
DO-178C SOFTWARE
COMPLIANCE FOR

AEROSPACE & DEFENSE

Contents
3 Overview

3 Aerospace Industry Outlook for Commercial
& Defense

9 What Is RTCA DO-178C?

32	 Requirements	for	Compliance	in	Testing	
32	 Static	Analysis	

46	 Unit	Testing	

52	 Regression	Testing	

56	 Software	Integration	Testing	

65	 Software	System	Testing	

68	 Structural	Code	Coverage	

74 Requirements & the Traceability Matrix

80	 A	Unified,	Fully	Integrated	Testing	Solution	for	
C/C++	Software	Development	
80	 Tool	Qualification	for	Safety-Critical	Airborne	Systems	

86	 Reporting	&	Analytics	for	Safety-Critical	Airborne	Systems	

93 More Resources
93	 Safety-Critical	Airborne	Systems	Software	Development	

2

Overview
Aerospace Industry Outlook for Commercial
& Defense
The	aerospace	industry	is	one	of,	if	not	the	most	technically	complex	and	sophisticated,	
industries	that	exist.	Much	of	it	has	to	do	with	the	diversity	of	the	aircraft	that	are	
created	for	commercial	as	well	as	defense	purposes.	There's	a	large	overlap	in	the	latest	
trends	in	technology	used	by	the	aerospace	industry,	but	there	are	also	interesting	areas	
that	differ	and	are	worth	mentioning.	However,	one	of	the	main	contributors	to	changes	
and trends in the aerospace industry is cost.

The	average	passenger	airliner	costs	between	$82	and	$350	million,	and	based	on	
the	type	of	military	aircraft,	it	can	cost	between	$82	and	$2.1	billion.	A	Boeing	787-10	
goes	for	$340	million	and	a	Northrop	Grumman	B-2	Spirit	Stealth	Bomber	will	set	
you	back	$2.1	billion.		

Commercial	aircraft	cost	a	significant	amount	due	to	factors	like	extensive	research,	
development,	production,	and	operations.	Developing	a	new	commercial	aircraft	
involves	substantial	R&D	efforts,	including	designing	and	testing	new	technologies,	
aerodynamics,	materials,	and	safety	features.	This	phase	often	spans	several	years	and	
requires	a	substantial	investment	in	skilled	engineers,	scientists,	and	facilities.	This	
is	the	same	for	military	aircraft,	but	in	addition,	they	often	pioneer	new	technologies	
and	innovations	that	lead	to	higher	R&D	costs	as	well	as	the	need	for	very	specialized	
engineering	talent.		

DO-178C Software Compliance for Aerospace & Defense

3

Another	factor	in	the	cost	of	commercial	aircraft	is	testing	and	certification.	Extensive	
testing	and	certification	processes	are	required	to	ensure	that	an	aircraft	meets	safety,	
performance,	and	environmental	standards.	Similarly,	military	aircraft	must	undergo	
rigorous	testing	and	certification	processes	to	ensure	their	performance,	safety,	and	
compliance	with	military	standards	are	achieved.		

These	and	other	influences,	like	supply	chain	complexities,	material	used	(advanced	
composites	and	titanium),	commercial	use	customizations	(cabin	layout,	in-flight	
entertainment	system,	galley	arrangements,	and	so	on),	or	military	customizations	
like	weaponry,	avionics,	stealth,	survivability,	and	other	mission-specific	equipment,	
can drive up costs.

Open	Systems	Architectures	
One	of	the	approaches	being	used	by	the	aerospace	industry	to	mitigate	costs	is	the	
adoption	of	open	architectures	and	interoperability.	Open	systems	architecture	is	a	
system	design	approach	that	aims	to	produce	systems,	such	as	software	and	hardware,	
that	are	inherently	interoperable	and	connectable	without	recourse	to	retrofit	and	
redesign.	The	Future	Airborne	Capability	Environment	(FACE™)	Consortium has
established an open procurement environment that facilitates reuse to meet four
core	goals:		

1. Improve affordability.

2. Increase speed.

3. Improve	agility	

4. Deliver excellence.

Future Airborne Capability Environment

The	FACE™	Consortium	is	a	government	and	industry	partnership	dedicated	to	
accomplishing	the	four	core	goals	using	open	industry	standards,	advanced	integration,	
and	maintenance	technologies.	Military	and	commercial	organizations	can	purchase	
FACE-certified	products	found	in	the	FACE	registry.

DO-178C Software Compliance for Aerospace & Defense

4

https://www.opengroup.org/face
https://www.facesoftware.org/registry

Artificial	Intelligence	&	Machine	Learning	
The	use	of	artificial	intelligence	(AI)	and	machine	learning	(ML)	comes	up	at	aerospace	
events,	and	one	thought	is	to	replace	the	commercial	airline	copilot	with	an	AI	copilot.	
There	are	some	hefty	safety	hurdles	to	overcome	before	this	scenario	can	be	realized.	
Nonetheless,	analytical	AI	can	be	applied	in	aerospace	to	predict	when	a	part	is	going	

to	fail	through	anomaly	detection	or	by	tracking,	
scheduling,	and	managing	maintenance	based	on	
historical	data	and	predictive	analytics.	However,	
this is completely the opposite for defense.

The	U.S.	is	developing	AI	capabilities	for	a	broad	
range	of	military	functions	that	will	have	a	significant	
impact	on	the	defense	sector.	AI	technologies	are	
rapidly	evolving.	Defense	primes	are	advancing	their	
AI	capabilities	organically	and	through	acquisitions.		

AI	is	being	applied	in	operations	like	intelligence,	
surveillance,	reconnaissance	(ISR),	logistics,	

cyber,	command	and	control,	and	drone	swarms.	Perhaps	the	most	publicized	and	
controversial	AI	application	in	defense	concerns	autonomous	vehicles	and	weapon	
systems.	AI	technology	will	make	military	operations	more	efficient,	accurate,	and	
powerful	while	also	offering	long-term	cost-cutting	potential.		

Urban	Air	Mobility	
In	the	commercial	space,	one	of	the	major	trends	is	the	push	towards	more	sustainable	
and	environmentally	friendly	aviation.	This	refers	to	the	development	of	electric	and	
hybrid electric propulsion systems.

The FAA has put out the Urban	Air	Mobility	(UAM)	
Concept	of	Operations	in	support	of	developing	air	
transportation	for	a	wide	range	of	passenger,	cargo,	
and	other	operations	within	and	between	urban	
and	rural	environments	using	new	and	innovative	
aircraft.	Vehicles	such	as	electric	vertical	takeoff	and	
landing	(eVTOL)	types	of	aircraft	are	currently	under	
development.	Nevertheless,	the	U.S.	military	is	also	
embracing	eVTOL	for	military	missions.	

DO-178C Software Compliance for Aerospace & Defense

5

https://www.faa.gov/sites/faa.gov/files/Urban%20Air%20Mobility%20%28UAM%29%20Concept%20of%20Operations%202.0_0.pdf
https://www.faa.gov/sites/faa.gov/files/Urban%20Air%20Mobility%20%28UAM%29%20Concept%20of%20Operations%202.0_0.pdf
https://builtin.com/transportation-tech/evtol-aircraft

Development	&	Design	
Advancements	in	software	solutions	and	practices	are	also	making	improvements	in	
productivity,	quality,	time	to	market,	and	costs.	Other	technologies,	like	cybersecurity,	
have	become	of	paramount	concern.	Here	are	a	few	that	are	having	a	powerful	impact	
on	development	and	need	mentioning.	

PLAN

CODE

B
U

ILD

TEST

DELIVER

RELE
ASE

MONITOR

O
PE

R
A

TE

Digital Twin

The	use	of	a	virtual	representation	or	virtual	model	of	a	physical	
system	that	mimics	the	functionalities	of	the	actual	hardware	and	
software	is	referred	to	as	a	“digital	twin.”	Digital	twins	for	an	aircraft,	
jet	engine,	or	even	a	semiconductor	subsystem	offer	the	unique	
capability	of	a	shift-left	approach	to	enable	earlier	design,	analysis,	
and	verification.	

Agile Methodologies

Agile	methodologies	such	as	DevOps	and	DevSecOps	are	being	
adopted	to	improve	the	efficiency	of	software	development.	These	
approaches	emphasized	iterative	development,	collaboration,	and	
continuous	integration	and	delivery	(CI/CD),	enabling	faster	and	more	
reliable	software	delivery.		

Adopting	these	agile	development	methodologies	does	not	conflict	
with	DO-178C	recommended	software	development	processes.	
DO-178C	is	a	descriptive	standard	that	informs	and	recommends	
what	should	be	done	to	ensure	safety.	The	“how”	is	left	up	to	the	
organization	to	decide	on	evolving	best	practices	and	solutions.

Model-Based Systems Engineering

Aerospace	companies	have	been	increasingly	adopting	model-
based	engineering	(MBSE),	which	involves	creating	digital	models	
that	can	represent	the	entire	system,	including	hardware,	software,	
and	interactions.	MBSE	helps	improve	communication	among	
multidisciplinary	teams	and	allows	for	better	system	understanding	
and	integration.

Cybersecurity

With	the	increasing	connectivity	of	aerospace	systems	and	the	
reliance	on	software	for	critical	functions,	cybersecurity	is	a	key	
concern.	The	military	and	aerospace	companies	are	focusing	on	
implementing	robust	cybersecurity	measures	to	protect	against	cyber	
threats	and	ensure	the	safety	and	security	of	aviation	systems.	RTCA	
DO-326A and DO-355A are the de facto cybersecurity standards.

DO-178C Software Compliance for Aerospace & Defense

6

Mil/Def	Aerospace	
Specific	to	the	aerospace	and	aviation	sectors	within	the	military/defense	(Mil/Def)	
industry,	they	are	responsible	for	designing,	developing,	and	manufacturing	a	wide	
range	of	military	aircraft,	helicopters,	and	unmanned	aerial	vehicles	(UAVs).	These	
vehicles	serve	various	purposes,	including	reconnaissance,	surveillance,	combat,	
and transport.

Military	aircraft	are	equipped	with	
advanced	avionics	systems,	high-
performance	engines,	and	cutting-edge	
weapon	systems	to	ensure	air	superiority	
and	the	effective	deployment	of	military	
operations.	This	sector	is	also	involved	
in	space	exploration	and	satellite	
technologies.	Military	satellites	are	critical	
for	communication,	intelligence	gathering,	
and	navigation.	They	facilitate	secure	and	
real-time	communication	between	ground	
troops,	aircraft,	and	command	centers.		

Additionally,	military	space	technology	contributes	to	early	warning	systems,	weather	
monitoring,	and	global	positioning	capabilities.	The	military	is	not	required	to	adapt	
commercial	aviation	safety	certification	guidelines,	but	they	do	so	because	such	
guidelines	enable	a	more	robust,	safe,	and	secure	aircraft	for	the	warfighter.	

The	Role	of	Standards	&	Regulations		
DO-178C,	which	is	also	published	in	Europe	as	EUROCAE	ED-12C,	is	the	standard	for	
“Software	Considerations	in	Airborne	Systems	and	Equipment	Certification.”	It's	a	core	
standard	for	all	avionics	or	airborne	systems	and	a	document	by	which	certification	
authorities	such	as	the	Federal	Aviation	Administration	(FAA),	European	Union	Safety	
Agency	(EASA),	and	Transport	Canada	approve	and	certify	all	commercial	software-
based aerospace systems.

Avionics	is	an	assembly	of	electronics	subsystems	integrated	onboard	freighter	aircraft,	
military	aircraft,	business	jets,	and	other	private-owned,	chartered,	and	unscheduled	
aircraft.	These	systems	include	engine	controls,	flight	control	systems,	navigation,	
communications,	flight	recorders,	lighting	systems,	fuel	systems,	electro-optic	(EO/IR)	
systems,	weather	radar,	and	performance	monitoring	systems.		

Without	certification,	commercial	airborne	software	systems	cannot	be	deployed.	
The	military	is	not	required	to	adapt	commercial	aviation	safety	certification	guidelines,	
but	they	do	so	because	such	guidelines	enable	a	more	robust,	safe,	and	secure	aircraft	
for	the	warfighter.		

