for applying best practices in product safety, security, and performance
that help run your organization efficiently and effectively.

Organizational best practices and processes aid teams in getting organized, reduce
costs, mitigate risks, boost productivity, and drive continuous improvement.
Organizations certified to this standard demonstrate a commitment to excellence
and the delivery of quality. It provides your customers with a way of determining
whether you are a viable and attractive alternative to other suppliers.

In addition, to stay up-to-date on FAA regulations, the FAA Dynamic Regulatory
System (DRS) is a knowledge center that includes all regulatory guidance material
and is continuously updated.

DO-178C Software Compliance for Aerospace & Defense

8

https://my.rtca.org/nc__store?search=DO-178C
https://www.sae.org/standards/content/as9100d/
https://www.faa.gov/about/office_org/headquarters_offices/avs/programs/drs#:~:text=The%20The%20Dynamic%20Regulatory%20System,into%20a%20single%20searchable%20application.
https://www.faa.gov/about/office_org/headquarters_offices/avs/programs/drs#:~:text=The%20The%20Dynamic%20Regulatory%20System,into%20a%20single%20searchable%20application.

What Is RTCA DO-178C?
The Radio Technical Committee for Aeronautics (RTCA) DO-178C is a functional safety
standard that provides guidance and considerations for the production of software for
airborne systems and equipment. The aim is to ensure that the system performs its
intended function with a level of confidence in safety that complies with airworthiness
requirements. If an aircraft is to fly over commercial U.S. airspace, compliance with the
standard is required.

Figure 2-1: The
sections that make up
the DO-178C standard

DO-178C provides the following guidance:

	» Objectives for software life cycle processes

	» Activities that provide a means for satisfying
those objectives

	» Descriptions of the evidence in the form of
software life cycle data that indicate that the
objectives have been satisfied

	» Variations in the objectives, independence,
software life cycle data, and control categories
by software level

	» Additional considerations (for example,
previously developed software) that are
applicable to certain applications

	» Definition of terms provided in the glossary

DO-178C covers the full engineering life cycle.
From planning, development, verification, quality
assurance, liaison, and certification. It is subdivided
into 12 sections. Section 1, not shown expresses
the purpose, scope, and how to use the document.

RTCA was founded back in 1935. They are an independent standards development
organization and serve as the basis for government certification of equipment used
by the tens of thousands of aircraft flying daily through the world’s airspace.

RTCA is a private, not-for-profit corporation, which works closely with the Federal
Aviation Administration (FAA) and industry experts from the U.S. and around the world,
such as the European Organization for Civil Aviation Equipment (EUROCAE) working
group to help develop this comprehensive, contemporary aviation standard. The
EUROCAE is a non-profit organization with the objective of developing standards
for European civil aviation.

DO-178C Software Compliance for Aerospace & Defense

9

The original DO-178 standard was released back in 1982. However, it was not
considered useful. As a result, the DO-178A revision followed, published in 1985.
This revision focused more on modern software engineering principles and verification
practices. It introduced a correlation between critical failure conditions with level

numbers 1, 2, and 3. Level 1, which
you may know better as Development
Assurance Level (DAL) was the strictest.

In December 1992, revision DO-178B
was released, which shifted from a
“how to” type of document to a “what
to do” type of document. A big focus
was put on objectives that your software
process needs to satisfy in order to reach
compliance and ultimately certification.

Another noticeable change was to
the number of possible critical failure
conditions defined in DAL. They grew
to five software levels and changed from
numbers to letters A through E. Level A

was the most stringent and Level E meant no safety requirement. Also, testing your
requirements was strongly emphasized. It advised not to look at the code to create test
cases, but to look at your requirements. It was backed by structural code coverage to
ensure that you have covered everything.

DO-178B also incorporated bidirectional traceability between systems, high- and
low-level requirements, including test cases, and down to the code to show that all
the requirements have been implemented. The idea of having tools qualified for use
was introduced.

Today, we're at revision C. Released in January 2012, DO-178C removed imprecise
wording found in DO-178B for clarification. It also became a joint effort between
RTCA and EUROCAE. But the major difference between DO-178B and DO-178C is
the adoption of a modular approach to supplemental guidance documents. You now
have supplemental standards, including the following.

	» DO-330 addresses software tool qualification.

	» DO-331 addresses model-based development.

	» DO-332 addresses object-oriented software.

	» DO-333 addresses formal methods to complement your testing.

This ebook provides a condensed overview of each of the DO-178C sections,
highlighting the key takeaways.

DO-178C Software Compliance for Aerospace & Defense

10

System Aspects Relating to Software Development, Section 2
Section 2 discusses the system life cycle processes, the artifacts produced, how
they flow down into the software life cycle and the information flow between these
processes. A big part of this is requirements analysis, where the software system
requirements are initially developed from the system operational requirements or
customer requirements, and how these artifacts flow into the software life cycle.

In the software life cycle, requirements decomposition continues, software verification
takes place, and ultimately certification.

Though DO-178C captures the flow between system and software life cycles in the
diagram above, the topic is well defined in the SAE ARP4754A standard, Guidelines for
Development of Civil Aircraft and Systems.

Figure 2-2:
Information flow
between system
and software life
cycle processesThe
Guideline Enforcement
Plan demonstrates
how each MISRA
guideline is verified.

Section 2 discusses the following topics:

	» System requirements allocation to software

	» Information flow between the system and
software life cycle processes and between the
software and hardware life cycle processes

	» System safety assessment process, failure
conditions, software level definitions, and
software level determination

	» Architectural considerations

	» Software considerations in system life cycle
processes

	» System considerations in software life cycle
processes

One other important part of section 2 is
determining the software level classification
or DAL. Catastrophic results equate to failure of
flight control software where an aircraft would go
down and many lives would be lost. This would be
classified as software level A.

DO-178C Software Compliance for Aerospace & Defense

11

https://www.sae.org/standards/content/arp4754

Table 2-1:
DO-178C
Development
Assurance Levels
(DAL)

Hazardous is a step down, so serious or fatal injury to a relatively small number of
the occupants other than the flight crew would be software level B. The classification
continues to go down to software level E where there's no safety concern if failure were
to occur.

Another perspective or side of this classification is quality assurance. With each
increased level from level E to level A, there's an increased number of objectives that
need to be met. For example, there's an increase in traceability between artifacts
produced during product development. Also, there's an increase in software testing.
The software may need to satisfy assembly or object code coverage instead of just
statement, branch, and MC/DC coverage.

To share a best practice, if your software is classified at level B or lower, you may
want to try to achieve some or all of the next higher software level objectives. The
additional effort between some of the development assurance levels may not be too
substantial and the benefits could very well pay off if customer requirements become
more stringent.

DO-178C Software Compliance for Aerospace & Defense

12

Figure 2-3: ARP4754A
V-model development
process

Software Life Cycle, Section 3
Section 3 discusses the aspects of the software life cycle process. The well-known
sequence through the SDLC is requirements management, design, coding, and
integration. DO-178C does not recommend a development process to use. It's left
up to organizations to make that decision based on their own experience and factors
like current technology, such as Agile, DevSecOps, CI/CD, or customer requirements.
Whatever process you choose, the standard’s objectives that must be met are not
obstructed by the process.

Below is the well-known V-model. The right side captures the system and software
design phases while the left side captures the verification phases. Standard ARP4754
is your go-to document on the development of aircraft systems considering the overall
aircraft operating environment and functions. This includes validation of requirements
and verification of the design implementation for certification and product assurance.

DO-178C Software Compliance for Aerospace & Defense

13

Figure 2-4:
DO-178C example
of a software project
using development
sequences.

DO-178C software life cycle processes include the following:

	» Software planning process. Defines and coordinates the activities of the software
development and integral processes for a project.

	» Software development processes. Produce the software product. This process is
comprised of processes for requirements, design, coding, and integration.

	» Integral software processes. Ensure the correctness, control, and confidence in
the software life cycle processes and their outputs. These include verification,
configuration management, quality assurance, and certification liaison.

DO-178C Software Compliance for Aerospace & Defense

14

Software Planning Process, Section 4
Section 4 discusses the objectives and activities of the software planning process.
The objectives are clearly defined and captured in Table A-1 of the standard. There
are seven objectives that must be satisfied based on the software level (A-D). These
objectives include defining the following:

	» Software life cycle process

	» Inter-relationships between processes

	» Methods and tools to use

	» Development standards to use for ensuring safety

	» Verification that the software satisfies development requirements

	» Verification that the organizations that will perform those activities

There are also many considerations to the software planning process, like the intent to
use previously developed software or commercial off the shelf software (COTS), tool
qualification, and many more described in section 12.

Table A-1 of the standard captures the objectives, the software levels that apply, and
the expected output from these activities, which are a set of documents with reporting
information about the organization, industry standard, software development, tools,
verification results and certification.

	» Plan for Software Aspects of Certification (PSAC)

	» Software Development Plan (SDP)

	» Software Verification Plan (SVP)

	» Software Configuration Management Plan (SCM Plan)

	» Software Quality Assurance Plan (SQM Plan)

	» Software Requirements Standards

	» Software Design Standards

	» Software Code Standards

	» Software Verification Results

DO-178C Software Compliance for Aerospace & Defense

15

Table 2-2: Table A-1
Software planning
process

DO-178C Software Compliance for Aerospace & Defense

16

Software Development Process, Section 5
The software development process is applied as defined by the software planning
process and the software development plan. Whether teams or organizations choose
a software development methodology like DevOps, Spiral, Waterfall, or another, the
following four listed processes must be performed.

	» Software requirements process

	» Software design process

	» Software coding process

	» Integration process

The software requirements process begins by gathering all requirements from the
stakeholder, regulatory bodies, standards, and more. These requirements are organized
into domains such as hardware, software, mechanical, chemical, electrical, and so on,
and then become your system-level requirements.

High-level requirements are derived from top-level system requirements. They
decompose a system requirement into various high-level functional and nonfunctional
requirements. This phase of the requirements decomposition helps in the architectural
design of the system under development.

High-level requirements clarify and help define expected behavior as well as safety
tolerances, security expectations, reliability, performance, portability, availability,
scalability, and more. Each high-level requirement links up to the system requirement
that it satisfies. In addition, high-level test cases are created and linked to each high-
level requirement for the purpose of its verification and validation. This is part of the
software design process, as each high-level requirement is further decomposed into
low-level requirements.

Low-level requirements are software requirements derived from high-level
requirements. They further decompose and refine the specifications of the software's
behavior and quality of service. They drill down to another level of abstraction and map
it to individual software units. The coding process begins as code units are written to
facilitate the software's detailed design and implementation. The inputs to the coding
process are the low-level requirements and software architecture from the software
design process, the software development plan, and the software code standards.

DO-178C Software Compliance for Aerospace & Defense

17

After the coding process is complete, the integration process consists of the following:

Table 2-3: DO-178C
Table A-2 Software
development process

	» Compiling

	» Linking

	» Loading software onto system or
target hardware

	» Executing

Coding defects need to be identified and fixed. Inadequate or incorrect inputs detected
during the integration process should be provided to the following software processes
as feedback for clarification or correction:

	» Requirements

	» Design

	» Coding

	» Planning

DO-178C Software Compliance for Aerospace & Defense

18

Bidirectional traceability that is established from each low-level requirement up to its
high-level requirement and down to the low-level tests or unit test cases that verify
and validate it helps in this endeavor.

Traceability is crucial to DO-178C. The depth of traceability varies based on the
software level. Looking at the traceability that's required for DO-178C level D,
organizations need not care about how the software has been developed, and as
such, there's no need to have any traceability down to low-level requirements, the
source code, or software architecture. Teams just need to trace from the system
software requirements to the high-level requirements and then to the test cases,
test procedures, and test results.

For levels B and C, how the source code has been developed becomes important.
Teams need to expand traceability by adding bidirectional links from the high-level
requirements to the low-level requirements and to the source code.

For level A projects, the requirements are to expand the traceability not just down to
the source code, but to the assembly/object code. This is because compilers are known
to expand and translate higher level languages to assembly code that does not map
back to the originating code.

Parasoft has an assembly code coverage solution called ASMTools that automates code
coverage at the assembly language level. Automating this effort alleviates much labor if
code coverage at the assembly level is required.

For requirements traceability, Parasoft automates linking between requirements, test
cases, and down to the source file, if required. Integrations with ALM tools like Jama,
Codebeamer, and Polarion exist to help achieve this bidirectional traceability and
building a traceability matrix for verification requirements.

Figure 2-5:
Requirements
traceability through
DO-178C software
levels (D-A)

DO-178C Software Compliance for Aerospace & Defense

19

Software Verification Process, Section 6
The purpose of the software verification process is to detect, report, and remove the
errors that may have been introduced during the software development process. The
standard uses the term “verification” instead of “test” because testing alone cannot
show the absence of errors. Verification is a combination of reviews, analysis, tests
cases, and test procedures.

Tests provide internal consistency and completeness of the requirements, while test
executions provide a demonstration of compliance with requirements.

DO-178C software verification process enables the following:

	» The system requirements allocated to software shall be decomposed into high-level
requirements that satisfy system requirements.

	» High-level requirements shall be developed into software architecture and low-level
requirements that satisfy high-level requirements.

	» If one or more levels of software requirements are decomposed into high-level
and low-level requirements, each successively lower level satisfies its higher-level
requirements. If code is generated directly from high-level requirements, this does
not apply.

	» The software architecture and low-level requirements shall be developed into
source code that satisfies low-level requirements and software architecture.

	» The executable object code must satisfy software requirements and provide
confidence in fulfilling its intended functionality.

	» The executable object code shall be robust and respond correctly to abnormal
inputs and conditions.

	» The means used to perform the verification to be technically correct and complete
for every determined software level.

DO-178C Software Compliance for Aerospace & Defense

20

Figure 2-6: Software
testing activities

To further detail each testing activity, the standard provides a set of tables with well-
defined objectives and outputs or artifacts needed to demonstrate compliance. These
objectives are achieved by way of software testing and may include the following:

	» Performing static analysis

	» Unit testing

	» Integration testing

	» System testing

	» Structural code coverage (statement,
branch, MC/DC, assembly)

	» On-target hardware

	» Data and control coupling

Software testing demonstrates or “validates” that the software satisfies its
requirements and reveals with a high degree of confidence that errors that could
lead to unacceptable failure conditions, as determined by the system safety and
security assessment process, have been removed. The following diagram shows
software testing activities with subsections.

21

Table 2-4: DO-178C
Table A-3 Verification
of outputs of software
requirements process

Integrating hardware and software is crucial to ensuring safety, security, and reliability.

Be aware that all of these testing methods are automated by Parasoft's tool suite. You
can get a glimpse of our C/C++ solution by taking a tour of Parasoft C/C++test.

The following tables list the set of objectives and expected outputs based on each
software design assurance level in order to ensure airworthiness.

Table 2-5: DO-178C
Table A-4 Verification
of outputs of software
design process

DO-178C Software Compliance for Aerospace & Defense

22

https://software.parasoft.com/cc-take-product-tour/

Table 2-6: DO-178C
Table A-5 Verification
of outputs of software
coding and integration
processes

Table 2-7: DO-178C
Table A-6 Testing of
outputs of integration
process

DO-178C Software Compliance for Aerospace & Defense

23

Table 2-8: DO-178C
Table A-7 Verification of
process results

Software Configuration Management Process, Section 7
Section 7 discusses the objectives and activities of the software configuration
management process. You need to be able to define and control configurations of
the software throughout the software life cycle. Organizations or teams need to
have source baselines, versioning, change control, change review, protection against
unauthorized changes, problem reporting, and much more.

DO-178C Software Compliance for Aerospace & Defense

24

Table 2-9: DO-178C
Table A-8 Software
configuration
management process

These are the software configuration management process activities:

1.	 Configuration identification

2.	 Baselines and traceability

3.	 Problem reporting, tracking, and corrective action

4.	 Change control

5.	 Change review

6.	 Configuration status accounting

7.	 Archive, retrieval, and release

These activities are further detailed as objectives and their output. The objectives
include being able to control item characteristic changes, record and report change
control processing, and implementation status.

In Table A-8, notice the “Control Category by Software Level” column. DO-178C
specifies which items must be treated as Control Category 1 or 2 based on the project's
DAL. Items treated as Control Category 1 (CC1) must undergo full problem reporting
processes, formal change review, and release processes. CC2 items do not need to
undergo these more formal processes, but they must still comply with configuration
identification and traceability needs, be protected against unauthorized changes, and
satisfy applicable data retention requirements. The map between CC1 and CC2 data is
found in the following table.

DO-178C Software Compliance for Aerospace & Defense

25

Table 2-10:
DO-178C SCM
process activities
associated with CC1
and CC2 data

Software Quality Assurance Process, Section 8
The SQA process is captured in the Software Quality Assurance Plan, which is built
during the software planning process. Outputs of the SQA process activities need to be
recorded, evaluated, and tracked. Audits need to be performed and any deviations from
the standards be resolved. The process entails providing assurance that:

	» Software plans and standards are developed, reviewed, and will meet compliance.

	» Artifacts, reports, and evidence are in place with approvals.

	» Software product and software life cycle data conform to certification requirements.

DO-178C Software Compliance for Aerospace & Defense

26

Table 2-11: DO-178C
Table A-9 Software
Quality Assurance
Process

Certification Liaison Process, Section 9
Section 9 discusses the certification liaison process and its objectives, which include
the following:

	» Establish communication and understanding between the applicant and the
certification authority throughout the software life cycle to assist the certification
process.

	» Gain agreement on the means of compliance through approval of the Plan for
Software Aspects of Certification.

	» Provide compliance substantiation.

DO-178C Software Compliance for Aerospace & Defense

27

Table 2-12:
DO-178C Table A-10
Certification liaison
process

Best practices for obtaining certification boil down to closely working with your
certification liaison, who may be better known as your Designated Engineering
Representative (DER), to evaluate for compliance, act on your behalf toward approval,
and recommend that the FAA approve your certification.

Overview of Certification Process, Section 10
Section 10 is for informational purposes only regarding the certification process.
It mentions the types of systems and equipment to which certification applies. It
specifies that certification authorities do not certify software as a unique stand-alone
product. It must be part of the airborne system or equipment.

“‘Certification' applies to aircraft, engines, or propellers; and, in
respect of some certification authorities, auxiliary power units.
The certification authorities consider the software as part of the
airborne system or equipment installed on the certified product;
that is, the certification authorities do not certify the software as
a unique, stand-alone product.”

Approval also depends upon a successful demonstration or review of the products
produced.

Your organization will need to produce the Plan for Software Aspects of Certification
(PSAC), which will contain the certification liaison process. The PSAC will include plans
on resolving issues identified by the certification liaison and obtaining agreement on
the plan. The table below lists the set of objectives and expected output artifacts.

DO-178C Software Compliance for Aerospace & Defense

28

Software Life Cycle Data, Section 11
Section 11 discusses artifacts like the data and documentation produced during the
software life cycle. The data needs to be unambiguous, complete, verifiable, consistent,
modifiable, and traceable. It also must be in various forms like electronic and printed.
Parasoft’s automated report generation and analytics web dashboard provide much of
the information needed within various artifacts and documents.

The artifacts to be produced during the software life cycle include the source code,
object code, test cases, results, problem reports, and, of course, the plans. Here's the
full list.

	» Plan for software aspects of
certification

	» Software development plan

	» Software verification plan

	» Software configuration management
plan

	» Software quality assurance plan

	» Software requirements standards

	» Software design standards

	» Software code standards

	» Software requirements data

	» Design description

	» Source code

	» Executable object code

	» Software verification cases and
procedures

	» Software verification results

	» Software life cycle environment
configuration index

	» Software configuration index

	» Problem reports

	» Software configuration management
records

	» Software quality assurance records

	» Software accomplishment summary

	» Trace data

	» Parameter data item file

DO-178C Software Compliance for Aerospace & Defense

29

Additional Considerations, Section 12
Section 12 provides additional guidance and consideration on topics that can have
an impact on objectives and activities in the software life cycle. For example, the use
of or modifications to previously developed software. Section 12 provides additional
clarification and activities to perform that help ensure safety and recertification. Here
are just some other considerations include:

	» Changes to the development environment such as processor, programming language,
auto code generator, development tools, and the like.

	» Upgrading a development baseline.

	» Use of already certified software on an alternate type of aircraft.

	» Use of certified software where there's a change in the compiler or processor.

Based on the consideration, section 12 provides additional objectives in software
configuration management, software quality assurance, development tool qualification,
and more.

Section 12 covers the importance of “Tool Qualification” and determining if its
needed. This is because if a tool is used that eliminates, reduces, or automates
processes, teams need to take into consideration whether the tool might introduce
errors into the life cycle.

The following criteria should be used to determine the impact of the tool:

	» Criteria 1. A tool whose output is part of the airborne software and thus could insert
an error.

	» Criteria 2. A tool that automates verification processes and thus could fail to detect
an error, and whose output is used to justify the elimination or reduction of:

	» Verification processes other than that automated by the tool, or

	» Development processes that could have an impact on the airborne software.

	» Criteria 3. A tool that, within the scope of its intended use, could fail to detect an
error.

There are five levels of tool qualification, TQL-1 through TQL-5, that are determined
by the tool use and its potential impact on the software life cycle. TQL-1 is the
most rigorous level. The tool qualification level needs to be coordinated with the
certification authority.

Table 2-13: DO-178C
Tool qualification level
determination

DO-178C Software Compliance for Aerospace & Defense

30

The objectives, activities, guidance,
and life cycle data required for each
tool qualification level are described in
DO-330, “Software Tool Qualification
Considerations.”

Parasoft supports DO-178C and DO-330
conformant tool qualification processes
with an automated tool qualification kit.
The Tool Qualification Kit automates
the process of creating the supporting
documentation required in using C/
C++test for static analysis, unit testing,
and coverage requirements.

Parasoft’s Tool Qualification Kit reduces the time taken to perform the tool qualification
and the potential for human error by leveraging automation to guide users through the
following workflow:

1.	 Specify the use cases and capabilities to be used on the project.

2.	 Quickly map known issues in the tool you’re qualifying to the features of the tool
you’re using in development.

3.	 Plan and capture the results of manual testing efforts.

4.	 Execute automated tests.

5.	 Bring all the data together and generate the critical documents.

DO-178C Software Compliance for Aerospace & Defense

31

https://www.parasoft.com/solutions/compliance/tool-qualification/

Requirements for Compliance in
Testing
Static Analysis
Static code analysis is the analysis of code without actual code execution. Static
analysis exposes safety and security vulnerabilities in the code by applying a
comprehensive set of code analysis techniques including:

	» Pattern-based analysis

	» Data flow analysis

	» Control flow analysis

	» Abstract interpretation

	» Code metrics and more

These methods identify memory buffer overflows, divide by zero, use of insecure
libraries, organization coding rules, directive violations, and so forth.

In DO-178C, the objectives for static analysis fall under Section 6 related to software
verification processes. The objectives of static analysis focus on ensuring that the
software code is free from certain types of defects and follow good coding practices.

For example, Section 6.3.4 Review and Analysis of Source Code, provides an overview
of the software verification activities required to review code in terms of compliance,
verifiability, and traceability. However, this section also specifies the need to inspect
the code for conformance to standards, accuracy, and consistency, all of which are good
applications for static analysis.

While DO-178C does not have a specific requirement for static analysis, the guidelines
and objectives related to static analysis are spread across sections within Chapter 6.
It's crucial to interpret and apply these guidelines appropriately in the context of the
project to ensure compliance with DO-178C for the certification of airborne software.

DO-178C Software Compliance for Aerospace & Defense

32

Some of the typical requirements for static analysis in DO-178C may include the
following.

1.	 Tools. Selecting and using appropriate static analysis tools to analyze the source
code for defects and compliance with coding standards.

2.	 Coding standards. Ensuring that the software code follows a set of predefined
coding standards or guidelines to improve readability, maintainability, and safety.

3.	 Verification of software requirements. Using static analysis to verify that the
software code correctly implements the software requirements and that there
are no discrepancies between the requirements and the code.

4.	 Defect identification and removal. Identifying and removing defects such as coding
errors, potential runtime issues, and other flaws through static analysis.

5.	 Traceability. Ensuring that the static analysis results are appropriately documented
and traced back to the specific requirements, source code, and any corrective
actions taken.

6.	 Tool qualification. If static analysis tools are used for safety-critical code, ensure
that these tools are qualified appropriately according to DO-330 Software Tool
Qualification Considerations and that their usage is documented.

Most of these verification activities are supported through the automation of static
analysis using modern advanced tools like Parasoft C/C++test. In addition, Parasoft
provides code metrics on maintainability, clarity, testability, portability, robustness,
reusability, complexity, and support for team code peer reviews. Dynamic analysis,
unit testing, and other runtime error detection is also provided.

Early Defect Detection
Early defect detection with static analysis tools can significantly improve compliance
with DO-178C by addressing potential coding issues and vulnerabilities in the software
development process. Static analysis analyzes source code without executing it,
identifying defects and potential issues based on predefined rules.

Static analysis tools can detect coding errors and bugs in the source code early in the
development process. By identifying and fixing these errors early on, the development
team can prevent such defects from propagating into later stages of development,
where they might be more difficult and costly to fix.

Safety-critical software used in airborne systems must be protected from potential
security vulnerabilities. Static analysis tools can identify potential security weaknesses
in the code, such as buffer overflows, input validation issues, and other security-related
defects. Addressing these vulnerabilities early in the development process enhances
the security posture of the software.

DO-178C Software Compliance for Aerospace & Defense

33

DO-178C requires comprehensive verification activities throughout the software
development life cycle (Chapter 6). Static analysis, being a form of static verification,
allows for early verification of the source code. By finding and addressing defects early
on, the software can progress through subsequent verification stages with greater
confidence, saving time and effort in the long run.

By adopting static analysis early in the software development process, in conjunction
with other verification and validation methods, teams can proactively address defects
and security vulnerabilities. This leads to a more streamlined certification process and
a higher likelihood of producing reliable and safe software for use in airborne systems.

Some of the common types of defects that Parasoft C++test static analysis can detect
include:

	» Null pointer dereference

	» Memory leaks

	» Buffer overflows and underflows

	» Uninitialized variables

	» Dead code

	» Resource management issues

	» Concurrency issues

	» Security vulnerabilities

	» Performance issues

	» Complexity metrics

These are just some examples of the types of defects that Parasoft C++test static
analysis can detect. Additionally, static analysis tools like Parasoft C++test can be
customized to include or exclude certain types of checks based on the project's
specific requirements and coding standards.