DO-178C Software Compliance for Aerospace & Defense

7

https://my.rtca.org/productdetails?id=a1B36000001IcmrEAC

As	safety	and	security	concerns	grow	due	to	advances	in	technology	and	their	
application	in	avionic	systems,	one	standard	cannot	address	all	solutions	and	best	
practices.	Therefore,	there	are	supplemental	RTCA	guidance	documents that
contain	clarifications,	frequently	asked	questions,	discussion	papers,	and	rationale	
to	DO-178C.	Here	are	just	a	few:	

 » DO-278A,	Software	Integrity	Assurance	Considerations	for	Communication,	
Navigation,	Surveillance	and	Air	Traffic	Management	(CNS/ATM)	Systems	

 » DO-248C,	Supporting	Information	for	DO-178C	and	DO-278A	

 » DO-333, Formal Methods Supplement to DO-178C and DO-278A

 » DO-326A,	Airworthiness	Security	Process	Specification	

 » DO-355A,	Information	Security	Guidance	for	Continuing	Airworthiness	

 » DO-330,	Software	Tool	Qualification	Considerations	

 » DO-331,	Model	Based	Development	and	Verification	

 » DO-332,	Object	Oriented	Technology	and	Related	Techniques		

 » DO-254,	Design	Assurance	Guidance	for	Airborne	Electronic	Hardware	

Though	not	part	of	the	RTCA	library,	an	important	standard	to	include	is	SAE	
AS9100D:	Quality	Management	Systems	-	Requirements	for	Aviation,	Space,	and	
Defense	Organizations.	It's	the	international	quality	standard	used	by	the	aerospace	
industry	for	applying	best	practices	in	product	safety,	security,	and	performance	
that	help	run	your	organization	efficiently	and	effectively.		

Organizational	best	practices	and	processes	aid	teams	in	getting	organized,	reduce	
costs,	mitigate	risks,	boost	productivity,	and	drive	continuous	improvement.	
Organizations	certified	to	this	standard	demonstrate	a	commitment	to	excellence	
and	the	delivery	of	quality.	It	provides	your	customers	with	a	way	of	determining	
whether	you	are	a	viable	and	attractive	alternative	to	other	suppliers.	

In	addition,	to	stay	up-to-date	on	FAA	regulations,	the	FAA	Dynamic	Regulatory	
System	(DRS)	is	a	knowledge	center	that	includes	all	regulatory	guidance	material	
and	is	continuously	updated.	

DO-178C Software Compliance for Aerospace & Defense

8

https://my.rtca.org/nc__store?search=DO-178C
https://www.sae.org/standards/content/as9100d/
https://www.faa.gov/about/office_org/headquarters_offices/avs/programs/drs#:~:text=The%20The%20Dynamic%20Regulatory%20System,into%20a%20single%20searchable%20application.
https://www.faa.gov/about/office_org/headquarters_offices/avs/programs/drs#:~:text=The%20The%20Dynamic%20Regulatory%20System,into%20a%20single%20searchable%20application.

What Is RTCA DO-178C?
The	Radio	Technical	Committee	for	Aeronautics	(RTCA)	DO-178C	is	a	functional	safety	
standard	that	provides	guidance	and	considerations	for	the	production	of	software	for	
airborne systems and equipment. The aim is to ensure that the system performs its
intended	function	with	a	level	of	confidence	in	safety	that	complies	with	airworthiness	
requirements.	If	an	aircraft	is	to	fly	over	commercial	U.S.	airspace,	compliance	with	the	
standard is required.

Figure 2-1: The
sections that make up
the DO-178C standard

DO-178C	provides	the	following	guidance:	

 » Objectives	for	software	life	cycle	processes	

 » Activities	that	provide	a	means	for	satisfying	
those objectives

 » Descriptions of the evidence in the form of
software	life	cycle	data	that	indicate	that	the	
objectives have been satisfied

 » Variations	in	the	objectives,	independence,	
software	life	cycle	data,	and	control	categories	
by	software	level	

 » Additional	considerations	(for	example,	
previously	developed	software)	that	are	
applicable to certain applications

 » Definition	of	terms	provided	in	the	glossary	

DO-178C	covers	the	full	engineering	life	cycle.	
From	planning,	development,	verification,	quality	
assurance,	liaison,	and	certification.	It	is	subdivided	
into	12	sections.	Section	1,	not	shown	expresses	
the	purpose,	scope,	and	how	to	use	the	document.

RTCA	was	founded	back	in	1935.	They	are	an	independent	standards	development	
organization	and	serve	as	the	basis	for	government	certification	of	equipment	used	
by	the	tens	of	thousands	of	aircraft	flying	daily	through	the	world’s	airspace.		

RTCA	is	a	private,	not-for-profit	corporation,	which	works	closely	with	the	Federal	
Aviation	Administration	(FAA)	and	industry	experts	from	the	U.S.	and	around	the	world,	
such	as	the	European	Organization	for	Civil	Aviation	Equipment	(EUROCAE)	working	
group	to	help	develop	this	comprehensive,	contemporary	aviation	standard.	The	
EUROCAE	is	a	non-profit	organization	with	the	objective	of	developing	standards	
for	European	civil	aviation.	

DO-178C Software Compliance for Aerospace & Defense

9

The	original	DO-178	standard	was	released	back	in	1982.	However,	it	was	not	
considered	useful.	As	a	result,	the	DO-178A	revision	followed,	published	in	1985.	
This	revision	focused	more	on	modern	software	engineering	principles	and	verification	
practices.	It	introduced	a	correlation	between	critical	failure	conditions	with	level	

numbers	1,	2,	and	3.	Level	1,	which	
you	may	know	better	as	Development	
Assurance	Level	(DAL)	was	the	strictest.		

In	December	1992,	revision	DO-178B	
was	released,	which	shifted	from	a	
“how	to”	type	of	document	to	a	“what	
to	do”	type	of	document.	A	big	focus	
was	put	on	objectives	that	your	software	
process	needs	to	satisfy	in	order	to	reach	
compliance	and	ultimately	certification.	

Another	noticeable	change	was	to	
the	number	of	possible	critical	failure	
conditions	defined	in	DAL.		They	grew	
to	five	software	levels	and	changed	from	
numbers	to	letters	A	through	E.	Level	A	

was	the	most	stringent	and	Level	E	meant	no	safety	requirement.	Also,	testing	your	
requirements	was	strongly	emphasized.	It	advised	not	to	look	at	the	code	to	create	test	
cases,	but	to	look	at	your	requirements.	It	was	backed	by	structural	code	coverage	to	
ensure	that	you	have	covered	everything.	

DO-178B	also	incorporated	bidirectional	traceability	between	systems,	high-	and	
low-level	requirements,	including	test	cases,	and	down	to	the	code	to	show	that	all	
the	requirements	have	been	implemented.	The	idea	of	having	tools	qualified	for	use	
was	introduced.		

Today,	we're	at	revision	C.	Released	in	January	2012,	DO-178C	removed	imprecise	
wording	found	in	DO-178B	for	clarification.	It	also	became	a	joint	effort	between	
RTCA	and	EUROCAE.	But	the	major	difference	between	DO-178B	and	DO-178C	is	
the	adoption	of	a	modular	approach	to	supplemental	guidance	documents.	You	now	
have	supplemental	standards,	including	the	following.	

 » DO-330	addresses	software	tool	qualification.	

 » DO-331 addresses model-based development.

 » DO-332	addresses	object-oriented	software.	

 » DO-333	addresses	formal	methods	to	complement	your	testing.	

This	ebook	provides	a	condensed	overview	of	each	of	the	DO-178C	sections,	
highlighting	the	key	takeaways.		

DO-178C Software Compliance for Aerospace & Defense

10

System	Aspects	Relating	to	Software	Development,	Section	2	
Section	2	discusses	the	system	life	cycle	processes,	the	artifacts	produced,	how	
they	flow	down	into	the	software	life	cycle	and	the	information	flow	between	these	
processes.	A	big	part	of	this	is	requirements	analysis,	where	the	software	system	
requirements	are	initially	developed	from	the	system	operational	requirements	or	
customer	requirements,	and	how	these	artifacts	flow	into	the	software	life	cycle.		

In	the	software	life	cycle,	requirements	decomposition	continues,	software	verification	
takes	place,	and	ultimately	certification.

Though	DO-178C	captures	the	flow	between	system	and	software	life	cycles	in	the	
diagram	above,	the	topic	is	well	defined	in	the	SAE	ARP4754A	standard,	Guidelines	for	
Development	of	Civil	Aircraft	and	Systems.		

Figure 2-2:
Information flow
between system
and software life
cycle processesThe
Guideline Enforcement
Plan demonstrates
how each MISRA
guideline is verified.

Section	2	discusses	the	following	topics:	

 » System	requirements	allocation	to	software	

 » Information	flow	between	the	system	and	
software	life	cycle	processes	and	between	the	
software	and	hardware	life	cycle	processes	

 » System safety assessment process, failure
conditions,	software	level	definitions,	and	
software	level	determination	

 » Architectural considerations

 » Software	considerations	in	system	life	cycle	
processes

 » System	considerations	in	software	life	cycle	
processes

One	other	important	part	of	section	2	is	
determining	the	software	level	classification	
or	DAL.	Catastrophic	results	equate	to	failure	of	
flight	control	software	where	an	aircraft	would	go	
down	and	many	lives	would	be	lost.	This	would	be	
classified	as	software	level	A.		

DO-178C Software Compliance for Aerospace & Defense

11

https://www.sae.org/standards/content/arp4754

Table 2-1:
DO-178C
Development
Assurance Levels
(DAL)

Hazardous	is	a	step	down,	so	serious	or	fatal	injury	to	a	relatively	small	number	of	
the	occupants	other	than	the	flight	crew	would	be	software	level	B.	The	classification	
continues	to	go	down	to	software	level	E	where	there's	no	safety	concern	if	failure	were	
to occur.

Another	perspective	or	side	of	this	classification	is	quality	assurance.	With	each	
increased	level	from	level	E	to	level	A,	there's	an	increased	number	of	objectives	that	
need	to	be	met.	For	example,	there's	an	increase	in	traceability	between	artifacts	
produced	during	product	development.	Also,	there's	an	increase	in	software	testing.	
The	software	may	need	to	satisfy	assembly	or	object	code	coverage	instead	of	just	
statement,	branch,	and	MC/DC	coverage.	

To	share	a	best	practice,	if	your	software	is	classified	at	level	B	or	lower,	you	may	
want	to	try	to	achieve	some	or	all	of	the	next	higher	software	level	objectives.	The	
additional	effort	between	some	of	the	development	assurance	levels	may	not	be	too	
substantial	and	the	benefits	could	very	well	pay	off	if	customer	requirements	become	
more	stringent.	

DO-178C Software Compliance for Aerospace & Defense

12

Figure 2-3: ARP4754A
V-model development
process

Software	Life	Cycle,	Section	3	
Section	3	discusses	the	aspects	of	the	software	life	cycle	process.	The	well-known	
sequence	through	the	SDLC	is	requirements	management,	design,	coding,	and	
integration.	DO-178C	does	not	recommend	a	development	process	to	use.	It's	left	
up	to	organizations	to	make	that	decision	based	on	their	own	experience	and	factors	
like	current	technology,	such	as	Agile,	DevSecOps,	CI/CD,	or	customer	requirements.	
Whatever	process	you	choose,	the	standard’s	objectives	that	must	be	met	are	not	
obstructed by the process.

Below	is	the	well-known	V-model.	The	right	side	captures	the	system	and	software	
design	phases	while	the	left	side	captures	the	verification	phases.	Standard	ARP4754	
is	your	go-to	document	on	the	development	of	aircraft	systems	considering	the	overall	
aircraft	operating	environment	and	functions.	This	includes	validation	of	requirements	
and	verification	of	the	design	implementation	for	certification	and	product	assurance.	

DO-178C Software Compliance for Aerospace & Defense

13

Figure 2-4:
DO-178C example
of a software project
using development
sequences.

DO-178C	software	life	cycle	processes	include	the	following:	

 » Software	planning	process.	Defines	and	coordinates	the	activities	of	the	software	
development	and	integral	processes	for	a	project.	

 » Software	development	processes.	Produce	the	software	product.	This	process	is	
comprised	of	processes	for	requirements,	design,	coding,	and	integration.	

 » Integral	software	processes.	Ensure	the	correctness,	control,	and	confidence	in	
the	software	life	cycle	processes	and	their	outputs.	These	include	verification,	
configuration	management,	quality	assurance,	and	certification	liaison.

DO-178C Software Compliance for Aerospace & Defense

14

Software	Planning	Process,	Section	4	
Section	4	discusses	the	objectives	and	activities	of	the	software	planning	process.	
The	objectives	are	clearly	defined	and	captured	in	Table	A-1	of	the	standard.	There	
are	seven	objectives	that	must	be	satisfied	based	on	the	software	level	(A-D).	These	
objectives	include	defining	the	following:	

 » Software	life	cycle	process	

 » Inter-relationships	between	processes	

 » Methods and tools to use

 » Development	standards	to	use	for	ensuring	safety	

 » Verification	that	the	software	satisfies	development	requirements	

 » Verification	that	the	organizations	that	will	perform	those	activities	

There	are	also	many	considerations	to	the	software	planning	process,	like	the	intent	to	
use	previously	developed	software	or	commercial	off	the	shelf	software	(COTS),	tool	
qualification,	and	many	more	described	in	section	12.	

Table	A-1	of	the	standard	captures	the	objectives,	the	software	levels	that	apply,	and	
the	expected	output	from	these	activities,	which	are	a	set	of	documents	with	reporting	
information	about	the	organization,	industry	standard,	software	development,	tools,	
verification	results	and	certification.	

 » Plan	for	Software	Aspects	of	Certification	(PSAC)	

 » Software	Development	Plan	(SDP)	

 » Software	Verification	Plan	(SVP)	

 » Software	Configuration	Management	Plan	(SCM	Plan)	

 » Software	Quality	Assurance	Plan	(SQM	Plan)	

 » Software	Requirements	Standards	

 » Software	Design	Standards	

 » Software	Code	Standards	

 » Software	Verification	Results

DO-178C Software Compliance for Aerospace & Defense

15

Table 2-2: Table A-1
Software planning
process

DO-178C Software Compliance for Aerospace & Defense

16

Software	Development	Process,	Section	5	
The	software	development	process	is	applied	as	defined	by	the	software	planning	
process	and	the	software	development	plan.	Whether	teams	or	organizations	choose	
a	software	development	methodology	like	DevOps,	Spiral,	Waterfall,	or	another,	the	
following	four	listed	processes	must	be	performed.	

 » Software	requirements	process	

 » Software	design	process	

 » Software	coding	process	

 » Integration	process	

The	software	requirements	process	begins	by	gathering	all	requirements	from	the	
stakeholder,	regulatory	bodies,	standards,	and	more.	These	requirements	are	organized	
into	domains	such	as	hardware,	software,	mechanical,	chemical,	electrical,	and	so	on,	
and then become your system-level requirements.

High-level	requirements	are	derived	from	top-level	system	requirements.	They	
decompose	a	system	requirement	into	various	high-level	functional	and	nonfunctional	
requirements.	This	phase	of	the	requirements	decomposition	helps	in	the	architectural	
design	of	the	system	under	development.		

High-level	requirements	clarify	and	help	define	expected	behavior	as	well	as	safety	
tolerances,	security	expectations,	reliability,	performance,	portability,	availability,	
scalability,	and	more.	Each	high-level	requirement	links	up	to	the	system	requirement	
that	it	satisfies.	In	addition,	high-level	test	cases	are	created	and	linked	to	each	high-
level	requirement	for	the	purpose	of	its	verification	and	validation.	This	is	part	of	the	
software	design	process,	as	each	high-level	requirement	is	further	decomposed	into	
low-level	requirements.	

Low-level	requirements	are	software	requirements	derived	from	high-level	
requirements.	They	further	decompose	and	refine	the	specifications	of	the	software's	
behavior	and	quality	of	service.	They	drill	down	to	another	level	of	abstraction	and	map	
it	to	individual	software	units.	The	coding	process	begins	as	code	units	are	written	to	
facilitate	the	software's	detailed	design	and	implementation.	The	inputs	to	the	coding	
process	are	the	low-level	requirements	and	software	architecture	from	the	software	
design	process,	the	software	development	plan,	and	the	software	code	standards.	

DO-178C Software Compliance for Aerospace & Defense

17

After	the	coding	process	is	complete,	the	integration	process	consists	of	the	following:	

Table 2-3: DO-178C
Table A-2 Software
development process

 » Compiling	

 » Linking	

 » Loading	software	onto	system	or	
target	hardware	

 » Executing		

Coding	defects	need	to	be	identified	and	fixed.	Inadequate	or	incorrect	inputs	detected	
during	the	integration	process	should	be	provided	to	the	following	software	processes	
as	feedback	for	clarification	or	correction:		

 » Requirements

 » Design	

 » Coding	

 » Planning

DO-178C Software Compliance for Aerospace & Defense

18

Bidirectional	traceability	that	is	established	from	each	low-level	requirement	up	to	its	
high-level	requirement	and	down	to	the	low-level	tests	or	unit	test	cases	that	verify	
and validate it helps in this endeavor.

Traceability is crucial to DO-178C. The depth of traceability varies based on the
software	level.	Looking	at	the	traceability	that's	required	for	DO-178C	level	D,	
organizations	need	not	care	about	how	the	software	has	been	developed,	and	as	
such,	there's	no	need	to	have	any	traceability	down	to	low-level	requirements,	the	
source	code,	or	software	architecture.	Teams	just	need	to	trace	from	the	system	
software	requirements	to	the	high-level	requirements	and	then	to	the	test	cases,	
test procedures, and test results.

For	levels	B	and	C,	how	the	source	code	has	been	developed	becomes	important.	
Teams	need	to	expand	traceability	by	adding	bidirectional	links	from	the	high-level	
requirements	to	the	low-level	requirements	and	to	the	source	code.	

For	level	A	projects,	the	requirements	are	to	expand	the	traceability	not	just	down	to	
the	source	code,	but	to	the	assembly/object	code.	This	is	because	compilers	are	known	
to	expand	and	translate	higher	level	languages	to	assembly	code	that	does	not	map	
back	to	the	originating	code.		

Parasoft	has	an	assembly	code	coverage	solution	called	ASMTools	that	automates	code	
coverage	at	the	assembly	language	level.	Automating	this	effort	alleviates	much	labor	if	
code	coverage	at	the	assembly	level	is	required.	

For	requirements	traceability,	Parasoft	automates	linking	between	requirements,	test	
cases,	and	down	to	the	source	file,	if	required.	Integrations	with	ALM	tools	like	Jama,	
Codebeamer,	and	Polarion	exist	to	help	achieve	this	bidirectional	traceability	and	
building	a	traceability	matrix	for	verification	requirements.

Figure 2-5:
Requirements
traceability through
DO-178C software
levels (D-A)

DO-178C Software Compliance for Aerospace & Defense

19

Software	Verification	Process,	Section	6	
The	purpose	of	the	software	verification	process	is	to	detect,	report,	and	remove	the	
errors	that	may	have	been	introduced	during	the	software	development	process.	The	
standard	uses	the	term	“verification”	instead	of	“test”	because	testing	alone	cannot	
show	the	absence	of	errors.	Verification	is	a	combination	of	reviews,	analysis,	tests	
cases, and test procedures.

Tests	provide	internal	consistency	and	completeness	of	the	requirements,	while	test	
executions	provide	a	demonstration	of	compliance	with	requirements.	

DO-178C	software	verification	process	enables	the	following:	

 » The	system	requirements	allocated	to	software	shall	be	decomposed	into	high-level	
requirements that satisfy system requirements.

 » High-level	requirements	shall	be	developed	into	software	architecture	and	low-level	
requirements	that	satisfy	high-level	requirements.

 » If	one	or	more	levels	of	software	requirements	are	decomposed	into	high-level	
and	low-level	requirements,	each	successively	lower	level	satisfies	its	higher-level	
requirements.	If	code	is	generated	directly	from	high-level	requirements,	this	does	
not apply.

 » The	software	architecture	and	low-level	requirements	shall	be	developed	into	
source	code	that	satisfies	low-level	requirements	and	software	architecture.

 » The	executable	object	code	must	satisfy	software	requirements	and	provide	
confidence	in	fulfilling	its	intended	functionality.	

 » The executable object code shall be robust and respond correctly to abnormal
inputs and conditions.

 » The means used to perform the verification to be technically correct and complete
for	every	determined	software	level.

DO-178C Software Compliance for Aerospace & Defense

20

Figure 2-6: Software
testing activities

To	further	detail	each	testing	activity,	the	standard	provides	a	set	of	tables	with	well-
defined	objectives	and	outputs	or	artifacts	needed	to	demonstrate	compliance.	These	
objectives	are	achieved	by	way	of	software	testing	and	may	include	the	following:	

 » Performing	static	analysis	

 » Unit	testing	

 » Integration	testing	

 » System	testing	

 » Structural	code	coverage	(statement,	
branch,	MC/DC,	assembly)		

 » On-target	hardware	

 » Data	and	control	coupling

Software	testing	demonstrates	or	“validates”	that	the	software	satisfies	its	
requirements	and	reveals	with	a	high	degree	of	confidence	that	errors	that	could	
lead	to	unacceptable	failure	conditions,	as	determined	by	the	system	safety	and	
security	assessment	process,	have	been	removed.	The	following	diagram	shows	
software	testing	activities	with	subsections.

21

Table 2-4: DO-178C
Table A-3 Verification
of outputs of software
requirements process

Integrating	hardware	and	software	is	crucial	to	ensuring	safety,	security,	and	reliability.	

Be	aware	that	all	of	these	testing	methods	are	automated	by	Parasoft's	tool	suite.	You	
can	get	a	glimpse	of	our	C/C++	solution	by	taking	a	tour	of	Parasoft	C/C++test.

The	following	tables	list	the	set	of	objectives	and	expected	outputs	based	on	each	
software	design	assurance	level	in	order	to	ensure	airworthiness.

Table 2-5: DO-178C
Table A-4 Verification
of outputs of software
design process

DO-178C Software Compliance for Aerospace & Defense

22

https://software.parasoft.com/cc-take-product-tour/

Table 2-6: DO-178C
Table A-5 Verification
of outputs of software
coding and integration
processes

Table 2-7: DO-178C
Table A-6 Testing of
outputs of integration
process

DO-178C Software Compliance for Aerospace & Defense

23

Table 2-8: DO-178C
Table A-7 Verification of
process results

Software	Configuration	Management	Process,	Section	7	
Section	7	discusses	the	objectives	and	activities	of	the	software	configuration	
management	process.	You	need	to	be	able	to	define	and	control	configurations	of	
the	software	throughout	the	software	life	cycle.	Organizations	or	teams	need	to	
have	source	baselines,	versioning,	change	control,	change	review,	protection	against	
unauthorized	changes,	problem	reporting,	and	much	more.		

DO-178C Software Compliance for Aerospace & Defense

24

Table 2-9: DO-178C
Table A-8 Software
configuration
management process

These	are	the	software	configuration	management	process	activities:	

1. Configuration	identification	

2. Baselines	and	traceability	

3. Problem	reporting,	tracking,	and	corrective	action	

4. Change	control	

5.	 Change	review	

6.	 Configuration	status	accounting	

7.	 Archive, retrieval, and release

These	activities	are	further	detailed	as	objectives	and	their	output.	The	objectives	
include	being	able	to	control	item	characteristic	changes,	record	and	report	change	
control	processing,	and	implementation	status.

In	Table	A-8,	notice	the	“Control	Category	by	Software	Level”	column.	DO-178C	
specifies	which	items	must	be	treated	as	Control	Category	1	or	2	based	on	the	project's	
DAL.	Items	treated	as	Control	Category	1	(CC1)	must	undergo	full	problem	reporting	
processes,	formal	change	review,	and	release	processes.	CC2	items	do	not	need	to	
undergo	these	more	formal	processes,	but	they	must	still	comply	with	configuration	
identification	and	traceability	needs,	be	protected	against	unauthorized	changes,	and	
satisfy	applicable	data	retention	requirements.	The	map	between	CC1	and	CC2	data	is	
found	in	the	following	table.