Figure 3-7: Parasoft
C/C++test and DTP
dashboardParasoft

DO-178C Software Compliance for Aerospace & Defense

34

Coding Standards
Regarding coding standards, DO-178C does not prescribe a specific set of coding
standards that must be followed. Instead, it provides guidelines and objectives for
establishing and adhering to coding standards appropriate for the development of
safety-critical airborne software.

The relevant sections in DO-178C that pertain to coding standards are primarily found
in Chapter 6 Software Verification Process and Chapter 11 Software Lifecycle Data.
Here's what DO-178C typically requires regarding coding standards.

	» Coding Standard Definition, Section 11.8. Define coding standards for the project
that should cover rules and guidelines related to programming practices, naming
conventions, code layout, control structures, data structures, and other aspects
of software coding.

	» Code Review, Section 6.3.4 d. The emphasis is on the importance of conducting
code reviews to ensure compliance with the coding standards. Code reviews
involve thorough inspection of code and related artifacts. The process can be
semi-automated with static analysis tools.

	» Traceability to Coding Standards, Section 6.3.4 e. There should be traceability
between the software requirements and the coding standards. The code should be
written in accordance with the established coding standards and this relationship
should be documented.

DO-178C recognizes that different
projects may have different coding
standards (for example, MISRA
C/C++, CERT C/C++, CWE, OWASP,
DISA ASD STIG, and so on) depending
on factors such as the complexity of the
software, the criticality of the system,
and the development environment.
Therefore, the specific coding standards
and rules are determined by the
development team while still satisfying
the guidelines outlined above.

A vital part of the certification evidence required for DO-178C compliance is the
documentation collected during these reviews and the verification process. It’s
important that the coding standard support the inspection and the documentation
processes required.

DO-178C Software Compliance for Aerospace & Defense

35

MISRA C:2023

MISRA C is a set of coding guidelines for the C programming language, versions
C89/C90, C99, C11, and C18. The focus of the standard is increasing safety of software
by pre-emptively preventing programmers from making coding mistakes that can
lead to runtime failures (and possible safety concerns) by avoiding known problem
constructs in the C language.

MISRA C can help satisfy the requirements of DO-178C, which is the software
standard used for the certification of airborne systems. Here's how MISRA C can
fulfill the requirements.

1.	 Checks all the boxes of the coding standard requirements listed in the previous
section.

2.	 Provides a well-defined and widely recognized coding standard that can be adopted
by the development team to create consistent and reliable code.

3.	 Involves regular code reviews to ensure compliance with the standard.

The adoption of MISRA C helps minimize the potential for coding errors and
ambiguities, leading to improved safety, security, and reliability of the software.
The coding standard's focus on robustness and code correctness aligns well with
the objectives of DO-178C to ensure the development of high-integrity software
for airborne systems.

It's important to note that MISRA C is not a guarantee of certification compliance
by itself. It's one of the tools and processes that contribute to the overall software
development and verification activities required for DO-178C certification.
Additionally, each project may have specific requirements and constraints, so the
MISRA C standard may need to be tailored or supplemented with project-specific
coding rules and practices.

Over the years, many developers of embedded systems were—and still are—
complaining that MISRA C was too stringent of a standard and that the cost of writing
fully compliant code was difficult to justify. Realistically, given that MISRA C is applied
in safety-critical software, the value of applying the standard to a project depends on
factors such as:

	» Risk of a system malfunction because
of a software failure

	» Cost of a system failure to the business

	» Development tools and target platform

	» Level of developer’s expertise

Programmers must find a practical middle ground that satisfies the spirit of the standard
and still claim MISRA compliance without wasting effort on non value added activities.

DO-178C Software Compliance for Aerospace & Defense

36

Proof of MISRA Compliance

A key problem that developers of safety-critical software encounter is how to
demonstrate and prove compliance at the end of the project. There's a tendency to
add more information into the reports than is required. It can become a contentious
issue resulting in wasted time and effort if the evaluation criteria are based on
subjective opinions from the various stakeholders.

A recommended approach to improving the evaluation of compliance readiness is to
use existing templates for both the final compliance and tool qualification report. If the
information is not required by the standard, avoid adding it. Combining extra information
is not only a waste of time, but also introduces a risk of delaying an audit process. Having
the documentation auto generated as Parasoft does, is the ultimate solution.

The MISRA Compliance: 2020 document is also helping organizations to use a common
language articulating the compliance requirements by defining the following artifacts:

	» Guidelines Compliance Summary

	» Guideline Enforcement Plan

	» Deviations Report

	» Guideline Re-categorization Plan

The following Parasoft’s screenshots show auto-generated reports with links to other
records and/or expansion of information on the page.

Figure 3-8:
The Guidelines
Compliance Summary
is the primary record
of overall project
compliance.

DO-178C Software Compliance for Aerospace & Defense

37

Figure 3-9: The Guideline Enforcement Plan demonstrates how each MISRA guideline is verified.

Figure 3-10: The Deviations Report documents all of the approved deviation permits.

DO-178C Software Compliance for Aerospace & Defense

38

Figure 3-11: The Guideline Re-categorization Plan communicates how the guidelines are to be applied as part of the stakeholder/supplier relationship.

SEI/CERT

The Software Engineering Institute (SEI) Computer Emergency Response Team (CERT)
has a set of guidelines to help developers create safer, more secure, and more reliable
software. Started in 2006 at a meeting of the C Standard Committee, the first CERT C
standard was published in 2008 and is constantly developing and evolving.

There's a book version published in 2016, but it doesn't include the latest updates.
This standard doesn’t have specific frozen releases like CWE Top 25 and OWASP Top
10. The standard arose from a large community of over 3,000 people with a focus on
engineering and prevention. So the CERT secure coding standards focus on prevention
of the root causes of security vulnerabilities rather than treating or managing the
symptoms by searching for vulnerabilities.

The CERT coding guidelines are available for C, C++, Java, Perl, and Android. They fall
into two main categories.

1.	 Rules

2.	 Recommendations

Rules are guidelines that are detectable by static analysis tools and require strict
enforcement, while recommendations are guidelines that have a lower impact and are
sometimes difficult to analyze automatically.

DO-178C Software Compliance for Aerospace & Defense

39

Figure 3-12: SEI CERT
vulnerability priority
and cost diagram

CERT includes a risk assessment system that combines likelihood of occurrence,
severity, and relative difficulty of mitigation. This helps developers prioritize which
guideline violations are the most important to investigate. The inclusion of mitigation
effort to the guideline priority is an important addition to the CERT secure coding
standards, which many other standards lack.

The cost factor allows for the creation of the CERT bullseye diagram in which the center
bullseye is the highest severity guidelines that are more difficult to fix. The benefit of
this prioritization is focusing on the most critical violations that provide the biggest
bang for the buck in security improvement while helping the development team filter
out less important warnings.

SEI CERT C/C++ Conformance

According to the SEI CERT C documentation, conformance "requires that the code not
contain any violations of the rules specified in this standard. If an exceptional condition
is claimed, the exception must correspond to a predefined exceptional condition, and
the application of this exception must be documented in the source code.”

Although conformance is less specific than standards such as MISRA, the principles
remain similar. Rules should be followed, and deviations should only occur rarely and
be well documented. Recommendations should be used when possible and those that
aren’t needed should be documented.

Violations that persist in the source code need to be documented. However, no
deviation is acceptable for performance or usability and the onus is on the developer
to demonstrate that the deviation will not lead to a vulnerability.

DO-178C Software Compliance for Aerospace & Defense

40

https://wiki.sei.cmu.edu/confluence/display/c/Conformance+Testing

Figure 3-13:
Parasoft DTP SEI
CERT C Compliance
dashboard

Parasoft C/C++test provides comprehensive CERT compliance dashboard and reports.
Individual compliance reports are available on demand based on the latest build of the
software or any previous build.

These reports can be sorted and navigated to investigate violations in more
detail. A conformance test plan is available to correlate the CERT guideline with
the corresponding Parasoft static analysis checker, which is an important tool
if conformance documentation is needed for audit purposes. In addition, all the
interesting reports, as specified by the team, are in a single PDF available for
download by auditors.

Figure 3-14:
Parasoft's CERT
Guidelines Compliance
Report summary

DO-178C Software Compliance for Aerospace & Defense

41

Support for CERT C/C++ in Parasoft C/C++test

Parasoft provides comprehensive support for CERT C and CERT C++ secure coding
standards with complete coverage of all the CERT C/C++ guidelines including rules and
recommendations that are detectable by static analysis. Checker names, dashboards,
and reports use the CERT naming convention to make conformance and auditing easier.
A CERT conformance dashboard, which includes the CERT risk score, helps developers
focus on the most critical violations.

CWE

CWE (Common Weakness Enumeration) is a list of discovered software weaknesses
based on the analysis of reported vulnerabilities (CVEs). The collection of CVEs and
CWEs is a U.S. government-funded initiative developed by the software community and

managed by the MITRE organization.
In its entirety, the CWE list contains
over 900 different software and
hardware quality and security issues.

These 900+ items are organized in
more usable lists such as the well-
known CWE Top 25. The Top 25 lists
the most common and dangerous
security weaknesses, which are all
exploits that have a high chance
of occurring and the impact of
exploiting the weakness is large. The
software weaknesses documented by
a CWE are the software implicated
in a set of discovered vulnerabilities
(documented as CVEs) when analysis

was performed to discover the root cause. CVEs are specific observed vulnerabilities in
software products that have an exact definition of how to exploit them.

The current version of CWE Top 25 is from 2023. An updated Top 25 is currently in
process with improved linking to CVEs and the NVD. Ranking considers realworld
information so that it truly represents the Top 25 application security issues today.
As soon as it is released, Parasoft will have updated support for the latest version.

DO-178C Software Compliance for Aerospace & Defense

42

Rank ID Name Rank Change
vs. 2022

1 CWE-787 Out-of-bounds Write 0
2 CWE-79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
0

3 CWE-89 Improper Neutralization of Special Elements used in
an SQL Command ('SQL Injection')

0

4 CWE-416 Use After Free 3
5 CWE-78 Improper Neutralization of Special Elements used in

an OS Command ('OS Command Injection')
1

6 CWE-20 Improper Input Validation -2
7 CWE-125 Out-of-bounds Read -2
8 CWE-22 Improper Limitation of a Pathname to a Restricted

Directory ('Path Traversal')
0

9 CWE-352 Cross-Site Request Forgery (CSRF) 0
10 CWE-434 Unrestricted Upload of File with Dangerous Type 0
11 CWE-862 Missing Authorization 5
12 CWE-476 NULL Pointer Dereference -1
13 CWE-287 Improper Authentication 1
14 CWE-190 Integer Overflow or Wraparound -1
15 CWE-502 Deserialization of Untrusted Data -3
16 CWE-77 Improper Neutralization of Special Elements used in

a Command ('Command Injection')
1

17 CWE-119 Improper Restriction of Operations within the
Bounds of a Memory Buffer

2

18 CWE-798 Use of Hard-coded Credentials -3
19 CWE-918 Server-Side Request Forgery (SSRF) 2
20 CWE-306 Missing Authentication for Critical Function -2
21 CWE-362 Concurrent Execution using Shared Resource with

Improper Synchronization ('Race Condition')
1

22 CWE-269 Improper Privilege Management 7
23 CWE-94 Improper Control of Generation of Code ('Code

Injection')
2

24 CWE-863 Incorrect Authorization 4
25 CWE-276 Incorrect Default Permissions -5

Figure 3-15: The 2023 CWE Top 25

DO-178C Software Compliance for Aerospace & Defense

43

For software teams that have a good handle on the Top 25, there’s another grouping
of the next most common and impactful vulnerabilities called the CWE CUSP. Another
way to think of these are the top 25 honorable mentions.

The CWE uses a risk scoring method to rank the Top 25 and on the CUSP. This
score takes into consideration the technical impact of a software weakness (how
dangerous an exploit of the weakness is in the real world) as measured by the
CWSS (Common Weakness Scoring System). Examples of technical impacts from
vulnerabilities may include:

	» Denial of service (DoS)

	» Distributed denial of service (DDoS)

	» Read or write access to protected information

	» Unauthorized access and more

The details of these methods aren’t too important, but the sorted list is useful in
understanding which vulnerabilities to be concerned about the most. As an example,
it’s possible that your application is purely internal and DoS issues aren’t critical
for you. Being able to prioritize on the most important weaknesses for your own
application can help overcome overwhelm with static analysis violations.

CWE Top 25 and On the Cusp Compliance

Introducing the coding standard compliance process into the team development
workflow isn’t an easy task. As such, it's important to select a tool that will help
in achieving compliance without imposing too much overhead and without the
requirement for additional manual procedures. The following points are important
decision-making factors when selecting the solution for static analysis.

The CWE Top 25 and its lesser known sibling, On the Cusp, are not coding standards
per se but a list of weaknesses to avoid to improve security. To be CWE compliant, a
project should be able to prove that it has made reasonable efforts to detect and avoid
these common weaknesses.

Parasoft’s advanced static analysis tools for C, C++, Java, and .NET are officially
compatible with CWE, providing automated detection of both Top 25 and On the
Cusp weaknesses and many more. CWE-centric dashboards give users quick access to
standard violations and current project status. A built-in CWE Top 25 configuration is
available for C, C++, .NET, and Java with full coverage of all the 25 common weaknesses.

44

The Parasoft tools include information from the Common Weakness Risk Analysis
Framework (CWRAF), such as technical impact, so you can benefit from the same
type of prioritization based on risk and technical impact and weaknesses found in
your own code.

Parasoft also supports detailed compliance reporting to streamline audit processes.
The web dashboards provide the link to compliance reports for a complete picture of
where a project stands. In addition, the CWE Weakness Detection Plan maps the CWE
entry against the checkers that are used to detect the weakness. This helps illustrate
how compliance was achieved to an auditor, and the audit reports are available to
download as PDFs for easy reporting.

Figure 3-16:
Parasoft DTP
CWE Compliance
dashboard

Figure 3-17:
Parasoft's CWE
Guidelines Compliance
Report summary

DO-178C Software Compliance for Aerospace & Defense

45

Unit Testing
Software verification is inherently part of safety-critical software development.
Testing, by way of execution, is a key way to demonstrate the implementation of
requirements and delivery of quality software. Unit testing is the verification of low-
level requirements. It ensures that each software unit does what it’s required to do
within its expected quality of service requirements—safety, security, and reliability.

Safety and security requirements instruct that software units don’t behave in
unforeseen ways where the system is not susceptible to hijacking, data manipulation,
theft, or corruption.

Figure 4-1: The V-model
development process
showing the relationship
between each phase
and the verification and
validation inferred at
each stage of testing.

In terms of the classic V-model process of development, unit test execution is a
verification practice to ensure the module is designed correctly. DO-178C does not
specifically mandate unit testing by name, but rather uses the terms high- and low-level
requirements-based testing.

Validates
Requirements

System
Design

Architecture
Design

Module
Design

Unit
Testing

Integration
Testing

System
Testing

Acceptance
Testing

Coding

Verifies

Verifies

Verifies

DO-178C Software Compliance for Aerospace & Defense

46

Low-level testing is commonly understood to be unit testing. In particular, the
requirements for this type of requirements-based testing include the following.

	» Software Testing, Section 6.4. Outlines the software validation process, which
includes various testing activities such as software requirements-based testing,
low-level requirements testing, and high-level requirements-based testing. Unit
testing is typically considered a part of low-level requirements testing, Section
6.4.3 c, where individual software units like functions, procedures, or methods
are tested in isolation from the rest of the system.

DO-178C lists the following as typical errors that unit testing reveals.

	» Failure of an algorithm to satisfy a software requirement

	» Incorrect loop operations

	» Incorrect logic decisions

	» Failure to process correctly legitimate combinations of input conditions

	» Incorrect responses to missing or corrupted input data

	» Incorrect handling of exceptions, such as arithmetic faults or violations of
array limits

	» Incorrect computation sequence

	» Inadequate algorithm precision, accuracy, or performance

	» Software Verification and Case and Procedures, Section 11.13. Details the
requirements for verification cases and procedures, which include the test cases
used for various testing activities, including unit testing.

	» Software Verification Results, Section 11.14. Covers the documentation and
recording of verification results, which include the results of unit testing activities.

DO-178C does not prescribe specific testing methodologies or tools but does
emphasize the need for thorough testing to ensure the safety, security, and reliability
of airborne software. Tests must be performed at all levels of the system along with
is traceability between requirements, design, source code, and tests. In addition, test
plans, test cases and results must be documented for certification.

DO-178C Software Compliance for Aerospace & Defense

47

Unit Test Methods
Requirement-Based Tests

These tests directly test functionality and quality of service as specified in each
requirement. Test automation tools need to support bidirectional traceability of
requirements to their tests and the requirements testing coverage reports to
show compliance.

High-level requirements are derived from top-level system requirements. They
decompose a system requirement into various high-level functional and nonfunctional
requirements. This phase of the requirements decomposition helps in the architectural
design of the system under development.

High-level requirements clarify and help define expected behavior as well as safety
tolerances, security expectations, reliability, performance, portability, availability,

scalability, and more. Each high-level requirement
links up to the system requirement that it satisfies.
In addition, high-level test cases are created
and linked to each high-level requirement for
the purpose of its verification and validation.
This software requirements analysis process
continues as each high-level requirement is further
decomposed into low-level requirements.

Low-level requirements are software requirements
derived from high-level requirements. They further
decompose and refine the specification of the
software's behavior and quality of service.

These requirements drill down to another level of abstraction. They map to individual
software units and are written in a way that facilitates software detail design and
implementation. Traceability is established from each low-level requirement up to its
high-level requirement and down to the low-level tests or unit test cases that verify
and validate it.

Unit testing becomes about isolating the function, method, or procedure. It’s done
by stubbing and mocking out dependencies and forcing specific paths of execution.
Stubs take the place of the code in the unit that's dependent on code outside of the
unit. They also provide the developer or tester with the ability to manipulate the
response or result so that the unit can be exercised in various ways and for various
purposes, for example, to ensure that the unit performs reliably, is safe, and is also
free from security vulnerabilities.

DO-178C Software Compliance for Aerospace & Defense

48

Interface Tests

Interface tests ensure programming interfaces behave and perform as specified. Test
tools need to create function stubs and data sources to emulate behavior of external
components for automatic unit test execution.

Fault Injection Tests

Fault injection tests use unexpected inputs and introduce failures in the execution of
code to examine failure handling or lack thereof. Test automation tools must support
injection of fault conditions using function stubs and automatic unit test generation
using a diverse set of preconditions, such as min, mid, max, and heuristic value testing.

Resource Usage Evaluation

These tests evaluate the amount of memory, file space, CPU execution, or other target
hardware resources used by the application.

Test Case Drivers
Analysis of Requirements

Clearly, every requirement drives, at minimum, a single unit test case. Although test
automation tools don’t generate tests directly from requirements, they must support
two-way traceability from requirements to code and requirements to tests, and
maintain requirements, tests, and code coverage information.

Generation & Analysis of Equivalence Classes

Test cases must ensure that units behave in the same manner for a range of inputs,
not just cherry-picked inputs for each unit. Test automation tools must support test
case generation using data sources to efficiently use a wide range of input values.
Parasoft C/C++test uses factory functions to prepare sets of input parameter values for
automated unit test generation.

Analysis of Boundary Values

Automatically generated test cases, like heuristic values and boundary values, employ
data sources to use a wide range of input values in tests.

Error Guessing

The error guessing method uses the function stubs mechanism to inject fault conditions
into tested code flow analysis results and can be used to write additional tests.

DO-178C Software Compliance for Aerospace & Defense

49

Automated Test Execution & Test Case Generation
Test automation provides large benefits to safety-critical embedded device software.
Moving away from test suites that require a lot of manual intervention means that
testing can be done quicker, easier, and more often.

Offloading this manual testing effort frees up time for better test coverage and other
safety and quality objectives. An important requirement for automated test suite
execution is being able to run these tests on both host and target environments.

Target-Based Testing

Automating testing of embedded software is more challenging due to the complexity
of initiating and observing tests on embedded targets, not to mention the limited
access to target hardware that software teams have.

DO-178C requires testing software in a representative environment that reflects the
actual deployment conditions. This includes testing on the target hardware or using
a software environment that closely resembles the final target environment. This
approach is required to ensure that the software operates correctly and reliably in
the actual aircraft or airborne system.

Software test automation is essential to make embedded testing workable on a
continuous basis from host development system to target system. Testing embedded
software is particularly time consuming. Automating the regression test suite provides
considerable time and cost savings. In addition, C/C++test CT and C/C++test perform
code coverage data collection from the target system, which is essential for validation
and standards compliance.

Traceability between test cases, test results, source code, and requirements must be
recorded and maintained. For those reasons, data collection is critical in test execution.

Parasoft C/C++test is offered with its test harness optimized to take minimal additional
overhead for the binary footprint and provides it in the form of source code, where it
can be customized if platform-specific modifications are required.  

Figure 4-2:
A high-level view of
deploying, executing,
and observing tests
from host to target
in Parasoft C/C++
testing solutions.

DO-178C Software Compliance for Aerospace & Defense

50

One huge benefit that the Parasoft C/C++test solution offers is its dedicated
integrations with embedded IDEs and debuggers that make the process of executing
test cases smooth and automated. Supported IDE environments include:

	» VS Code

	» Eclipse

	» Green Hills Multi

	» Wind River Workbench

	» IAR EW

	» ARM MDK

	» ARM DS-5

	» TI CCS

	» Visual Studio

	» Many more

Automated Test Case Generation

Unit test automation tools universally support some sort of test framework, which
provides the harness infrastructure to execute units in isolation while satisfying
dependencies via stubs. Parasoft C/C++test is no exception. Part of its unit test
capability is the automated generation of test harnesses and the executable
components needed for host and target-based testing.

Test data generation and management is by far the biggest
challenge in unit testing. Test cases are particularly
important in safety-critical software development because
they must ensure functional requirements and test for
unpredictable behavior, security, and safety requirements.
All while satisfying test coverage criteria.

Parasoft C/C++test automatically generates test cases
like the popular CppUnit format. By default, C/C++test
generates one test suite per source/header file. It can also
be configured to generate one test suite per function or one
test suite per source file.

Safe stub definitions are automatically generated to replace
"dangerous" functions, which include system I/O routines
such as rmdir(), remove(), rename(), and so on. In addition,
stubs can be automatically generated for missing function
and variable definitions. User defined stubs can be added
as needed.

Parasoft C/C++
automated test case
generation, in this
case, one test suite
per function

DO-178C Software Compliance for Aerospace & Defense

51

Regression Testing
As part of most software development processes, regression testing is done after
changes are made to software. These tests determine if the new changes had an impact
on the existing operation of the software.

DO-178C doesn't explicitly mention regression testing, but it is a good engineering
practice and is widely employed in the aerospace industry to verify the stability and
correctness of the software throughout its development lifecycle. Requirements around
the software and hardware integration process imply the need to maintain up-to-date
verification and validation after any changes.

	» Requirements-based Hardware/Software Integration Testing, Section 6.4.3.
Integration testing is a level of testing in DO-178C that verifies the interactions
between different software units. When changes are made to software components
or units, regression testing is necessary to verify that the modifications have not
adversely affected the integrated system.

	» Integration Process, Section 5.4. Focuses on the integration of software
components and emphasizes that the integration process should be planned and
controlled. Integrating new or modified software units requires regression testing
to ensure that the system's overall behavior remains correct and that no unintended
side effects have been introduced.

	» Software Verification Results, Section 11.14. Covers the documentation and
recording of verification results, including the results of testing activities.
If regression testing is performed, the results should be documented to
demonstrate that the changes did not negatively impact the system.

Regression tests are necessary, but they only indicate that recent code changes have
not caused tests to fail. There's no assurance that these changes will work. In addition,
the nature of the changes that motivate the need to do regression testing can go
beyond the current application and include changes in hardware, operating system,
and operating environment.

DO-178C Software Compliance for Aerospace & Defense

52

Software Regression Testing in Airborne Systems
In safety-critical software development, validation is critical in proving correct
functionality, safety, and security. Tests are needed for two primary reasons.

1.	 Confirm any changes to the application to ensure functionality.

2.	 Verify that there aren't any unforeseen impacts on the rest of the system.

If a test case previously passed but now fails, a potential regression has been identified.
The failure could be caused by new functionality, in which the test case may need to be
updated so that it takes into consideration changes in input and output values.

Regression testing of embedded systems also includes the execution of the following
types of test cases:

	» Unit

	» Integration

	» System

	» Performance

	» Stress and more

In fact, all previously created test cases need to be executed to ensure that no
regressions exist and that a new dependable software version release is constructed.
This is critical because each new software system or subsystem release is built upon it.
If you don’t have a solid foundation the whole thing can collapse.

Parasoft C/C++test supports the creation of regression testing baselines as an
organized collection of tests and automatically verifies all outcomes. These tests
are run automatically on a regular basis to verify whether code modifications change
or break the functionality captured in the regression tests. If any changes are
introduced, these test cases will fail to alert the team to the problem. During
subsequent tests, C/C++test will report tasks if it detects changes to the behavior
captured in the initial test.

DO-178C Software Compliance for Aerospace & Defense

53

How to Decide What to Regression Test
The key challenge with regression testing is determining what parts of an application
to test. It is common to default to executing all regression tests when there’s doubt
on what impacts recent code changes have had—the all or nothing approach.

For large software projects, this becomes a huge undertaking and drags down the
productivity of the team. This inability to focus testing hinders much of the benefits
of iterative and continuous processes, potentially exacerbated in embedded software
where test targets are a limited resource.

A couple of tasks are required here.

	» Identify which tests need to be re-executed.

	» Focus the testing efforts (unit testing, automated functional testing, and manual
testing) on validating the features and related code that are impacted by the most
recent changes.

Developers and testers can get a clear
understanding of the changes in the codebase
between builds using the Process Intelligence
Engine (PIE) within Parasoft DTP (Development
Testing Platform) combined with Parasoft’s
proprietary coverage analysis engines:

	» C/C++test for C and C++

	» dotTEST for C#

	» Jtest for Java

With this combination, teams can improve
efficiency and achieve the promise of Agile.

This form of smart test execution is called test
impact analysis. It's sometimes referred to as
change-based testing.