DO-178C Software Compliance for Aerospace & Defense

25

Table 2-10:
DO-178C SCM
process activities
associated with CC1
and CC2 data

Software Quality Assurance Process, Section 8
The	SQA	process	is	captured	in	the	Software	Quality	Assurance	Plan,	which	is	built	
during	the	software	planning	process.	Outputs	of	the	SQA	process	activities	need	to	be	
recorded,	evaluated,	and	tracked.	Audits	need	to	be	performed	and	any	deviations	from	
the	standards	be	resolved.	The	process	entails	providing	assurance	that:		

 » Software	plans	and	standards	are	developed,	reviewed,	and	will	meet	compliance.		

 » Artifacts,	reports,	and	evidence	are	in	place	with	approvals.		

 » Software	product	and	software	life	cycle	data	conform	to	certification	requirements.

DO-178C Software Compliance for Aerospace & Defense

26

Table 2-11: DO-178C
Table A-9 Software
Quality Assurance
Process

Certification	Liaison	Process,	Section	9	
Section	9	discusses	the	certification	liaison	process	and	its	objectives,	which	include	
the	following:	

 » Establish	communication	and	understanding	between	the	applicant	and	the	
certification	authority	throughout	the	software	life	cycle	to	assist	the	certification	
process.

 » Gain	agreement	on	the	means	of	compliance	through	approval	of	the	Plan	for	
Software	Aspects	of	Certification.	

 » Provide	compliance	substantiation.		

DO-178C Software Compliance for Aerospace & Defense

27

Table 2-12:
DO-178C Table A-10
Certification liaison
process

Best	practices	for	obtaining	certification	boil	down	to	closely	working	with	your	
certification	liaison,	who	may	be	better	known	as	your	Designated	Engineering	
Representative	(DER),	to	evaluate	for	compliance,	act	on	your	behalf	toward	approval,	
and	recommend	that	the	FAA	approve	your	certification.	

Overview	of	Certification	Process,	Section	10	
Section	10	is	for	informational	purposes	only	regarding	the	certification	process.	
It	mentions	the	types	of	systems	and	equipment	to	which	certification	applies.	It	
specifies	that	certification	authorities	do	not	certify	software	as	a	unique	stand-alone	
product. It must be part of the airborne system or equipment.

“‘Certification' applies to aircraft, engines, or propellers; and, in
respect of some certification authorities, auxiliary power units.
The certification authorities consider the software as part of the
airborne system or equipment installed on the certified product;
that is, the certification authorities do not certify the software as
a unique, stand-alone product.”

Approval	also	depends	upon	a	successful	demonstration	or	review	of	the	products	
produced.

Your	organization	will	need	to	produce	the	Plan	for	Software	Aspects	of	Certification	
(PSAC),	which	will	contain	the	certification	liaison	process.	The	PSAC	will	include	plans	
on	resolving	issues	identified	by	the	certification	liaison	and	obtaining	agreement	on	
the	plan.	The	table	below	lists	the	set	of	objectives	and	expected	output	artifacts.	

DO-178C Software Compliance for Aerospace & Defense

28

Software	Life	Cycle	Data,	Section	11	
Section	11	discusses	artifacts	like	the	data	and	documentation	produced	during	the	
software	life	cycle.	The	data	needs	to	be	unambiguous,	complete,	verifiable,	consistent,	
modifiable,	and	traceable.	It	also	must	be	in	various	forms	like	electronic	and	printed.	
Parasoft’s	automated	report	generation	and	analytics	web	dashboard	provide	much	of	
the	information	needed	within	various	artifacts	and	documents.		

The	artifacts	to	be	produced	during	the	software	life	cycle	include	the	source	code,	
object	code,	test	cases,	results,	problem	reports,	and,	of	course,	the	plans.	Here's	the	
full list.

 » Plan	for	software	aspects	of	
certification

 » Software	development	plan		

 » Software	verification	plan		

 » Software	configuration	management	
plan

 » Software	quality	assurance	plan		

 » Software	requirements	standards		

 » Software	design	standards		

 » Software	code	standards		

 » Software	requirements	data	

 » Design	description	

 » Source code

 » Executable	object	code		

 » Software	verification	cases	and	
procedures

 » Software	verification	results		

 » Software	life	cycle	environment	
configuration	index		

 » Software	configuration	index		

 » Problem	reports		

 » Software	configuration	management	
records

 » Software	quality	assurance	records		

 » Software	accomplishment	summary		

 » Trace data

 » Parameter	data	item	file	

DO-178C Software Compliance for Aerospace & Defense

29

Additional	Considerations,	Section	12	
Section	12	provides	additional	guidance	and	consideration	on	topics	that	can	have	
an	impact	on	objectives	and	activities	in	the	software	life	cycle.	For	example,	the	use	
of	or	modifications	to	previously	developed	software.	Section	12	provides	additional	
clarification	and	activities	to	perform	that	help	ensure	safety	and	recertification.	Here	
are	just	some	other	considerations	include:	

 » Changes	to	the	development	environment	such	as	processor,	programming	language,	
auto	code	generator,	development	tools,	and	the	like.		

 » Upgrading	a	development	baseline.	

 » Use	of	already	certified	software	on	an	alternate	type	of	aircraft.		

 » Use	of	certified	software	where	there's	a	change	in	the	compiler	or	processor.	

Based	on	the	consideration,	section	12	provides	additional	objectives	in	software	
configuration	management,	software	quality	assurance,	development	tool	qualification,	
and more.

Section	12	covers	the	importance	of	“Tool	Qualification”	and	determining	if	its	
needed. This is because if a tool is used that eliminates, reduces, or automates
processes,	teams	need	to	take	into	consideration	whether	the	tool	might	introduce	
errors into the life cycle.

The	following	criteria	should	be	used	to	determine	the	impact	of	the	tool:	

 » Criteria 1.	A	tool	whose	output	is	part	of	the	airborne	software	and	thus	could	insert	
an error.

 » Criteria 2. A tool that automates verification processes and thus could fail to detect
an	error,	and	whose	output	is	used	to	justify	the	elimination	or	reduction	of:	

 » Verification	processes	other	than	that	automated	by	the	tool,	or	

 » Development	processes	that	could	have	an	impact	on	the	airborne	software.	

 » Criteria 3.	A	tool	that,	within	the	scope	of	its	intended	use,	could	fail	to	detect	an	
error.

There	are	five	levels	of	tool	qualification,	TQL-1	through	TQL-5,	that	are	determined	
by	the	tool	use	and	its	potential	impact	on	the	software	life	cycle.	TQL-1	is	the	
most	rigorous	level.	The	tool	qualification	level	needs	to	be	coordinated	with	the	
certification	authority.

Table 2-13: DO-178C
Tool qualification level
determination

DO-178C Software Compliance for Aerospace & Defense

30

The	objectives,	activities,	guidance,	
and life cycle data required for each
tool	qualification	level	are	described	in	
DO-330,	“Software	Tool	Qualification	
Considerations.”			

Parasoft	supports	DO-178C	and	DO-330	
conformant	tool	qualification	processes	
with	an	automated	tool	qualification	kit.	
The	Tool	Qualification	Kit	automates	
the	process	of	creating	the	supporting	
documentation	required	in	using	C/
C++test	for	static	analysis,	unit	testing,	
and	coverage	requirements.		

Parasoft’s	Tool	Qualification	Kit	reduces	the	time	taken	to	perform	the	tool	qualification	
and	the	potential	for	human	error	by	leveraging	automation	to	guide	users	through	the	
following	workflow:	

1. Specify the use cases and capabilities to be used on the project.

2. Quickly	map	known	issues	in	the	tool	you’re	qualifying	to	the	features	of	the	tool	
you’re	using	in	development.	

3. Plan	and	capture	the	results	of	manual	testing	efforts.	

4. Execute	automated	tests.	

5.	 Bring	all	the	data	together	and	generate	the	critical	documents.

DO-178C Software Compliance for Aerospace & Defense

31

https://www.parasoft.com/solutions/compliance/tool-qualification/

Requirements for Compliance in
Testing
Static Analysis
Static	code	analysis	is	the	analysis	of	code	without	actual	code	execution.	Static	
analysis	exposes	safety	and	security	vulnerabilities	in	the	code	by	applying	a	
comprehensive	set	of	code	analysis	techniques	including:	

 » Pattern-based	analysis	

 » Data	flow	analysis	

 » Control	flow	analysis	

 » Abstract interpretation

 » Code metrics and more

These	methods	identify	memory	buffer	overflows,	divide	by	zero,	use	of	insecure	
libraries,	organization	coding	rules,	directive	violations,	and	so	forth.	

In	DO-178C,	the	objectives	for	static	analysis	fall	under	Section	6	related	to	software	
verification	processes.	The	objectives	of	static	analysis	focus	on	ensuring	that	the	
software	code	is	free	from	certain	types	of	defects	and	follow	good	coding	practices.	

For	example,	Section	6.3.4	Review	and	Analysis	of	Source	Code,	provides	an	overview	
of	the	software	verification	activities	required	to	review	code	in	terms	of	compliance,	
verifiability,	and	traceability.	However,	this	section	also	specifies	the	need	to	inspect	
the	code	for	conformance	to	standards,	accuracy,	and	consistency,	all	of	which	are	good	
applications	for	static	analysis.		

While	DO-178C	does	not	have	a	specific	requirement	for	static	analysis,	the	guidelines	
and	objectives	related	to	static	analysis	are	spread	across	sections	within	Chapter	6.	
It's	crucial	to	interpret	and	apply	these	guidelines	appropriately	in	the	context	of	the	
project	to	ensure	compliance	with	DO-178C	for	the	certification	of	airborne	software.	

DO-178C Software Compliance for Aerospace & Defense

32

Some	of	the	typical	requirements	for	static	analysis	in	DO-178C	may	include	the	
following.	

1. Tools.	Selecting	and	using	appropriate	static	analysis	tools	to	analyze	the	source	
code	for	defects	and	compliance	with	coding	standards.	

2. Coding	standards.	Ensuring	that	the	software	code	follows	a	set	of	predefined	
coding	standards	or	guidelines	to	improve	readability,	maintainability,	and	safety.	

3. Verification	of	software	requirements.	Using	static	analysis	to	verify	that	the	
software	code	correctly	implements	the	software	requirements	and	that	there	
are	no	discrepancies	between	the	requirements	and	the	code.	

4. Defect	identification	and	removal.	Identifying	and	removing	defects	such	as	coding	
errors,	potential	runtime	issues,	and	other	flaws	through	static	analysis.	

5.	 Traceability.	Ensuring	that	the	static	analysis	results	are	appropriately	documented	
and traced back to the specific requirements, source code, and any corrective
actions taken.

6.	 Tool qualification. If static analysis tools are used for safety-critical code, ensure
that	these	tools	are	qualified	appropriately	according	to	DO-330	Software	Tool	
Qualification	Considerations	and	that	their	usage	is	documented.	

Most	of	these	verification	activities	are	supported	through	the	automation	of	static	
analysis	using	modern	advanced	tools	like	Parasoft	C/C++test.	In	addition,	Parasoft	
provides code metrics on maintainability, clarity, testability, portability, robustness,
reusability,	complexity,	and	support	for	team	code	peer	reviews.	Dynamic	analysis,	
unit	testing,	and	other	runtime	error	detection	is	also	provided.		

Early	Defect	Detection	
Early	defect	detection	with	static	analysis	tools	can	significantly	improve	compliance	
with	DO-178C	by	addressing	potential	coding	issues	and	vulnerabilities	in	the	software	
development	process.	Static	analysis	analyzes	source	code	without	executing	it,	
identifying	defects	and	potential	issues	based	on	predefined	rules.	

Static	analysis	tools	can	detect	coding	errors	and	bugs	in	the	source	code	early	in	the	
development	process.	By	identifying	and	fixing	these	errors	early	on,	the	development	
team	can	prevent	such	defects	from	propagating	into	later	stages	of	development,	
where	they	might	be	more	difficult	and	costly	to	fix.	