DO-178C Software Compliance for Aerospace & Defense

54

Figure 5-1: An example
change-based testing
report from Parasoft
DTP showing areas of
the code that are and
are not tested.

Understand the Impact of Code Changes on Testing With Test
Impact Analysis
Test impact analysis uses data collected during test runs and changes in code between
builds to determine which files have changed and which specific tests touched those
files. Parasoft’s analysis engine can:

	» Analyze the delta between two builds.

	» Identify the subset of regression tests that need to be executed.

	» Understand the dependencies on the units modified to determine what ripple effect
the changes have made on other units.

Parasoft Jtest and dotTEST provide insight into the impact of software changes.
Each solution recommends where to add tests and where further regression testing
is needed.

DO-178C Software Compliance for Aerospace & Defense

55

Software Integration Testing
Integration testing follows unit testing with the goal of validating the architectural
design. It ensures that higher level functional capabilities in software components,
including subsystems and not units, behave and perform as expected. Testing software
integrations can be done bottom up and top down with a combination of approaches in
many software organizations.

Integration testing is a critical aspect of the software verification process in DO-178C.
The explicit requirements for integration testing can be found primarily in Section 5.4
Integration Process and Section 6.4 Software Testing.

Section 6.4.3 Requirements-Based Testing Methods in DO-178C requires hardware and
software requirements-based testing, which includes integration testing. Section 6.4.3
b is more specific and outlines requirements-based integration testing as a method that
concentrates on the “inter-relationships between the software requirements" and on
the "implementation of requirements by the software architecture.”

DO-178C lists the following typical errors revealed by integration testing.

	» Incorrect interrupt handling.

	» Failure to satisfy execution time requirements.

	» Incorrect software response to hardware transients or hardware failures, for
example, start-up sequencing, transient input loads, and input power transients.

	» Data bus and other resource contention problems, for example, memory mapping.

	» Inability of built-in test to detect failures.

	» Errors in hardware/software interfaces.

	» Incorrect behavior of control loops.

	» Incorrect control of memory management hardware or other hardware devices
under software control.

	» Stack overflow.

	» Incorrect operation of mechanism(s) used to confirm the correctness and
compatibility of field-loadable software.

	» Violations of software partitioning.

	» Incorrect initialization of variables and constants.

DO-178C Software Compliance for Aerospace & Defense

56

Figure 6-1: The V-model
development process
showing the relationship
between each phase
and the verification and
validation inferred at
each stage of testing.

	» Parameter passing errors.

	» Data corruption, especially global data.

	» Inadequate end-to-end numerical resolution.

	» Incorrect sequencing of events and operations.

Bottom-Up Integration
This approach begins by taking a unit test case and removing stubs and/or mocks to
incorporate additional software units to construct higher-level functionality that can
be tested. Functionality maps to or equates to a high-level requirement. Integration
test cases are used to verify and validate high-level requirements.

Top-Down Integration
In this testing, the highest-level software components or modules are tested first.
Progressively, testing of lower-level modules follows or functional capabilities map to
high-level requirements. This approach assumes significant subsystems are complete
enough to be tested as a whole.

The V-model is good for illustrating the relationship between the stages of
development and stages of validation. At each testing stage, more complete portions
of the software are validated against the phase that defines it.

For some, the V-model might imply a Waterfall development method. However, this
is not the case. DO-178C and previous versions of the standard do not specify a
development methodology. The V-model shows a required set of development phases.
Organizations determine how to address those phases. Teams can adopt a Waterfall,
Agile, Spiral, or any development methodology, and be compliant to the standard.

Validates
Requirements

System
Design

Architecture
Design

Module
Design

Unit
Testing

Integration
Testing

System
Testing

Acceptance
Testing

Coding

Verifies

Verifies

Verifies

DO-178C Software Compliance for Aerospace & Defense

57

While the act of executing tests and gathering their results is considered software
validation, it’s supported by a parallel verification process that involves the following
activities to make sure teams are building the process and the product correctly.

	» Reviews

	» Walkthroughs

	» Code analysis

	» Traceability

	» Test

	» Code coverage and more

The key role of verification is to ensure that the building of delivered artifacts from the
previous stage to specification is compliant with company and industry guidelines.

Integration & System Testing as Part of a Continuous Testing
Process
Performing some level of test automation is foundational for continuous testing. Many
organizations start by simply automating manual integration and system testing (top
down) or unit testing (bottom up).

To enable continuous testing, organizations need to focus on creating a scalable test
automation practice that builds on a foundation of unit tests that are isolated and faster
to execute. Once unit testing is fully automated, the next step is integration testing and
eventually system testing.

Continuous testing leverages automation and data derived from testing to provide
a realtime, objective assessment of the risks associated with a system under
development. Applied uniformly, it allows both business and technical managers
to make better tradeoff decisions between release scope, time, and quality.

Continuous testing is a powerful testing methodology that ensures continuous code
quality through the SDLC. It enforces compliance in static code analysis and is always
identifying safety and security defects during each developer's commit action by also
integrating unit, integration, and system testing in the loop.

DO-178C Software Compliance for Aerospace & Defense

58

Analysis & Reporting in Support of Integration & System
Testing
Parasoft test automation tools support the validation (actual execution testing
activities) in terms of test automation and continuous testing. These tools also support
the verification of these activities, which means supporting the process and standard
requirements. Key aspects of safety-critical software development are requirements
traceability and code coverage.

DO-178C considers traceability a key activity and artifact of the development process.
Sections 5.4 Software Development Process and 6.4 Software Testing require
bidirectional traceability between high-level and low-level requirements and the
implementation, verification, and validation of assets, which include:

	» Source code

	» Requirement documents

	» Test results

	» Development plans and more

Requirements analysis requires “All software requirements should be identified in such
a way as to make it possible to demonstrate traceability between the requirement and
software system testing.” Providing a requirements traceability matrix helps satisfy
this requirement.

Figure 6-2:
A continuous
testing cycle

The diagram below illustrates how different phases of testing are part of a continuous
process that relies on a feedback loop of test results and analysis.

DO-178C Software Compliance for Aerospace & Defense

59

Two-Way Traceability

Requirements in safety-critical software are the key driver for product design and
development. These requirements include functional safety, application requirements,
and nonfunctional requirements that fully define the product. This reliance on
documented requirements is a mixed blessing because poor requirements are one of
the critical causes of safety incidents in software. In other words, the implementation
wasn’t at fault, but poor or missing requirements were.

Automating Bidirectional Traceability

Maintaining traceability records on any sort of scale requires automation. Application
life cycle management tools include requirements management capabilities that are
mature and tend to be the hub for traceability.

Integrated software testing tools like Parasoft
complete the verification and validation of
requirements by providing an automated
bidirectional traceability to the executable test
case. This includes the pass or fail result and
traces down to the source code that implements
the requirement.

Parasoft integrates with market leading
requirements management tools or ALM systems
including:

	» IBM DOORS Next

	» PTC Codebeamer

	» Siemens Polarion

	» Atlassian Jira

	» Jama Connect and more

As shown in the image below, each of Parasoft’s test automation solutions
(C/C++test, C/C++test CT, Jtest, dotTEST, SOAtest, and Selenic) used within the
development life cycle supports the association of tests with work items defined in
these systems, such as requirements, defects, and test cases or test runs. The central
reporting and analytics dashboard, Parasoft DTP, manages traceability.

DO-178C Software Compliance for Aerospace & Defense

60

Parasoft DTP correlates the unique identifiers from the management system with:

	» Static analysis findings

	» Code coverage

	» Results from unit, integration, and functional tests

Results are displayed within Parasoft DTP’s traceability reports and sent back to the
requirements management system. They provide full bidirectional traceability and
reporting as part of the system’s traceability matrix.

Figure 6-3: An
example of a
DO-178C reporting
dashboard that
captures the project’s
testing status and
progress towards
completion.

Figure 6-4:
Codebeamer
traceability matrix,
which lists system
requirements from
high level to low level
along with test cases
and test results.

DO-178C Software Compliance for Aerospace & Defense

61

The traceability reporting in Parasoft DTP is highly customizable. The following image
shows a requirements traceability matrix template for requirements authored in
Polarion and traces to the test cases, static analysis findings, the source code files,
and the manual code reviews.

The bidirectional correlation between test results and work items provides the basis
of requirements traceability. Parasoft DTP adds test and code coverage analysis
to evaluate test completeness. Maintaining this bidirectional correlation between
requirements, tests, and the artifacts that implement them is an essential component of
traceability.

Code Coverage

Code coverage expresses the degree to which the application’s source code is exercised
by all testing practices, including unit, integration, and system testing—both automated
and manual.

Collecting coverage data throughout the life cycle enables more accurate quality and
coverage metrics, while exposing untested or under tested parts of the application.

As with traceability, code coverage is a key metric in airborne systems development.
DO-178C has specific requirements in Section 6.4.4 Test Coverage Analysis. These
requirements extend beyond code coverage and include the test coverage of all high-level
and low-level requirements, along with the test coverage of the entire software structure.

Figure 6-5:
Requirements
traceability matrix
template from
Parasoft DTP
integrated with
Siemens Polarion.

DO-178C Software Compliance for Aerospace & Defense

62

Section 6.4.4.2 Structural Code Analysis requires the test coverage of source code
beyond what may already be covered with requirements-based testing. This ensures
that all code is executed by tests before certification. This code coverage analysis
may reveal issues such as missing tests and dead or deactivated code. Section
6.4.4.3 Structural Coverage Analysis Resolution requires the remediation of these
discrepancies discovered during coverage analysis.

Application coverage can also help organizations focus testing efforts when time
constraints limit their ability to run the full suite of manual regression tests. Capturing
coverage data on the running system on its target hardware during integration and
system testing completes code coverage from unit testing.

Benefits of Aggregate Code Coverage

Captured coverage data is leveraged as part of the continuous integration (CI) process
as well as the tester’s workflow. Parasoft DTP performs advanced analytics on code
coverage from all tests, source code changes, static analysis results, and test results.
The results help identify untested and undertested code and other high risk areas in
the software.

Analyzing code, executing tests, tracking coverage, and reporting the data in a
dashboard or chart is a useful first step toward assessing risk, but teams must still
dedicate significant time and resources to reading the tea leaves and hope that
they’ve interpreted the data correctly.

Understanding the potential risks in the application requires advanced analytics
processes that merge and correlate the data. This provides greater visibility into the

true code coverage and helps
identify testing gaps and
overlapping tests. For example,
what's the true coverage for
the application under test when
your tools report different
coverage values for unit tests,
automated functional tests, and
manual tests?

The percentages cannot simply
be added together because the
tests overlap. This is a critical
step for understanding the
level of risk associated with the
application under development.

Figure 6-6:
Aggregated code
coverage from various
testing methods

DO-178C Software Compliance for Aerospace & Defense

63

Understanding the Impact of Code Changes on Testing With Test Impact
Analysis

Test impact analysis uses data collected during test runs and changes in code between
builds to determine which files have changed and which specific tests touched those
files. Parasoft’s analysis engine can analyze the delta between two builds and identify
the subset of regression tests that need to be executed. It also understands the
dependencies on the units modified to determine the ripple effect the changes have
made on other units.

Parasoft Jtest and dotTEST provide insight into the impact of software changes and
recommend where to add tests and where further regression testing is needed.

Accelerating Integration & System Testing With Test
Automation Tools
Parasoft’s software test automation tools accelerate verification by automating
the many tedious aspects of record keeping, documentation, reporting, analysis,
and reporting.

	» Two-way traceability for all artifacts ensures requirements have code and tests
to prove they are being fulfilled. Metrics, test results, and static analysis results
are traced to components and vice versa.

	» Code and test coverage verifies all requirements are implemented and makes sure
the implementation is tested as required.

	» Target and host-based test execution supports different validation techniques as
required.

	» Smart test execution manages change with a focus on tests for only code that
changed and any impacted dependents.

	» Reporting and analytics provides insight to make important decisions and keeps
track of progress. Decision making needs to be based on data collected from the
automated processes.

	» Automated documentation generation from analytics and test results support
process and standards compliance.

	» Standards compliance automation reduces the overhead and complexity by
automating the most repetitive and tedious processes. The tools can keep track of
the project history and relating results against requirements, software components,
tests, and recorded deviations.

DO-178C Software Compliance for Aerospace & Defense

64

Software System Testing
System testing tests the system as a whole. Once all the components are integrated,
the entire system is tested rigorously to verify that it meets the specified functional,
safety, security, and other nonfunctional requirements.

DO-178C specifies both software and hardware/software integration testing. In terms
of the software development aspect of airborne systems, this aligns with the concept
of “system testing” for the purposes here. There are many more aspects of system and
flight testing of airborne systems that aren’t covered here.

Section 6.4.3 a Requirements-Based Hardware/Software Integration Testing focuses on
the operation of the software on the target hardware environment. The aim is to validate
high-level requirements. It’s also important to point out that nonfunctional requirements

must be tested, and Section 6.4.2.1 requires normal
range tests to demonstrate normal operation of the
software alongside Section 6.4.2.2, which requires
robustness test cases. These are tests that use
abnormal data ranges that fall outside expected
values for inputs to demonstrate the system can
handle them without failure.

This type of testing in safety-critical software is
performed by a specialized testing team. System
testing falls within the scope of black box testing.
As such, it shouldn't require any knowledge of the
inner design of the code or logic.