Safety-critical	software	used	in	airborne	systems	must	be	protected	from	potential	
security	vulnerabilities.	Static	analysis	tools	can	identify	potential	security	weaknesses	
in	the	code,	such	as	buffer	overflows,	input	validation	issues,	and	other	security-related	
defects.	Addressing	these	vulnerabilities	early	in	the	development	process	enhances	
the	security	posture	of	the	software.	

DO-178C Software Compliance for Aerospace & Defense

33

DO-178C	requires	comprehensive	verification	activities	throughout	the	software	
development	life	cycle	(Chapter	6).	Static	analysis,	being	a	form	of	static	verification,	
allows	for	early	verification	of	the	source	code.	By	finding	and	addressing	defects	early	
on,	the	software	can	progress	through	subsequent	verification	stages	with	greater	
confidence,	saving	time	and	effort	in	the	long	run.	

By	adopting	static	analysis	early	in	the	software	development	process,	in	conjunction	
with	other	verification	and	validation	methods,	teams	can	proactively	address	defects	
and	security	vulnerabilities.	This	leads	to	a	more	streamlined	certification	process	and	
a	higher	likelihood	of	producing	reliable	and	safe	software	for	use	in	airborne	systems.	

Some	of	the	common	types	of	defects	that	Parasoft	C++test	static	analysis	can	detect	
include:	

 » Null	pointer	dereference	

 » Memory leaks

 » Buffer	overflows	and	underflows	

 » Uninitialized	variables	

 » Dead code

 » Resource	management	issues	

 » Concurrency issues

 » Security vulnerabilities

 » Performance	issues	

 » Complexity metrics

These	are	just	some	examples	of	the	types	of	defects	that	Parasoft	C++test	static	
analysis	can	detect.	Additionally,	static	analysis	tools	like	Parasoft	C++test	can	be	
customized	to	include	or	exclude	certain	types	of	checks	based	on	the	project's	
specific	requirements	and	coding	standards.	

Figure 3-7: Parasoft
C/C++test and DTP
dashboardParasoft

DO-178C Software Compliance for Aerospace & Defense

34

Coding	Standards	
Regarding	coding	standards,	DO-178C	does	not	prescribe	a	specific	set	of	coding	
standards	that	must	be	followed.	Instead,	it	provides	guidelines	and	objectives	for	
establishing	and	adhering	to	coding	standards	appropriate	for	the	development	of	
safety-critical	airborne	software.	

The	relevant	sections	in	DO-178C	that	pertain	to	coding	standards	are	primarily	found	
in	Chapter	6	Software	Verification	Process	and	Chapter	11	Software	Lifecycle	Data.	
Here's	what	DO-178C	typically	requires	regarding	coding	standards.	

 » Coding	Standard	Definition,	Section	11.8.	Define	coding	standards	for	the	project	
that	should	cover	rules	and	guidelines	related	to	programming	practices,	naming	
conventions, code layout, control structures, data structures, and other aspects
of	software	coding.	

 » Code	Review,	Section	6.3.4	d.	The	emphasis	is	on	the	importance	of	conducting	
code	reviews	to	ensure	compliance	with	the	coding	standards.	Code	reviews	
involve	thorough	inspection	of	code	and	related	artifacts.	The	process	can	be	
semi-automated	with	static	analysis	tools.		

 » Traceability	to	Coding	Standards,	Section	6.3.4	e. There should be traceability
between	the	software	requirements	and	the	coding	standards.	The	code	should	be	
written	in	accordance	with	the	established	coding	standards	and	this	relationship	
should be documented.

DO-178C	recognizes	that	different	
projects	may	have	different	coding	
standards	(for	example,	MISRA	
C/C++,	CERT	C/C++,	CWE,	OWASP,	
DISA	ASD	STIG,	and	so	on)	depending	
on factors such as the complexity of the
software,	the	criticality	of	the	system,	
and the development environment.
Therefore,	the	specific	coding	standards	
and rules are determined by the
development	team	while	still	satisfying	
the	guidelines	outlined	above.	

A	vital	part	of	the	certification	evidence	required	for	DO-178C	compliance	is	the	
documentation	collected	during	these	reviews	and	the	verification	process.	It’s	
important	that	the	coding	standard	support	the	inspection	and	the	documentation	
processes required.

DO-178C Software Compliance for Aerospace & Defense

35

MISRA C:2023

MISRA	C	is	a	set	of	coding	guidelines	for	the	C	programming	language,	versions	
C89/C90,	C99,	C11,	and	C18.	The	focus	of	the	standard	is	increasing	safety	of	software	
by	pre-emptively	preventing	programmers	from	making	coding	mistakes	that	can	
lead	to	runtime	failures	(and	possible	safety	concerns)	by	avoiding	known	problem	
constructs	in	the	C	language.		

MISRA	C	can	help	satisfy	the	requirements	of	DO-178C,	which	is	the	software	
standard	used	for	the	certification	of	airborne	systems.	Here's	how	MISRA	C	can	
fulfill	the	requirements.	

1. Checks	all	the	boxes	of	the	coding	standard	requirements	listed	in	the	previous	
section.

2. Provides	a	well-defined	and	widely	recognized	coding	standard	that	can	be	adopted	
by the development team to create consistent and reliable code.

3. Involves	regular	code	reviews	to	ensure	compliance	with	the	standard.	

The	adoption	of	MISRA	C	helps	minimize	the	potential	for	coding	errors	and	
ambiguities,	leading	to	improved	safety,	security,	and	reliability	of	the	software.	
The	coding	standard's	focus	on	robustness	and	code	correctness	aligns	well	with	
the	objectives	of	DO-178C	to	ensure	the	development	of	high-integrity	software	
for airborne systems.

It's	important	to	note	that	MISRA	C	is	not	a	guarantee	of	certification	compliance	
by	itself.	It's	one	of	the	tools	and	processes	that	contribute	to	the	overall	software	
development	and	verification	activities	required	for	DO-178C	certification.	
Additionally,	each	project	may	have	specific	requirements	and	constraints,	so	the	
MISRA	C	standard	may	need	to	be	tailored	or	supplemented	with	project-specific	
coding	rules	and	practices.	

Over	the	years,	many	developers	of	embedded	systems	were—and	still	are—
complaining	that	MISRA	C	was	too	stringent	of	a	standard	and	that	the	cost	of	writing	
fully	compliant	code	was	difficult	to	justify.	Realistically,	given	that	MISRA	C	is	applied	
in	safety-critical	software,	the	value	of	applying	the	standard	to	a	project	depends	on	
factors	such	as:		

 » Risk of a system malfunction because
of	a	software	failure		

 » Cost of a system failure to the business

 » Development	tools	and	target	platform		

 » Level	of	developer’s	expertise		

Programmers	must	find	a	practical	middle	ground	that	satisfies	the	spirit	of	the	standard	
and	still	claim	MISRA	compliance	without	wasting	effort	on	non	value	added	activities.		

DO-178C Software Compliance for Aerospace & Defense

36

Proof	of	MISRA	Compliance	

A	key	problem	that	developers	of	safety-critical	software	encounter	is	how	to	
demonstrate	and	prove	compliance	at	the	end	of	the	project.	There's	a	tendency	to	
add	more	information	into	the	reports	than	is	required.	It	can	become	a	contentious	
issue	resulting	in	wasted	time	and	effort	if	the	evaluation	criteria	are	based	on	
subjective	opinions	from	the	various	stakeholders.		

A	recommended	approach	to	improving	the	evaluation	of	compliance	readiness	is	to	
use	existing	templates	for	both	the	final	compliance	and	tool	qualification	report.	If	the	
information	is	not	required	by	the	standard,	avoid	adding	it.	Combining	extra	information	
is	not	only	a	waste	of	time,	but	also	introduces	a	risk	of	delaying	an	audit	process.	Having	
the	documentation	auto	generated	as	Parasoft	does,	is	the	ultimate	solution.	

The	MISRA	Compliance:	2020	document	is	also	helping	organizations	to	use	a	common	
language	articulating	the	compliance	requirements	by	defining	the	following	artifacts:	

 » Guidelines	Compliance	Summary	

 » Guideline	Enforcement	Plan	

 » Deviations Report

 » Guideline	Re-categorization	Plan	

The	following	Parasoft’s	screenshots	show	auto-generated	reports	with	links	to	other	
records	and/or	expansion	of	information	on	the	page.

Figure 3-8:
The Guidelines
Compliance Summary
is the primary record
of overall project
compliance.

DO-178C Software Compliance for Aerospace & Defense

37

Figure 3-9: The Guideline Enforcement Plan demonstrates how each MISRA guideline is verified.

Figure 3-10: The Deviations Report documents all of the approved deviation permits.

DO-178C Software Compliance for Aerospace & Defense

38

Figure 3-11: The Guideline Re-categorization Plan communicates how the guidelines are to be applied as part of the stakeholder/supplier relationship.

SEI/CERT

The	Software	Engineering	Institute	(SEI)	Computer	Emergency	Response	Team	(CERT)	
has	a	set	of	guidelines	to	help	developers	create	safer,	more	secure,	and	more	reliable	
software.	Started	in	2006	at	a	meeting	of	the	C	Standard	Committee,	the	first	CERT	C	
standard	was	published	in	2008	and	is	constantly	developing	and	evolving.		

There's	a	book	version	published	in	2016,	but	it	doesn't	include	the	latest	updates.	
This	standard	doesn’t	have	specific	frozen	releases	like	CWE	Top	25	and	OWASP	Top	
10.	The	standard	arose	from	a	large	community	of	over	3,000	people	with	a	focus	on	
engineering	and	prevention.	So	the	CERT	secure	coding	standards	focus	on	prevention	
of	the	root	causes	of	security	vulnerabilities	rather	than	treating	or	managing	the	
symptoms	by	searching	for	vulnerabilities.		

The	CERT	coding	guidelines	are	available	for	C,	C++,	Java,	Perl,	and	Android.	They	fall	
into	two	main	categories.		

1. Rules

2. Recommendations

Rules	are	guidelines	that	are	detectable	by	static	analysis	tools	and	require	strict	
enforcement,	while	recommendations	are	guidelines	that	have	a	lower	impact	and	are	
sometimes	difficult	to	analyze	automatically.		

DO-178C Software Compliance for Aerospace & Defense

39

Figure 3-12: SEI CERT
vulnerability priority
and cost diagram

CERT	includes	a	risk	assessment	system	that	combines	likelihood	of	occurrence,	
severity,	and	relative	difficulty	of	mitigation.	This	helps	developers	prioritize	which	
guideline	violations	are	the	most	important	to	investigate.	The	inclusion	of	mitigation	
effort	to	the	guideline	priority	is	an	important	addition	to	the	CERT	secure	coding	
standards,	which	many	other	standards	lack.		

The	cost	factor	allows	for	the	creation	of	the	CERT	bullseye	diagram	in	which	the	center	
bullseye	is	the	highest	severity	guidelines	that	are	more	difficult	to	fix.	The	benefit	of	
this	prioritization	is	focusing	on	the	most	critical	violations	that	provide	the	biggest	
bang	for	the	buck	in	security	improvement	while	helping	the	development	team	filter	
out	less	important	warnings.	

SEI	CERT	C/C++	Conformance	

According	to	the	SEI	CERT	C	documentation,	conformance "requires that the code not
contain	any	violations	of	the	rules	specified	in	this	standard.	If	an	exceptional	condition	
is	claimed,	the	exception	must	correspond	to	a	predefined	exceptional	condition,	and	
the	application	of	this	exception	must	be	documented	in	the	source	code.”		

Although	conformance	is	less	specific	than	standards	such	as	MISRA,	the	principles	
remain	similar.	Rules	should	be	followed,	and	deviations	should	only	occur	rarely	and	
be	well	documented.	Recommendations	should	be	used	when	possible	and	those	that	
aren’t	needed	should	be	documented.		

Violations	that	persist	in	the	source	code	need	to	be	documented.	However,	no	
deviation	is	acceptable	for	performance	or	usability	and	the	onus	is	on	the	developer	
to	demonstrate	that	the	deviation	will	not	lead	to	a	vulnerability.		

DO-178C Software Compliance for Aerospace & Defense

40

https://wiki.sei.cmu.edu/confluence/display/c/Conformance+Testing

Figure 3-13:
Parasoft DTP SEI
CERT C Compliance
dashboard

Parasoft	C/C++test	provides	comprehensive	CERT	compliance	dashboard	and	reports.	
Individual compliance reports are available on demand based on the latest build of the
software	or	any	previous	build.		

These	reports	can	be	sorted	and	navigated	to	investigate	violations	in	more	
detail.	A	conformance	test	plan	is	available	to	correlate	the	CERT	guideline	with	
the	corresponding	Parasoft	static	analysis	checker,	which	is	an	important	tool	
if	conformance	documentation	is	needed	for	audit	purposes.	In	addition,	all	the	
interesting	reports,	as	specified	by	the	team,	are	in	a	single	PDF	available	for	
download	by	auditors.

Figure 3-14:
Parasoft's CERT
Guidelines Compliance
Report summary

DO-178C Software Compliance for Aerospace & Defense

41

Support	for	CERT	C/C++	in	Parasoft	C/C++test		

Parasoft	provides	comprehensive	support	for	CERT	C	and	CERT	C++	secure	coding	
standards	with	complete	coverage	of	all	the	CERT	C/C++	guidelines	including	rules	and	
recommendations	that	are	detectable	by	static	analysis.	Checker	names,	dashboards,	
and	reports	use	the	CERT	naming	convention	to	make	conformance	and	auditing	easier.	
A	CERT	conformance	dashboard,	which	includes	the	CERT	risk	score,	helps	developers	
focus	on	the	most	critical	violations.	

CWE

CWE	(Common	Weakness	Enumeration)	is	a	list	of	discovered	software	weaknesses	
based	on	the	analysis	of	reported	vulnerabilities	(CVEs).	The	collection	of	CVEs	and	
CWEs	is	a	U.S.	government-funded	initiative	developed	by	the	software	community	and	

managed	by	the	MITRE	organization.	
In	its	entirety,	the	CWE	list	contains	
over	900	different	software	and	
hardware	quality	and	security	issues.		

These	900+	items	are	organized	in	
more	usable	lists	such	as	the	well-
known	CWE	Top	25.	The	Top	25	lists	
the	most	common	and	dangerous	
security	weaknesses,	which	are	all	
exploits	that	have	a	high	chance	
of	occurring	and	the	impact	of	
exploiting	the	weakness	is	large.	The	
software	weaknesses	documented	by	
a	CWE	are	the	software	implicated	
in	a	set	of	discovered	vulnerabilities	
(documented	as	CVEs)	when	analysis	

was	performed	to	discover	the	root	cause.	CVEs	are	specific	observed	vulnerabilities	in	
software	products	that	have	an	exact	definition	of	how	to	exploit	them.		

The	current	version	of	CWE	Top	25	is	from	2023.	An	updated	Top	25	is	currently	in	
process	with	improved	linking	to	CVEs	and	the	NVD.	Ranking	considers	realworld	
information	so	that	it	truly	represents	the	Top	25	application	security	issues	today.	
As	soon	as	it	is	released,	Parasoft	will	have	updated	support	for	the	latest	version.

DO-178C Software Compliance for Aerospace & Defense

42

Rank ID Name Rank	Change	
vs. 2022

1 CWE-787 Out-of-bounds Write 0
2 CWE-79 Improper	Neutralization	of	Input	During	Web	Page	

Generation	('Cross-site	Scripting')	
0

3 CWE-89 Improper	Neutralization	of	Special	Elements	used	in	
an	SQL	Command	('SQL	Injection')	

0

4 CWE-416	 Use	After	Free	 3
5 CWE-78	 Improper	Neutralization	of	Special	Elements	used	in	

an	OS	Command	('OS	Command	Injection')	
1

6 CWE-20 Improper	Input	Validation	 -2
7 CWE-125 Out-of-bounds Read -2
8 CWE-22	 Improper	Limitation	of	a	Pathname	to	a	Restricted	

Directory	('Path	Traversal')	
0

9 CWE-352	 Cross-Site	Request	Forgery	(CSRF) 0
10 CWE-434	 Unrestricted	Upload	of	File	with	Dangerous	Type 0
11 CWE-862	 Missing	Authorization	 5
12 CWE-476	 NULL	Pointer	Dereference	 -1
13 CWE-287	 Improper	Authentication	 1
14 CWE-190	 Integer	Overflow	or	Wraparound	 -1
15 CWE-502	 Deserialization	of	Untrusted	Data	 -3
16 CWE-77	 Improper	Neutralization	of	Special	Elements	used	in	

a	Command	('Command	Injection')	
1

17 CWE-119 Improper	Restriction	of	Operations	within	the	
Bounds	of	a	Memory	Buffer	

2

18 CWE-798 Use	of	Hard-coded	Credentials	 -3
19 CWE-918 Server-Side	Request	Forgery	(SSRF) 2
20 CWE-306 Missing	Authentication	for	Critical	Function -2
21 CWE-362	 Concurrent	Execution	using	Shared	Resource	with	

Improper	Synchronization	('Race	Condition')	
1

22 CWE-269	 Improper	Privilege	Management	 7
23 CWE-94 Improper	Control	of	Generation	of	Code	('Code	

Injection')		
2

24 CWE-863 Incorrect	Authorization 4
25 CWE-276	 Incorrect	Default	Permissions	 -5

Figure 3-15: The 2023 CWE Top 25

DO-178C Software Compliance for Aerospace & Defense

43

For	software	teams	that	have	a	good	handle	on	the	Top	25,	there’s	another	grouping	
of	the	next	most	common	and	impactful	vulnerabilities	called	the	CWE	CUSP.	Another	
way	to	think	of	these	are	the	top	25	honorable	mentions.		

The	CWE	uses	a	risk	scoring	method	to	rank	the	Top	25	and	on	the	CUSP.	This	
score	takes	into	consideration	the	technical	impact	of	a	software	weakness	(how	
dangerous	an	exploit	of	the	weakness	is	in	the	real	world)	as	measured	by	the	
CWSS	(Common	Weakness	Scoring	System).	Examples	of	technical	impacts	from	
vulnerabilities	may	include:	

 » Denial	of	service	(DoS)	

 » Distributed	denial	of	service	(DDoS)	

 » Read	or	write	access	to	protected	information	

 » Unauthorized	access	and	more	

The	details	of	these	methods	aren’t	too	important,	but	the	sorted	list	is	useful	in	
understanding	which	vulnerabilities	to	be	concerned	about	the	most.	As	an	example,	
it’s	possible	that	your	application	is	purely	internal	and	DoS	issues	aren’t	critical	
for	you.	Being	able	to	prioritize	on	the	most	important	weaknesses	for	your	own	
application	can	help	overcome	overwhelm	with	static	analysis	violations.		

CWE	Top	25	and	On	the	Cusp	Compliance	

Introducing	the	coding	standard	compliance	process	into	the	team	development	
workflow	isn’t	an	easy	task.	As	such,	it's	important	to	select	a	tool	that	will	help	
in	achieving	compliance	without	imposing	too	much	overhead	and	without	the	
requirement	for	additional	manual	procedures.	The	following	points	are	important	
decision-making	factors	when	selecting	the	solution	for	static	analysis.		

The	CWE	Top	25	and	its	lesser	known	sibling,	On	the	Cusp,	are	not	coding	standards	
per	se	but	a	list	of	weaknesses	to	avoid	to	improve	security.	To	be	CWE	compliant,	a	
project	should	be	able	to	prove	that	it	has	made	reasonable	efforts	to	detect	and	avoid	
these	common	weaknesses.		

Parasoft’s	advanced	static	analysis	tools	for	C,	C++,	Java,	and	.NET	are	officially	
compatible	with	CWE,	providing	automated	detection	of	both	Top	25	and	On	the	
Cusp	weaknesses	and	many	more.	CWE-centric	dashboards	give	users	quick	access	to	
standard	violations	and	current	project	status.	A	built-in	CWE	Top	25	configuration	is	
available	for	C,	C++,	.NET,	and	Java	with	full	coverage	of	all	the	25	common	weaknesses.	

44

The	Parasoft	tools	include	information	from	the	Common	Weakness	Risk	Analysis	
Framework	(CWRAF),	such	as	technical	impact,	so	you	can	benefit	from	the	same	
type	of	prioritization	based	on	risk	and	technical	impact	and	weaknesses	found	in	
your	own	code.		

Parasoft	also	supports	detailed	compliance	reporting	to	streamline	audit	processes.	
The	web	dashboards	provide	the	link	to	compliance	reports	for	a	complete	picture	of	
where	a	project	stands.	In	addition,	the	CWE	Weakness	Detection	Plan	maps	the	CWE	
entry	against	the	checkers	that	are	used	to	detect	the	weakness.	This	helps	illustrate	
how	compliance	was	achieved	to	an	auditor,	and	the	audit	reports	are	available	to	
download	as	PDFs	for	easy	reporting.	

Figure 3-16:
Parasoft DTP
CWE Compliance
dashboard

Figure 3-17:
Parasoft's CWE
Guidelines Compliance
Report summary

DO-178C Software Compliance for Aerospace & Defense

45

Unit Testing
Software	verification	is	inherently	part	of	safety-critical	software	development.	
Testing,	by	way	of	execution,	is	a	key	way	to	demonstrate	the	implementation	of	
requirements	and	delivery	of	quality	software.	Unit	testing	is	the	verification	of	low-
level	requirements.	It	ensures	that	each	software	unit	does	what	it’s	required	to	do	
within	its	expected	quality	of	service	requirements—safety,	security,	and	reliability.	

Safety	and	security	requirements	instruct	that	software	units	don’t	behave	in	
unforeseen	ways	where	the	system	is	not	susceptible	to	hijacking,	data	manipulation,	
theft,	or	corruption.	

Figure 4-1: The V-model
development process
showing the relationship
between each phase
and the verification and
validation inferred at
each stage of testing.

In	terms	of	the	classic	V-model	process	of	development,	unit	test	execution	is	a	
verification	practice	to	ensure	the	module	is	designed	correctly.	DO-178C	does	not	
specifically	mandate	unit	testing	by	name,	but	rather	uses	the	terms	high-	and	low-level	
requirements-based	testing.		

Validates
Requirements

System
Design

Architecture
Design

Module
Design

Unit
Testing

Integration
Testing

System
Testing

Acceptance
Testing

Coding

Verifies

Verifies

Verifies

DO-178C Software Compliance for Aerospace & Defense

46

Low-level	testing	is	commonly	understood	to	be	unit	testing.	In	particular,	the	
requirements	for	this	type	of	requirements-based	testing	include	the	following.	

 » Software	Testing,	Section	6.4.	Outlines	the	software	validation	process,	which	
includes	various	testing	activities	such	as	software	requirements-based	testing,	
low-level	requirements	testing,	and	high-level	requirements-based	testing.	Unit	
testing	is	typically	considered	a	part	of	low-level	requirements	testing,	Section	
6.4.3	c,	where	individual	software	units	like	functions,	procedures,	or	methods	
are tested in isolation from the rest of the system.

DO-178C	lists	the	following	as	typical	errors	that	unit	testing	reveals.	

 » Failure	of	an	algorithm	to	satisfy	a	software	requirement	

 » Incorrect loop operations

 » Incorrect	logic	decisions	

 » Failure	to	process	correctly	legitimate	combinations	of	input	conditions	

 » Incorrect	responses	to	missing	or	corrupted	input	data	

 » Incorrect	handling	of	exceptions,	such	as	arithmetic	faults	or	violations	of	
array limits

 » Incorrect computation sequence

 » Inadequate	algorithm	precision,	accuracy,	or	performance	

 » Software	Verification	and	Case	and	Procedures,	Section	11.13. Details the
requirements	for	verification	cases	and	procedures,	which	include	the	test	cases	
used	for	various	testing	activities,	including	unit	testing.	

 » Software	Verification	Results,	Section	11.14. Covers the documentation and
recording	of	verification	results,	which	include	the	results	of	unit	testing	activities.	