An important distinction with system level testing is that the system is tested in an
environment that is close to the production environment where the application will be
deployed. At this stage, specific safety functions are verified, and system wide security
testing is run.

Service Level Testing of Airborne Systems
Airborne systems may have connectivity into larger systems that, as an example, collect
and analyze status and flight data. Any sort of communication bus or network must be
tested for data integrity, security, and confidentiality. System testing needs to include
these environments for complete validation.

Instead of viewing system quality in terms of meeting individual component
requirements, the scope is broadened to consider the quality of the services provided.
Testing at the service level ensures nonfunctional requirements are met. For example,

DO-178C Software Compliance for Aerospace & Defense

65

performance and reliability are difficult to assess at the device level or during software
unit testing. Service based testing can simulate the operational environment of a device
to provide realistic loads.

Security is a growing concern in airborne systems. Cyberattacks are possible in modern
systems and likely originate from the network itself by attacking the exposed APIs.
Service based testing can create simulated environments for robust security testing,
either through fuzzing (random and erroneous data inputs) or denial-of-service attacks.

Virtual Test Environment & Service Level Testing
A real test lab requires the closest physical manifestation of the environment in which
a system is planned to work. Even in the most sophisticated lab, it’s difficult to scale to
a realistic environment. A virtual lab fixes this problem.

Virtual labs evolve past the need for hard-to-find (or nonexistent) hardware
dependencies. They use sophisticated service virtualization with other key test
automation tools.

Service Virtualization

Service virtualization simulates all of the dependencies needed by the device under
test in order to perform full system testing. This includes all connections and protocols
used by the device with realistic responses to communication. For example, service
virtualization can simulate an enterprise server backend with which a system under test
communicates. Similarly, virtualization can control and simulate a dependent system,
like patient information, in a realistic manner.

Service & API Testing

This testing drives the system under test in a manner that ensures the services and
APIs it provides perform flawlessly. These tests can be manipulated via the automation
platform to run performance and security tests as needed.

Runtime Monitoring

This detects errors in realtime on the system under test and captures important trace
information.

Test Lab Management & Analytics 

Once virtualized, an entire lab setup can be replicated as needed, providing overarching
control of the virtual labs. Test runs can be automated and repeated. Analytics provide
the necessary summary of activities and outcomes.

DO-178C Software Compliance for Aerospace & Defense

66

Parasoft SOAtest & Virtualize for Service Level Testing of
Airborne Software
Developers can build integrations earlier, stabilize dependencies, and gain full control
of their test data with Parasoft Virtualize. Teams can move forward quickly without
waiting for access to dependent services that are either incomplete or unavailable.
Companies can enable partners to test against their applications with a dedicated
sandbox environment.

Parasoft SOAtest delivers fully integrated API and web service testing tools that
automate end-to-end functional API testing. Teams can streamline automated testing
with advanced functional test creation capabilities for applications with multiple
interfaces and protocols.

SOAtest and Virtualize are well suited for network-based, system-level testing of
various types, including the following:

	» Comprehensive protocol stack that supports HTTP, MQTT, RabbitMQ, JMS, XML,
JSON, REST, SOAP, and more.

	» Security and performance testing during integration and system testing with
integration into the existing CI/CD process.

	» End-to-end testing that combines API, web, mobile, and database interactions into
virtual test environments.

DO-178C Software Compliance for Aerospace & Defense

67

Structural Code Coverage
Collecting and analyzing code coverage metrics is an important aspect of safety-critical
software development. Code coverage measures the completion of test cases and
executed tests. It provides evidence that verification is complete, at least as specified
by the software design. The objectives for test coverage analysis include achieving the
following test coverage targets:

	» High-level requirements

	» Low-level requirements

	» Software structure to the appropriate coverage criteria

	» Software structure, both data coupling and control coupling

DO-178C Section 6.4.4.1 covers requirements test coverage analysis, which determines
how well functional testing has verified the implementation of the requirements. It is
expected that code coverage analysis is collected during this testing and the remaining

gaps in code coverage are closed with
further testing.

Section 6.4.4.2 requires analysis to
determine what remains of code coverage,
including interfaces between components.
Section 6.4.4.3 outlines the requirements
to resolve any of the gaps in coverage,
including the identification of extraneous,
dead, and deactivated code.

How this translates to types and
amounts of coverage is somewhat open
to interpretation. However, in airborne

software development, the onus is on the manufacturer to plan for code coverage,
adhere to the plan, document, and complete it.

Types of Code Coverage
Following are the different types of code coverage.

	» Statement coverage requires that each program statement be executed at least
once. Branch and MC/DC coverage encompass statement coverage.

	» Branch coverage ensures that each decision branch (if-then-else constructs)
is executed.

DO-178C Software Compliance for Aerospace & Defense

68

	» Modified condition/decision coverage (MC/DC) requires the most complete code
coverage to ensure test cases execute each decision branch and all the possible
combinations of inputs that affect the outcome of decision logic. For complex logic,
the number of test cases can explode, so the modified condition restrictions are used
to limit test cases to those that result in standalone logical expressions changing.

	» Executable/object code is required if the software level criteria is at A. This is due
to the fact that a compiler or linker generates additional assembly code that is not
directly traceable to source code statements. Therefore, object level coverage must
be performed.

Advanced unit test automation tools, such as Parasoft C/C++test, provide all these code
coverage metrics and more. C/C++test CT also automates this data collection on host
and target testing and accumulates test coverage history over time. This code coverage
history can span unit, integration, and system testing to ensure coverage is complete
and traceable at all levels of testing.

Coverage From System Testing
Obtaining code coverage through system testing is an excellent method to determine
if enough testing has been performed. The approach is to run all your system tests, and
then examine what parts of the code have not been exercised.

The unexecuted code implies that there may be need for new test cases to exercise the
untouched code where a defect may be lurking and helps answer the question: Have I
done enough testing?

When teams perform system testing, the average resulting metric is 60% coverage.
Much of the 40% unexecuted code is due to defensive code in your application.
Defensive code only executes upon the system triggering a fault or entering a
problematic state that may be difficult to produce. Conditions like memory leakage
or other types of faults caused by hardware failure may take weeks, months, or years
to encounter.

There’s also defensive code mandated by your coding guidelines where system test
cases can never get you to execute. For these reasons, system testing cannot take you
to 100% structural code coverage. You’ll need to employ other testing methods like
manual and/or unit testing to reach 100%.

DO-178C Software Compliance for Aerospace & Defense

69

Figure 8-1:
Unreachable return
0; Statement

Coverage From Unit Testing
As mentioned, unit testing can be used as a complementary approach to system testing
to obtain 100% coverage. Obtaining code coverage through unit testing is one of the
more popular methods used, but it doesn’t expose whether you have done enough
testing of the system because the focus is at the unit level (function/procedure).

The goal here is to create a set of unit test cases that exercise the entire unit at the
required coverage need (statement, branch, and MC/DC) in order to reach 100%
coverage for that single unit. This is repeated for every unit until the entire code
base is covered. However, to get the most out of unit testing, do not solely focus
on obtaining code coverage. That can generally be accomplished through sunny day
scenario test cases.

Truly exercise the unit through sunny and rainy-day scenarios to ensure robustness,
safety, security, and low-level requirements traceability. Let code coverage be a
biproduct of your test cases and fill in coverage where needed.

To help expedite code coverage through unit testing, configurable and automated test
case generation capabilities exist in Parasoft C/C++test. Test cases can be automatically
generated to test for use of null pointers, min-mid-max ranges, boundary values, and
much more. This automation can get you far. In minutes, you’ll obtain a substantial
amount of code coverage.

Additionally, C/C++test CT extends development workflows with code coverage by
integrating with proprietary unit testing frameworks and IDEs. Tightly integrate code
coverage line, statement, simple condition, decision, branch, function, call, and MC/DC
with proprietary unit testing frameworks like GoogleTest and CppUnit and IDEs like
VS Code.

However, as in system testing, obtaining 100%
code coverage is elusive due to the use of
defensive code or formal language semantics. At
the granular level of a unit, defensive code may
come in the form of a default statement in a switch.
If every possible case in a switch is captured,
this leaves the default statement unreachable. In
the example below, the return 0; will never get
executed because the while (1) is infinite.

DO-178C Software Compliance for Aerospace & Defense

70

How does one obtain 100% coverage for these special cases?

Answer: Deploying manual methods.

Follow these steps.

1.	 Label or notate the statement as covered by using a debugger.

2.	 Modify the call stack and execute the return 0; statement.

3.	 Visually witness the execution and, at minimum, document the file name, line of
code, and code statement that is now considered covered.

This coverage performed through manual/visual inspection and reports can be used to
supplement the coverage captured through unit testing. The addition of both coverage
reports can be used to prove 100% structural code coverage.

The goal of obtaining code coverage is an added means to help ensure code safety,
security, and reliability.

Code Instrumentation
Code coverage is more often than not identified by having the code instrumented.
Instrumented refers to having the user code adorned with additional code to ascertain
during execution if that statement, branch, or MC/CD has been executed.

Based on the target or system under test, the coverage data can be stored in the file
system, written to memory, or sent out through various communication channels, such
as the serial port, TCP/IP port, USB, and even JTAG.

Partial Instrumentation

Be aware that code instrumentation causes code bloat. The increase in code size may
impact the ability to load the code onto memory-constrained target hardware for testing.

The workaround is to instrument part of the code by following these steps:

1.	 Run your tests and capture the coverage.

2.	 Instrument the other part of the code.

3.	 Run your tests again.

4.	 Capture the coverage.

5.	 Merge the coverage from the previous test execution.

DO-178C Software Compliance for Aerospace & Defense

71

Coverage Advisor
Parasoft C/C++test resolves coverage gaps in test suites. Parasoft discovered how to
use advanced static code analysis (data and control flow analysis) to find values for the
input parameters required to execute specific lines of uncovered code.

In complex code, there are always those elusive code statements for which it is
exceedingly difficult to obtain coverage. It’s likely there are multiple input values with
various permutations and possible paths that make it mind twisting and time consuming
to decipher. But only one combination can get you the coverage you need. Parasoft
makes it easy to obtain coverage of those difficult to reach lines of code.

When you select the line of code you want to cover, the Coverage Advisor will tell you
what input values, global variables, and external calls you need to stimulate the code
and obtain coverage.

The figure below shows an analysis report providing the user with a solution. The
Preconditions field expresses:

	» The range and input values for mainSensorSignal and coSensorSignal

	» The expected outputs from the external calls

Upon creating the unit test case with these set parameter values and stubs for external
calls, you get coverage of the line selected, plus the additional lines expressed in the
Expected Coverage field.

Figure 8-2: Invoking
Coverage Advisor by
right-clicking on the
line of code.

DO-178C Software Compliance for Aerospace & Defense

72

Object Code Coverage
For the most stringent safety-critical applications, DO-178C Level A, Object Code
Coverage is required. Therefore, assembly level coverage must be performed. Imagine
the rigor and labor cost of having to perform this task. Fortunately, Parasoft ASMTools
provides an automated solution for obtaining object code coverage.

Figure 8-3: Two
test case solutions
provided by Coverage
Advisor.

Figure 8-4: Parasoft
ASMTool for
Assembly/Object
Code Coverage

DO-178C Software Compliance for Aerospace & Defense

73

Requirements & the Traceability Matrix
In airborne systems, requirements management is a mandatory part of the software
development process and the traceability of those requirements to implementation.
Subsequently, teams must ensure proof of correct implementation.

Requirements traceability is defined as “the ability to describe and follow the life of a
requirement in both a forwards and backwards direction (i.e., from its origins, through
its development and specification, to its subsequent deployment and use, and through
periods of on-going refinement and iteration in any of these phases).”

The objectives of traceability are to ensure the following:

	» Functional, performance, and safety-related requirements of the system that are
allocated to software were developed into the high-level requirements.

	» High-level requirements and derived requirements were developed into the low-
level requirements.

	» Low-level requirements were developed into source code.

	» Traceability between requirements and test cases, test procedures, and test results.

In the simplest sense, requirements traceability
keeps track of each requirement's decomposition
into software and the tests used to verify and
validate each requirement. It also tracks exactly
what you’re building when writing software.
This means making sure the software does what
it’s supposed to and that you’re only building
what's needed.

If there are architectural elements or source code
that can’t be traced to a requirement, then it’s a
risk and shouldn’t be there. The benefits also go
beyond providing proof of the implementation.
Tracking each requirement's analysis and
decomposition is commonly used for visibility

into development progress.

Requirements analysis requires that “All software requirements should be identified in
such a way as to make it possible to demonstrate traceability between the requirement
and software system testing.”

DO-178C Software Compliance for Aerospace & Defense

74

It’s important to realize that many requirements in safety-critical software are derived
from safety analysis and risk management. The system must perform its intended
functions, of course, but it must also mitigate risks to greatly reduce the possibility
of injury. Moreover, in order to document and prove that these safety functions are
implemented and tested fully and correctly, traceability is critical.

Tracing requirements isn’t simply linking a paragraph from a document to a section of
code or a test. Traceability must be maintained throughout the phases of development
as requirements manifest into design, architecture, and implementation. Consider the
typical V-model of software.

Figure 9-1: The classic
V-model diagram
shows how traceability
goes forward and
backward through
each phase of
development.