DO-178C	does	not	prescribe	specific	testing	methodologies	or	tools	but	does	
emphasize	the	need	for	thorough	testing	to	ensure	the	safety,	security,	and	reliability	
of	airborne	software.	Tests	must	be	performed	at	all	levels	of	the	system	along	with	
is	traceability	between	requirements,	design,	source	code,	and	tests.	In	addition,	test	
plans,	test	cases	and	results	must	be	documented	for	certification.		

DO-178C Software Compliance for Aerospace & Defense

47

Unit	Test	Methods	
Requirement-Based Tests

These	tests	directly	test	functionality	and	quality	of	service	as	specified	in	each	
requirement.	Test	automation	tools	need	to	support	bidirectional	traceability	of	
requirements	to	their	tests	and	the	requirements	testing	coverage	reports	to	
show	compliance.		

High-level	requirements	are	derived	from	top-level	system	requirements.	They	
decompose	a	system	requirement	into	various	high-level	functional	and	nonfunctional	
requirements.	This	phase	of	the	requirements	decomposition	helps	in	the	architectural	
design	of	the	system	under	development.		

High-level	requirements	clarify	and	help	define	expected	behavior	as	well	as	safety	
tolerances,	security	expectations,	reliability,	performance,	portability,	availability,	

scalability,	and	more.	Each	high-level	requirement	
links	up	to	the	system	requirement	that	it	satisfies.	
In	addition,	high-level	test	cases	are	created	
and	linked	to	each	high-level	requirement	for	
the	purpose	of	its	verification	and	validation.	
This	software	requirements	analysis	process	
continues	as	each	high-level	requirement	is	further	
decomposed	into	low-level	requirements.	

Low-level	requirements	are	software	requirements	
derived	from	high-level	requirements.	They	further	
decompose	and	refine	the	specification	of	the	
software's	behavior	and	quality	of	service.		

These	requirements	drill	down	to	another	level	of	abstraction.	They	map	to	individual	
software	units	and	are	written	in	a	way	that	facilitates	software	detail	design	and	
implementation.	Traceability	is	established	from	each	low-level	requirement	up	to	its	
high-level	requirement	and	down	to	the	low-level	tests	or	unit	test	cases	that	verify	
and validate it.

Unit	testing	becomes	about	isolating	the	function,	method,	or	procedure.	It’s	done	
by	stubbing	and	mocking	out	dependencies	and	forcing	specific	paths	of	execution.	
Stubs	take	the	place	of	the	code	in	the	unit	that's	dependent	on	code	outside	of	the	
unit.	They	also	provide	the	developer	or	tester	with	the	ability	to	manipulate	the	
response	or	result	so	that	the	unit	can	be	exercised	in	various	ways	and	for	various	
purposes, for example, to ensure that the unit performs reliably, is safe, and is also
free	from	security	vulnerabilities.	

DO-178C Software Compliance for Aerospace & Defense

48

Interface Tests

Interface	tests	ensure	programming	interfaces	behave	and	perform	as	specified.	Test	
tools	need	to	create	function	stubs	and	data	sources	to	emulate	behavior	of	external	
components	for	automatic	unit	test	execution.	

Fault Injection Tests

Fault	injection	tests	use	unexpected	inputs	and	introduce	failures	in	the	execution	of	
code	to	examine	failure	handling	or	lack	thereof.	Test	automation	tools	must	support	
injection	of	fault	conditions	using	function	stubs	and	automatic	unit	test	generation	
using	a	diverse	set	of	preconditions,	such	as	min,	mid,	max,	and	heuristic	value	testing.		

Resource Usage Evaluation

These	tests	evaluate	the	amount	of	memory,	file	space,	CPU	execution,	or	other	target	
hardware	resources	used	by	the	application.		

Test	Case	Drivers	
Analysis of Requirements

Clearly,	every	requirement	drives,	at	minimum,	a	single	unit	test	case.	Although	test	
automation	tools	don’t	generate	tests	directly	from	requirements,	they	must	support	
two-way	traceability	from	requirements	to	code	and	requirements	to	tests,	and	
maintain	requirements,	tests,	and	code	coverage	information.	

Generation & Analysis of Equivalence Classes

Test	cases	must	ensure	that	units	behave	in	the	same	manner	for	a	range	of	inputs,	
not	just	cherry-picked	inputs	for	each	unit.	Test	automation	tools	must	support	test	
case	generation	using	data	sources	to	efficiently	use	a	wide	range	of	input	values.	
Parasoft	C/C++test	uses	factory	functions	to	prepare	sets	of	input	parameter	values	for	
automated	unit	test	generation.		

Analysis of Boundary Values

Automatically	generated	test	cases,	like	heuristic	values	and	boundary	values,	employ	
data	sources	to	use	a	wide	range	of	input	values	in	tests.	

Error Guessing

The	error	guessing	method	uses	the	function	stubs	mechanism	to	inject	fault	conditions	
into	tested	code	flow	analysis	results	and	can	be	used	to	write	additional	tests.	

DO-178C Software Compliance for Aerospace & Defense

49

Automated	Test	Execution	&	Test	Case	Generation	
Test	automation	provides	large	benefits	to	safety-critical	embedded	device	software.	
Moving	away	from	test	suites	that	require	a	lot	of	manual	intervention	means	that	
testing	can	be	done	quicker,	easier,	and	more	often.		

Offloading	this	manual	testing	effort	frees	up	time	for	better	test	coverage	and	other	
safety	and	quality	objectives.	An	important	requirement	for	automated	test	suite	
execution	is	being	able	to	run	these	tests	on	both	host	and	target	environments.		

Target-Based Testing

Automating	testing	of	embedded	software	is	more	challenging	due	to	the	complexity	
of	initiating	and	observing	tests	on	embedded	targets,	not	to	mention	the	limited	
access	to	target	hardware	that	software	teams	have.		

DO-178C	requires	testing	software	in	a	representative	environment	that	reflects	the	
actual	deployment	conditions.	This	includes	testing	on	the	target	hardware	or	using	
a	software	environment	that	closely	resembles	the	final	target	environment.	This	
approach	is	required	to	ensure	that	the	software	operates	correctly	and	reliably	in	
the	actual	aircraft	or	airborne	system.	

Software	test	automation	is	essential	to	make	embedded	testing	workable	on	a	
continuous	basis	from	host	development	system	to	target	system.	Testing	embedded	
software	is	particularly	time	consuming.	Automating	the	regression	test	suite	provides	
considerable	time	and	cost	savings.	In	addition,	C/C++test	CT	and	C/C++test	perform	
code	coverage	data	collection	from	the	target	system,	which	is	essential	for	validation	
and standards compliance.

Traceability	between	test	cases,	test	results,	source	code,	and	requirements	must	be	
recorded	and	maintained.	For	those	reasons,	data	collection	is	critical	in	test	execution.	

Parasoft	C/C++test	is	offered	with	its	test	harness	optimized	to	take	minimal	additional	
overhead	for	the	binary	footprint	and	provides	it	in	the	form	of	source	code,	where	it	
can	be	customized	if	platform-specific	modifications	are	required.	 

Figure 4-2:
A high-level view of
deploying, executing,
and observing tests
from host to target
in Parasoft C/C++
testing solutions.

DO-178C Software Compliance for Aerospace & Defense

50

One	huge	benefit	that	the	Parasoft	C/C++test	solution	offers	is	its	dedicated	
integrations	with	embedded	IDEs	and	debuggers	that	make	the	process	of	executing	
test	cases	smooth	and	automated.	Supported	IDE	environments	include:	

 » VS	Code	

 » Eclipse	

 » Green	Hills	Multi	

 » Wind River Workbench

 » IAR	EW	

 » ARM	MDK	

 » ARM DS-5

 » TI CCS

 » Visual	Studio	

 » Many more

Automated Test Case Generation

Unit	test	automation	tools	universally	support	some	sort	of	test	framework,	which	
provides	the	harness	infrastructure	to	execute	units	in	isolation	while	satisfying	
dependencies	via	stubs.	Parasoft	C/C++test	is	no	exception.	Part	of	its	unit	test	
capability	is	the	automated	generation	of	test	harnesses	and	the	executable	
components	needed	for	host	and	target-based	testing.		

Test	data	generation	and	management	is	by	far	the	biggest	
challenge	in	unit	testing.	Test	cases	are	particularly	
important	in	safety-critical	software	development	because	
they	must	ensure	functional	requirements	and	test	for	
unpredictable behavior, security, and safety requirements.
All	while	satisfying	test	coverage	criteria.	

Parasoft	C/C++test	automatically	generates	test	cases	
like	the	popular	CppUnit	format.	By	default,	C/C++test	
generates	one	test	suite	per	source/header	file.	It	can	also	
be	configured	to	generate	one	test	suite	per	function	or	one	
test	suite	per	source	file.		

Safe	stub	definitions	are	automatically	generated	to	replace	
"dangerous"	functions,	which	include	system	I/O	routines	
such	as	rmdir(),	remove(),	rename(),	and	so	on.	In	addition,	
stubs	can	be	automatically	generated	for	missing	function	
and	variable	definitions.	User	defined	stubs	can	be	added	
as needed.

Parasoft C/C++
automated test case
generation, in this
case, one test suite
per function

DO-178C Software Compliance for Aerospace & Defense

51

Regression Testing
As	part	of	most	software	development	processes,	regression	testing	is	done	after	
changes	are	made	to	software.	These	tests	determine	if	the	new	changes	had	an	impact	
on	the	existing	operation	of	the	software.		

DO-178C	doesn't	explicitly	mention	regression	testing,	but	it	is	a	good	engineering	
practice	and	is	widely	employed	in	the	aerospace	industry	to	verify	the	stability	and	
correctness	of	the	software	throughout	its	development	lifecycle.	Requirements	around	
the	software	and	hardware	integration	process	imply	the	need	to	maintain	up-to-date	
verification	and	validation	after	any	changes.	

 » Requirements-based	Hardware/Software	Integration	Testing,	Section	6.4.3.
Integration	testing	is	a	level	of	testing	in	DO-178C	that	verifies	the	interactions	
between	different	software	units.	When	changes	are	made	to	software	components	
or	units,	regression	testing	is	necessary	to	verify	that	the	modifications	have	not	
adversely	affected	the	integrated	system.	

 » Integration	Process,	Section	5.4.	Focuses	on	the	integration	of	software	
components	and	emphasizes	that	the	integration	process	should	be	planned	and	
controlled.	Integrating	new	or	modified	software	units	requires	regression	testing	
to	ensure	that	the	system's	overall	behavior	remains	correct	and	that	no	unintended	
side effects have been introduced.

 » Software	Verification	Results,	Section	11.14. Covers the documentation and
recording	of	verification	results,	including	the	results	of	testing	activities.	
If	regression	testing	is	performed,	the	results	should	be	documented	to	
demonstrate	that	the	changes	did	not	negatively	impact	the	system.	

Regression	tests	are	necessary,	but	they	only	indicate	that	recent	code	changes	have	
not	caused	tests	to	fail.	There's	no	assurance	that	these	changes	will	work.	In	addition,	
the	nature	of	the	changes	that	motivate	the	need	to	do	regression	testing	can	go	
beyond	the	current	application	and	include	changes	in	hardware,	operating	system,	
and	operating	environment.	

DO-178C Software Compliance for Aerospace & Defense

52

Software	Regression	Testing	in	Airborne	Systems		
In	safety-critical	software	development,	validation	is	critical	in	proving	correct	
functionality,	safety,	and	security.	Tests	are	needed	for	two	primary	reasons.	

1. Confirm	any	changes	to	the	application	to	ensure	functionality.	

2. Verify	that	there	aren't	any	unforeseen	impacts	on	the	rest	of	the	system.		

If	a	test	case	previously	passed	but	now	fails,	a	potential	regression	has	been	identified.	
The	failure	could	be	caused	by	new	functionality,	in	which	the	test	case	may	need	to	be	
updated	so	that	it	takes	into	consideration	changes	in	input	and	output	values.		