Each phase drives the subsequent phase. In turn, the work items in these phases
must satisfy the requirements from the previous phase. System design is driven from
requirements. System design satisfies the requirements and so on.

Requirements traceability management (RTM) proves that each phase is satisfying the
requirements of each subsequent phase. However, this is only half of the picture. None
of this traceability demonstrates that requirements are being met. That requires testing.

DO-178C Software Compliance for Aerospace & Defense

75

In the V-model, each testing phase verifies and validates (V&V) the corresponding
design/implementation phase. In the example, you see:

	» Acceptance testing validates requirements.

	» System testing verifies the system design.

	» Integration testing verifies architecture design.

	» Unit testing verifies module design and so on.

Software development on any realistic scale will have many requirements, complex
design and architecture, and possibly thousands of units and unit tests. Automation
of RTM in testing is necessary, especially for safety-critical software that requires
documentation of traceability for certifications and audits.

Requirements Traceability Matrix
A requirement traceability matrix is an artifact or document that illustrates the linking
of requirements with corresponding work items, like a unit test, module source code,
architecture design element, other requirements, and so on.

The matrix is often displayed as a table, which shows how each requirement is “checked
off” by a corresponding part of the product. Creation and maintenance of these
matrices are often automated with requirements management tools with the ability to
display them visually in many forms and even hard copy, if required.

Below is a requirements traceability matrix example from Intland Codebeamer. It shows
system level requirements decomposed to high-level and low-level requirements, and
the test cases that verify each.

Validates
Requirements

System
Design

Architecture
Design

Module
Design

Unit
Testing

Integration
Testing

System
Testing

Acceptance
Testing

Coding

Verifies

Verifies

Verifies

Figure 9-2: The
other important
part of requirements
traceability is
verification testing
to prove the
implementation of the
specification from the
corresponding design
phase.

DO-178C Software Compliance for Aerospace & Defense

76

Automating Bidirectional Traceability
Maintaining traceability records on any sort of scale requires automation. Application
life cycle management tools include requirements management capabilities that are
mature and tend to be the hub for traceability. Integrated software testing tools like
Parasoft complete the verification and validation of requirements by providing an
automated bidirectional traceability to the executable test case, which includes the
pass or fail result and traces down to the source code that implements the requirement.

Parasoft integrates with market-leading requirements management and Agile planning
systems including:

Figure 9-3:
Requirements
traceability matrix
example in Intland
Codebeamer

	» IBM DOORS Next

	» PTC Codebeamer

	» Siemens Polarion

	» Jama Connect

	» Atlassian Jira

	» CollabNet VersionOne

	» TeamForge

	» Azure DevOps Requirements

As shown in the image below, each of Parasoft’s test automation tools, C/C++test,
C/C++test CT, Jtest, dotTEST, SOAtest, and Selenic, support the association of tests
with work items defined in these systems, such as:

	» Requirements

	» Stories

	» Defects

	» Test case definitions

Traceability is managed through the central reporting and analytics dashboard,
Parasoft DTP.

DO-178C Software Compliance for Aerospace & Defense

77

Parasoft DTP correlates the unique identifiers from the management system with
the following:

	» Static analysis findings

	» Code coverage

	» Test results from unit, integration, and functional tests.

Results are displayed within Parasoft DTP’s traceability reports and sent back to the
requirements management system. They provide full bidirectional traceability and
reporting as part of the system’s traceability matrix.

The traceability reporting in Parasoft DTP is highly customizable. The following image
shows a requirements traceability matrix template with requirements authored in
Polarion that trace to the following:

Figure 9-4: Parasoft
provides bidirectional
traceability from work
items to test cases and
test results, displaying
traceability reports
with Parasoft DTP and
reporting results back
to the requirements
management system.

	» Test cases

	» Static analysis findings

	» Source code files

	» Manual code reviews

DO-178C Software Compliance for Aerospace & Defense

78

The bidirectional correlation between test results and work items provides the basis
of requirements traceability. Parasoft DTP adds test and code coverage analysis
to evaluate test completeness. Maintaining this bidirectional correlation between
requirements, tests, and the artifacts that implement them is an essential component
of traceability.

Bidirectional traceability is important so that requirement management tools and other
life cycle tools can correlate results and align them with requirements and associated
work items.

The complexity of modern software projects requires automation to scale
requirements traceability. Parasoft tools are built to integrate with best-of-breed
requirement management tools to aid traceability of test automation results and
complete the software test verification and validation of requirements.

Figure 9-5: Jama
Requirements matrix,
and integration with
Parasoft DTP

DO-178C Software Compliance for Aerospace & Defense

79

A Unified, Fully Integrated Testing
Solution for C/C++ Software
Development
Tool Qualification for Safety-Critical Airborne
Systems
Safety-critical software development standards recommend that manufacturers prove
that the tools they're using to develop software don’t introduce issues and do provide
correct, predictable results.

The process of providing such evidence is known as tool qualification. While it’s a
necessary process, tool qualification is often a tedious and time-consuming activity for
which many organizations fail to plan. To make this painless, select tools are certified
and have a history of being used in the development of safety-critical applications.

In the case of airborne systems software development, DO-330, Software Tool
Qualification Considerations, provides guidance on tool qualification. The purpose
is to provide a framework for a tool qualification life cycle that includes planning,
verification, quality assurance, and documentation. There are different levels of tool
qualification from 1 to 5, with 5 being the least rigorous. The level is based on the
possible impact of the tool on system safety.

Here are some of the key steps involved in tool qualification, according to DO-330.

	» Plan for tool qualification. A comprehensive tool qualification plan (TQP) is required.
In this plan, define the scope of the qualification effort, identify the tools to be
qualified, outline the qualification activities, and specify the qualification objectives.

	» Tool classification. Software tools are classified based on their impact on system
safety primarily but also the potential impact on the development and verification
processes. Tools are classified into one of five Tool Qualification Levels (TQL):
TQL 1, TQL 2, TQL 3, TQL 4, TQL 5. TQL 1 represents the highest impact and
TQL 5 the lowest.

	» Tool assessment. Conduct a thorough assessment of each tool's development
process, documentation, and characteristics to determine its qualification
requirements. This includes reviewing the tool's design, verification, validation,
and maintenance procedures. Obviously, this requires cooperation if tools are
purchased from third parties.

DO-178C Software Compliance for Aerospace & Defense

80

	» Tool qualification assurance levels (AL). Assign an Assurance Level that corresponds
to DO-278A assurance levels to each tool based on the TQL and the level of
confidence in the tool's development process. ALs range from AL 1 (highest
assurance) to AL 5 (lowest assurance).

	» Tool verification and validation. Perform the necessary verification and validation
activities for each tool, demonstrating correct operation and accurate results.

	» Tool life cycle maintenance. Establish a process for the ongoing maintenance and
monitoring of each tool. This includes periodic reviews, updates, and requalification
as needed when changes occur to the tool or its environment.

	» Qualification records. Maintain records of all tool qualification activities, including
the assessment, verification, validation, and results. These records are essential for
audit purposes and to demonstrate compliance with DO-330.

	» Final qualification report. Prepare a final qualification report for each tool,
summarizing the entire qualification process, the results of assessments and
verification and validation activities, and the compliance status with DO-330
requirements.

The end deliverable is proof in the form of documentation. The qualification process
outlined in DO-330 is complex and time consuming. Parasoft’s Qualification Kits for
C/C++test includes a convenient tool wizard that brings automation into the picture
and reduces the time and effort required for tool qualification.

Precertified Tools
Tool qualification needs to start with tool selection to ensure
that you're using a development tool that's certified by an
organization like TÜV SÜD. This will significantly reduce the
effort when it comes to tool qualification. 

Parasoft C/C++test, C/C++test CT, and DTP are certified
by TÜV SÜD for functional safety according to IEC, ISO,
and other functional safety industry standards for both
host based and embedded target applications. Though
the certificate is not enough for RTCA DO-178C/DO-330,
it demonstrates a historical commitment by Parasoft in
providing quality products.

To satisfy DO-330 tool qualification requirements, C/C++
software development paves the way for a streamlined
qualification of static analysis, unit testing, and coverage
requirements for the safety-critical standards by offering a
tool qualification kit that automates the tool qualification
process for any development host and/or target ecosystem.

Figure 10-1:
Parasoft CIC++test
and C/C++test CT
TÜV SÜD certificate

DO-178C Software Compliance for Aerospace & Defense

81

https://www.parasoft.com/solutions/qualification-kits
https://www.parasoft.com/solutions/qualification-kits
https://www.parasoft.com/products/parasoft-c-ctest/
https://www.parasoft.com/products/parasoft-c-ctest/
https://www.parasoft.com/products/parasoft-dtp/

Automating Tool Qualification Testing
Traditionally, tool qualification has meant significant amounts of manual labor, testing,
and documenting to satisfy a certification audit. But this documentation-heavy process
requires manual interpretation and completion. As a result, it's time consuming and
adds to an organization's already heavy testing schedule and budget.

Parasoft leverages its own software test automation tool qualification with
Qualification Kits, which include a documented workflow to dramatically reduce the
amount of effort required.

Benefits of Using the Qualification
Kits

	» Automatically reduce the scope of
qualification to only the parts of the
tool in use.

	» Automate tests required for
qualification as much as possible.

	» Manage any manual tests as eloquently
as possible and integrate results
alongside automated tests.

	» Automatically generate audit-ready
documentation that reports on
exactly what’s being qualified—not
more, not less.

Qualify Only the Tools Used
There should be no need to do any extra work for qualifying capabilities not used
during development. Reducing the scope of testing, reporting, and documentation is
a key way to reduce the qualification workload.

For example, as part of the DO-178C/DO-330 tool qualification kit and process, users
can select Parasoft C/C++test for static analysis of C/C++ code to check its compliance
to the MISRA C:2023 standard. The tool then selects only the parts of the qualification
suite needed for this function.

DO-178C Software Compliance for Aerospace & Defense

82

Leverage Test Automation & Analytics
A unique advantage to qualifying test automation tools is that the tools can be used to
automate their own testing. Automating this as much as possible is key to making it as
painless as possible. Even manual tests, which are inevitable for any development tool,
are handled as efficiently as possible. Step by step instructions are provided and results
are entered and stored as part of the qualification record.

Figure 10-2: Parasoft
Qualification Kits
allow users to select
the options required
for their project. Upon
selection, only tests
and documentation
are used and provided
from this point
forward.

DO-178C Software Compliance for Aerospace & Defense

83

Managing Known Defects
Every development tool has known bugs and any vendor selling products for safety-
critical development must have these documented. There's more to dealing with
known defects than just documenting them.

Tool qualification requires proof that these defects are not affecting the results used
for verification and validation. For each known defect, the manufacturer must provide
a mitigation for each one and document it to the satisfaction of the certifying auditor.

It’s incumbent on the tool vendor to automate the handling of known defects as
much as possible. After all, the vendor is expecting customers to deal with third-party
software bugs as part of their workload!

Figure 10-3:
Leveraging centralized
data collection and
automating the
qualification process
greatly reduces
manual tracking of the
compliance progress.

Parasoft C/C++test collects and stores all test results from each build. Tests run as
they do for any type of project. These results are brought into the test status wizard in
the Parasoft Qualification Kits to provide a comprehensive overview of the results like
those shown below.

DO-178C Software Compliance for Aerospace & Defense

84

Automation of Tool Qualification Documentation
The end result of tool qualification is documentation and lots of it. Every test executed
with results, every known defect with mitigation, manual test results, and exceptions
are all recorded and reported. Qualification kits from other vendors can be just
documentation alone and, without automation, documenting compliance is tedious.

Instead, using the Qualification Kits for C/C++test, the critical documents are
generated automatically as part of the workflow.

	» Tool Classification Report determines the qualification needed and presents the
maximum safety level classification for C/C++test and C/C++test CT based on the
use cases selected by the user.

	» Tool Qualification Plan describes how C/C++test and CC++test CT will be qualified
for use in a safety relevant development project.

	» Tool Qualification Report demonstrates that C/C++test and C/C++test CT have has
been qualified according to the tool qualification plan.

	» Tool Safety Manual describes how C/C++test and C/C++test CT should be used
safely, for example, in compliance with safety standards like IEC 62304 in safety-
critical projects.

In each of these documents, only the documentation required for the tool featured
in use is generated because the scope of the qualification was narrowed down at
the beginning of the project. Teams greatly reduce the documentation burden with
automation and narrowing the qualification scope.

The Parasoft C/C++test Qualification Kits include a wizard to automate the recording
of mitigation for known defects as shown in the example below.

Figure 10-4: Known
defects are managed
directly in Parasoft
C/C++test.

DO-178C Software Compliance for Aerospace & Defense

85

Reporting & Analytics for Safety-Critical Airborne
Systems
Parasoft’s extensive reporting capabilities bring the results of Parasoft C/C++test and
C/C++test CT into context. Test results can quickly be accessed within the IDE or
exported into the web-based reporting system, DTP. 

In DTP, reports can be automatically generated as part of CI builds and printed for code
audits in safety-critical organizations. Results from across builds can be aggregated to
give the team a detailed view without requiring access to the code within their IDE.

In the reporting dashboard, Parasoft’s Process Intelligence Engine (PIE) helps managers
understand the quality of a project over time. It illustrates the impact of change after
each new code change. Integrating with the overall toolchain, PIE provides advanced
analytics that pinpoint areas of risk.

Developer’s View in the IDE
Parasoft C/C++test helps teams efficiently understand results from software testing by
reporting and analyzing results in multiple ways. Users can view the following directly
in the developer’s IDE:

	» Static analysis findings including warnings and coding standard violations

	» Unit testing details like passed/failed assertions, exceptions with stack traces,
info/debug messages

	» Runtime analysis failures with allocation stack traces

	» Code coverage details such as percentage values and code highlights like coverage
test case correlation

The Quality Tasks view in the IDE makes it easy for developers to sort and filter the
results, for example, by file, rule, or project. Developers can make annotations directly
in the source code editors to correlate issues with the source code. This provides
context and more details about reported issues and how to apply a fix.

Code coverage information is presented with visual green and red highlights displayed
in the code editor, together with percentage values for project, file, and function in a
dedicated Coverage view.

DO-178C Software Compliance for Aerospace & Defense

86

Analysis results for both IDE and command line workflows can also be exported to
standard HTML and PDF reports for local reporting. For safety-critical software
development, C/C++test provides an additional dedicated report format. It details
unit test case configuration and includes the log of results from test execution. Users
get a complete report of how the test case was constructed and what happened
during runtime.

Figure 11-1: Parasoft
C/C++test IDE unified
code coverage and
unit testing view

Team Web-Based Reporting
For team collaboration, Parasoft C/C++test and C/C++test CT publishes analysis results
to DTP, a centralized server. Developers can access test results from automated runs
and project managers can quickly assess the quality of the project. Reported results
are stored with a build identifier for full traceability between the results and the build.
Those results include details about the following:

	» Static analysis

	» Metric analysis

	» Unit testing

	» Code coverage

	» Source code

DO-178C Software Compliance for Aerospace & Defense

87

Test Impact Analysis
Each and every test performed, including manual, system level, and UI-based, is
recorded as a pass/fail result, including the coverage impact on the code base. Each
additional test is overlaid on this existing information, creating a complete picture of
test success and coverage.

As code is changed, the impact is clearly visible on the underlying record, highlighting
tests that now fail or code that is now untested. Raising this information in various
degrees of detail allows developers and testers to quickly identify what needs to be
altered or fixed for the next test run.

When integrating into CI/CD workflows, Parasoft users benefit from a centralized and
flexible web-based interface for browsing results. The dynamic web-based reporting
dashboard includes:

	» Customizable reporting widgets

	» Source code navigation

	» Advanced filtering

	» Advanced analytics from the Process Intelligence Engine

Users can access historical data and trends, apply baselining and test impact analysis,
and integrate with external systems like those for test requirements traceability.

Figure 11-2:
Centralized web
based dashboard
for test impact
analysis and more

DO-178C Software Compliance for Aerospace & Defense

88

Risk-Based Assessment
In addition to change impact analysis, static analysis can be used to highlight areas of
the code that appear riskier than others. Risk can take a variety of forms including:

	» Highly complex code

	» Unusually high number of coding standard violations

	» High number of reported static analysis warnings

These are areas of code that may require additional test coverage and even refactoring.

Functional Safety Reporting
Parasoft C/C++test and C/C++test CT provide specific reporting capabilities suited to
functional safety development. Here are two report examples.

1.	 Unit Testing Execution Details Tests to Requirements Traceability

2.	 Test to Code Coverage Traceability

Code Coverage Metrics
There are various coverage metrics to consider. For safety-critical airborne systems,
coverage may be one of the following:

	» Statements

	» Branch

	» Modified condition/decision coverage (MC/DC)

	» Object/assembly code for the strictest requirements

Parasoft supports gathering all of these coverage metrics, including terms other
industries use like block, call, function, path, decision, and more.

DO-178C Software Compliance for Aerospace & Defense

89

Custom Analytics, Reports, & Dashboards
Parasoft DTP is highly customizable and supports a user-configured custom processor
for project-specific analysis, custom widgets, and dashboards.

Benefits of Centralized, Aggregated Data Analysis & Reporting

Development teams with one analysis and reporting system for compliance reap the
following benefits.

	» Efficiency, visibility, and ease of use

	» Reduced overhead

	» Clear insight into new and legacy code

Manage Compliance With Efficiency, Visibility, & Ease

Instead of just providing static analysis checkers with basic reporting and trends
visualization, Parasoft’s solution for coding standards compliance provides a complete
framework for building a stable and sustainable compliance process.

In addition to standard reporting, Parasoft provides a dedicated compliance reporting
module that gives users a dynamic view into the compliance process. Users can see
results grouped according to categorizations from the original coding standard, manage
the deviations process, and generate compliance documents required for code audits
and certification as defined by the MISRA Compliance:2020 specification.

Figure 11-3: Individual
code coverage metrics
available within the
reporting dashboard

DO-178C Software Compliance for Aerospace & Defense

90

Reduce the Overhead of Testing

With a unified reporting framework, Parasoft C/C++test efficiently provides multiple
testing methodologies required by the functional safety standards including static
analysis, unit testing, and code coverage.

By presenting cumulative results from the multiple testing techniques, Parasoft
provides consistent reporting that reduces the overhead of testing activities. The
analytics, reports, and dashboards provide the following benefits.

	» Simplify code audits and the certification process.

	» Eliminate the need for users to manually process reporting to build documentation
for the certification process.

	» Focus testing efforts where needed by eliminating extraneous testing and
guesswork from test management.

	» Reduce the costs of testing while improving test outcomes with better tests, more
coverage, and streamlined test execution.

	» Minimize the impact of changes by efficiently managing the change itself.

Pinpoint Priority & Risk Between New & Legacy Code

Parasoft’s Process Intelligence Engine enables users to look at the changes between
two builds to understand, for example, the level of code coverage or static analysis
violations on the code that has been modified between development iterations,
different releases, or an incremental development step from the baseline set on the
legacy code.

Teams can converge on better quality over time by improving test coverage and
reducing the potential risky code. The technical debt due to untested code, missed
coding guidelines, and potential bugs and security vulnerabilities can be reduced
gradually build by build. Using the information provided by Parasoft tools, teams can
focus in on the riskiest code for better testing and maintenance.

91

Take the Next Step
Request a demo to see how your embedded development team can accelerate the
delivery of high-quality, compliant software for safety-critical airborne systems.

About Parasoft

Parasoft helps organizations continuously deliver high-quality software with its AI-
powered software testing platform and automated test solutions. Supporting the
embedded, enterprise, and IoT markets, Parasoft’s proven technologies reduce the time,
effort, and cost of delivering secure, reliable, and compliant software by integrating
everything from deep code analysis and unit testing to web UI and API testing, plus
service virtualization and complete code coverage, into the delivery pipeline. Bringing
all this together, Parasoft’s award-winning reporting and analytics dashboard provides
a centralized view of quality, enabling organizations to deliver with confidence and
succeed in today’s most strategic ecosystems and development initiatives—security,
safety-critical, Agile, DevOps, and continuous testing.

“MISRA”, “MISRA C” and the triangle logo are registered trademarks of The MISRA Consortium Limited. ©The MISRA Consortium
Limited, 2021. All rights reserved.

DO-178C Software Compliance for Aerospace & Defense

92

https://www.parasoft.com/products/parasoft-c-ctest/c-c-request-a-demo/

More Resources
Safety-Critical Airborne Systems Software
Development

Case Studies
	» Federal Agency Fulfills Rigorous DO-178C Standard With Unified Automated
Testing Solution

	» Industry Leader Streamlines Workflow & Delivers Safe, Secure Avionic Systems

	» Aerospace/Defense Company Deploys Parasoft to Support DevSecOps for Major
DoD Initiative

Website
	» Software Testing for Military and Defense Systems

	» DO-178C Compliance With Parasoft

	» MISRA Compliance With Parasoft

	» Easily Automate the Tool Qualification Process

Whitepapers
	» Developing DO-178C Compliant Software for Airborne Systems

	» A Practical Guide to Accelerate MISRA C 2023 Compliance With Test Automation

	» How to Streamline Unit Testing for Embedded and Safety-Critical Systems

	» Embedded Cybersecurity Through Secure Coding Standards CWE and CERT

 Datasheets
	» Develop Compliant DO-178C Software for Airborne Systems

	» Assembly Coverage Tool

	» Parasoft C/C++test

	» Parasoft C/C++test CT

DO-178C Software Compliance for Aerospace & Defense

93

https://www.parasoft.com/resources/case-studies/federal-agency-fulfills-rigorous-do-178c-standard-with-unified-automated-testing-solution/
https://www.parasoft.com/resources/case-studies/federal-agency-fulfills-rigorous-do-178c-standard-with-unified-automated-testing-solution/
https://www.parasoft.com/resources/case-studies/avionics-leader-streamlines-workflow-delivers-safe-secure-avionic-systems/
https://www.parasoft.com/resources/case-studies/aerospace-defense-company-deploys-parasoft-to-support-devsecops-for-major-dod-initiative/
https://www.parasoft.com/resources/case-studies/aerospace-defense-company-deploys-parasoft-to-support-devsecops-for-major-dod-initiative/
https://www.parasoft.com/industries/embedded/military-defense/
https://www.parasoft.com/solutions/compliance/do-178/
https://www.parasoft.com/solutions/compliance/misra/
https://www.parasoft.com/solutions/compliance/tool-qualification/
https://www.parasoft.com/white-paper/developing-do-178b-c-compliant-software-for-airborne-systems/?gtd=false
https://www.parasoft.com/white-paper/a-practical-guide-to-accelerating-misra-c-2012-compliance-with-test-automation/?gtd=false
https://www.parasoft.com/white-paper/streamlining-unit-testing-for-embedded-and-safety-critical-systems/?gtd=false
https://www.parasoft.com/white-paper/embedded-cybersecurity-through-secure-coding-standards-cwe-and-cert/?gtd=false
https://www.parasoft.com/data-sheet/develop-compliant-do-178c-software-for-airborne-systems/
https://www.parasoft.com/data-sheet/assembly-coverage-tool/
https://www.parasoft.com/data-sheet/parasoft-c-ctest/
https://www.parasoft.com/data-sheet/parasoft-c-ctest-ct/

Blog Posts
	» How to Obtain 100% Structural Code Coverage of Safety-Critical Systems

	» Regression Testing of Embedded Systems

	» Verification vs Validation in Embedded Software

	» Robustness Testing: What Is It & How to Deliver Reliable Software Systems With
Test Automation

	» Reducing the Risk and Cost of Achieving Compliant Software

	» MISRA C/C++ Code Checking

	» The Two Big Traps of Code Coverage

	» Shift-Left Your Safety-Critical Software Testing With Test Automation

	» Requirements Management and the Traceability Matrix

Webinars
	» Object Code Structural Coverage for DO-178​C

	» How to Validate DO-326A Airworthiness Security Requirements

	» How Industry Leaders Are Delivering Safe & Secure Software 

	» Cut Compliance Costs and Ensure Lifecycle Traceability With codebeamer ALM
& Parasoft

	» Make Your C/C++ Applications Safe and Secure With MISRA and CERT

	» Automate Essential Testing to Verify & Validate Polarion Requirements

	» Requirement Traceability for Safety-Critical Applications

	» Mastering Aviation Safety & Cybersecurity: DO-178C & DO-326A

DO-178C Software Compliance for Aerospace & Defense

94

https://www.parasoft.com/blog/how-to-obtain-100-structural-code-coverage-of-safety-critical-systems/
https://www.parasoft.com/regression-testing-of-embedded-systems/
https://www.parasoft.com/verification-vs-validation-in-embedded-software/
https://www.parasoft.com/blog/what-is-robustness-testing/
https://www.parasoft.com/blog/what-is-robustness-testing/
https://www.parasoft.com/reducing-the-risk-and-cost-of-achieving-compliant-software/
https://www.parasoft.com/blog/misra-c-c-code-checking/
https://www.parasoft.com/the-two-big-traps-of-code-coverage/
https://www.parasoft.com/shift-left-your-safety-critical-software-testing-with-test-automation/
https://www.parasoft.com/requirements-management-and-the-traceability-matrix/
https://www.youtube.com/watch?v=T4-5U9A68JY
https://www.youtube.com/watch?v=LVmO6iDpVl8
https://www.youtube.com/watch?v=0XRbf2M5yaM
https://www.youtube.com/watch?v=Zv_u9-kY8jo&t=5s
https://www.youtube.com/watch?v=Zv_u9-kY8jo&t=5s
https://www.youtube.com/watch?v=IzOLpMudkHY&t=1603s
https://www.youtube.com/watch?v=0ysA8VAZffo&t=4s
https://www.youtube.com/watch?v=VoCptD9BRVI
https://www.parasoft.com/video/mastering-aviation-safety-cybersecurity-do-178c-do-326a/

	Overview
	Aerospace Industry Outlook for Commercial
& Defense
	What Is RTCA DO-178C?

	Requirements for Compliance in Testing
	Static Analysis
	Unit Testing
	Regression Testing
	Software Integration Testing
	Software System Testing
	Structural Code Coverage
	Requirements & the Traceability Matrix

	A Unified, Fully Integrated Testing Solution for C/C++ Software Development
	Tool Qualification for Safety-Critical Airborne Systems
	Reporting & Analytics for Safety-Critical Airborne Systems

	More Resources
	Safety-Critical Airborne Systems Software Development