Regression	testing	of	embedded	systems	also	includes	the	execution	of	the	following	
types	of	test	cases:	

 » Unit

 » Integration	

 » System

 » Performance	

 » Stress and more

In fact, all previously created test cases need to be executed to ensure that no
regressions	exist	and	that	a	new	dependable	software	version	release	is	constructed.	
This	is	critical	because	each	new	software	system	or	subsystem	release	is	built	upon	it.	
If	you	don’t	have	a	solid	foundation	the	whole	thing	can	collapse.	

Parasoft	C/C++test	supports	the	creation	of	regression	testing	baselines	as	an	
organized	collection	of	tests	and	automatically	verifies	all	outcomes.	These	tests	
are	run	automatically	on	a	regular	basis	to	verify	whether	code	modifications	change	
or	break	the	functionality	captured	in	the	regression	tests.	If	any	changes	are	
introduced,	these	test	cases	will	fail	to	alert	the	team	to	the	problem.	During	
subsequent	tests,	C/C++test	will	report	tasks	if	it	detects	changes	to	the	behavior	
captured	in	the	initial	test.		

DO-178C Software Compliance for Aerospace & Defense

53

How	to	Decide	What	to	Regression	Test	
The	key	challenge	with	regression	testing	is	determining	what	parts	of	an	application	
to	test.	It	is	common	to	default	to	executing	all	regression	tests	when	there’s	doubt	
on	what	impacts	recent	code	changes	have	had—the	all	or	nothing	approach.		

For	large	software	projects,	this	becomes	a	huge	undertaking	and	drags	down	the	
productivity	of	the	team.	This	inability	to	focus	testing	hinders	much	of	the	benefits	
of	iterative	and	continuous	processes,	potentially	exacerbated	in	embedded	software	
where	test	targets	are	a	limited	resource.	

A couple of tasks are required here.

 » Identify	which	tests	need	to	be	re-executed.	

 » Focus	the	testing	efforts	(unit	testing,	automated	functional	testing,	and	manual	
testing)	on	validating	the	features	and	related	code	that	are	impacted	by	the	most	
recent	changes.		

Developers	and	testers	can	get	a	clear	
understanding	of	the	changes	in	the	codebase	
between	builds	using	the	Process	Intelligence	
Engine	(PIE)	within	Parasoft	DTP	(Development	
Testing	Platform)	combined	with	Parasoft’s	
proprietary	coverage	analysis	engines:	

 » C/C++test	for	C	and	C++	

 » dotTEST	for	C#	

 » Jtest	for	Java		

With	this	combination,	teams	can	improve	
efficiency	and	achieve	the	promise	of	Agile.		

This	form	of	smart	test	execution	is	called	test	
impact	analysis.	It's	sometimes	referred	to	as	
change-based	testing.	

DO-178C Software Compliance for Aerospace & Defense

54

Figure 5-1: An example
change-based testing
report from Parasoft
DTP showing areas of
the code that are and
are not tested.

Understand	the	Impact	of	Code	Changes	on	Testing	With	Test	
Impact	Analysis	
Test	impact	analysis	uses	data	collected	during	test	runs	and	changes	in	code	between	
builds	to	determine	which	files	have	changed	and	which	specific	tests	touched	those	
files.	Parasoft’s	analysis	engine	can:	

 » Analyze	the	delta	between	two	builds.	

 » Identify	the	subset	of	regression	tests	that	need	to	be	executed.		

 » Understand	the	dependencies	on	the	units	modified	to	determine	what	ripple	effect	
the	changes	have	made	on	other	units.		

Parasoft	Jtest	and	dotTEST	provide	insight	into	the	impact	of	software	changes.	
Each	solution	recommends	where	to	add	tests	and	where	further	regression	testing	
is needed.

DO-178C Software Compliance for Aerospace & Defense

55

Software Integration Testing
Integration	testing	follows	unit	testing	with	the	goal	of	validating	the	architectural	
design.	It	ensures	that	higher	level	functional	capabilities	in	software	components,	
including	subsystems	and	not	units,	behave	and	perform	as	expected.	Testing	software	
integrations	can	be	done	bottom	up	and	top	down	with	a	combination	of	approaches	in	
many	software	organizations.		

Integration	testing	is	a	critical	aspect	of	the	software	verification	process	in	DO-178C.	
The	explicit	requirements	for	integration	testing	can	be	found	primarily	in	Section	5.4	
Integration	Process	and	Section	6.4	Software	Testing.		

Section	6.4.3	Requirements-Based	Testing	Methods	in	DO-178C	requires	hardware	and	
software	requirements-based	testing,	which	includes	integration	testing.	Section	6.4.3	
b	is	more	specific	and	outlines	requirements-based	integration	testing	as	a	method	that	
concentrates	on	the	“inter-relationships	between	the	software	requirements"	and	on	
the	"implementation	of	requirements	by	the	software	architecture.”		

DO-178C	lists	the	following	typical	errors	revealed	by	integration	testing.	

 » Incorrect	interrupt	handling.	

 » Failure to satisfy execution time requirements.

 » Incorrect	software	response	to	hardware	transients	or	hardware	failures,	for	
example,	start-up	sequencing,	transient	input	loads,	and	input	power	transients.	

 » Data	bus	and	other	resource	contention	problems,	for	example,	memory	mapping.	

 » Inability of built-in test to detect failures.

 » Errors	in	hardware/software	interfaces.	

 » Incorrect behavior of control loops.

 » Incorrect	control	of	memory	management	hardware	or	other	hardware	devices	
under	software	control.	

 » Stack	overflow.	

 » Incorrect	operation	of	mechanism(s)	used	to	confirm	the	correctness	and	
compatibility	of	field-loadable	software.	

 » Violations	of	software	partitioning.	

 » Incorrect	initialization	of	variables	and	constants.	

DO-178C Software Compliance for Aerospace & Defense

56

Figure 6-1: The V-model
development process
showing the relationship
between each phase
and the verification and
validation inferred at
each stage of testing.

 » Parameter	passing	errors.	

 » Data	corruption,	especially	global	data.	

 » Inadequate end-to-end numerical resolution.

 » Incorrect	sequencing	of	events	and	operations.	

Bottom-Up	Integration	
This	approach	begins	by	taking	a	unit	test	case	and	removing	stubs	and/or	mocks	to	
incorporate	additional	software	units	to	construct	higher-level	functionality	that	can
be	tested.	Functionality	maps	to	or	equates	to	a	high-level	requirement.	Integration	
test	cases	are	used	to	verify	and	validate	high-level	requirements.	

Top-Down	Integration		
In	this	testing,	the	highest-level	software	components	or	modules	are	tested	first.	
Progressively,	testing	of	lower-level	modules	follows	or	functional	capabilities	map	to	
high-level	requirements.	This	approach	assumes	significant	subsystems	are	complete	
enough	to	be	tested	as	a	whole.	

The	V-model	is	good	for	illustrating	the	relationship	between	the	stages	of	
development	and	stages	of	validation.	At	each	testing	stage,	more	complete	portions	
of	the	software	are	validated	against	the	phase	that	defines	it.		

For	some,	the	V-model	might	imply	a	Waterfall	development	method.	However,	this	
is not the case. DO-178C and previous versions of the standard do not specify a
development	methodology.	The	V-model	shows	a	required	set	of	development	phases.	
Organizations	determine	how	to	address	those	phases.	Teams	can	adopt	a	Waterfall,	
Agile,	Spiral,	or	any	development	methodology,	and	be	compliant	to	the	standard.	

Validates
Requirements

System
Design

Architecture
Design

Module
Design

Unit
Testing

Integration
Testing

System
Testing

Acceptance
Testing

Coding

Verifies

Verifies

Verifies

DO-178C Software Compliance for Aerospace & Defense

57

While	the	act	of	executing	tests	and	gathering	their	results	is	considered	software	
validation,	it’s	supported	by	a	parallel	verification	process	that	involves	the	following	
activities	to	make	sure	teams	are	building	the	process	and	the	product	correctly.		

 » Reviews	

 » Walkthroughs	

 » Code analysis

 » Traceability

 » Test

 » Code	coverage	and	more	

The	key	role	of	verification	is	to	ensure	that	the	building	of	delivered	artifacts	from	the	
previous	stage	to	specification	is	compliant	with	company	and	industry	guidelines.	

Integration	&	System	Testing	as	Part	of	a	Continuous	Testing	
Process	
Performing	some	level	of	test	automation	is	foundational	for	continuous	testing. Many	
organizations	start	by	simply	automating	manual	integration	and	system	testing	(top	
down)	or	unit	testing	(bottom	up).	

To	enable	continuous	testing,	organizations	need	to	focus	on	creating	a	scalable	test	
automation	practice	that	builds	on	a	foundation	of	unit	tests	that	are	isolated	and	faster	
to	execute.	Once	unit	testing	is	fully	automated,	the	next	step	is	integration	testing	and	
eventually	system	testing.		

Continuous	testing	leverages	automation	and	data	derived	from	testing	to	provide	
a	realtime,	objective	assessment	of	the	risks	associated	with	a	system	under	
development.	Applied	uniformly,	it	allows	both	business	and	technical	managers	
to	make	better	tradeoff	decisions	between	release	scope,	time,	and	quality.	

Continuous	testing	is	a	powerful	testing	methodology	that	ensures	continuous	code	
quality	through	the	SDLC.	It	enforces	compliance	in	static	code	analysis	and	is	always	
identifying	safety	and	security	defects	during	each	developer's	commit	action	by	also	
integrating	unit,	integration,	and	system	testing	in	the	loop.	

DO-178C Software Compliance for Aerospace & Defense

58

Analysis	&	Reporting	in	Support	of	Integration	&	System	
Testing	
Parasoft	test	automation	tools	support	the	validation	(actual	execution	testing	
activities)	in	terms	of	test	automation	and	continuous	testing.	These	tools	also	support	
the	verification	of	these	activities,	which	means	supporting	the	process	and	standard	
requirements.	Key	aspects	of	safety-critical	software	development	are	requirements	
traceability	and	code	coverage.		

DO-178C	considers	traceability	a	key	activity	and	artifact	of	the	development	process.	
Sections	5.4	Software	Development	Process	and	6.4	Software	Testing	require	
bidirectional	traceability	between	high-level	and	low-level	requirements	and	the	
implementation,	verification,	and	validation	of	assets,	which	include:	

 » Source code

 » Requirement documents

 » Test results

 » Development plans and more

Requirements	analysis	requires	“All	software	requirements	should	be	identified	in	such	
a	way	as	to	make	it	possible	to	demonstrate	traceability	between	the	requirement	and	
software	system	testing.”	Providing	a	requirements	traceability	matrix	helps	satisfy	
this requirement.

Figure 6-2:
A continuous
testing cycle

The	diagram	below	illustrates	how	different	phases	of	testing	are	part	of	a	continuous	
process that relies on a feedback loop of test results and analysis.

DO-178C Software Compliance for Aerospace & Defense

59

Two-Way Traceability

Requirements	in	safety-critical	software	are	the	key	driver	for	product	design	and	
development.	These	requirements	include	functional	safety,	application	requirements,	
and	nonfunctional	requirements	that	fully	define	the	product.	This	reliance	on	
documented	requirements	is	a	mixed	blessing	because	poor	requirements	are	one	of	
the	critical	causes	of	safety	incidents	in	software.	In	other	words,	the	implementation	
wasn’t	at	fault,	but	poor	or	missing	requirements	were.	

Automating	Bidirectional	Traceability	

Maintaining	traceability	records	on	any	sort	of	scale	requires	automation.	Application	
life	cycle	management	tools	include	requirements	management	capabilities	that	are	
mature and tend to be the hub for traceability.

Integrated	software	testing	tools	like	Parasoft	
complete	the	verification	and	validation	of	
requirements	by	providing	an	automated	
bidirectional	traceability	to	the	executable	test	
case. This includes the pass or fail result and
traces	down	to	the	source	code	that	implements	
the requirement.

Parasoft	integrates	with	market	leading	
requirements	management	tools	or	ALM	systems	
including:	

 » IBM	DOORS	Next	

 » PTC	Codebeamer	

 » Siemens	Polarion	

 » Atlassian	Jira	

 » Jama	Connect	and	more	

As	shown	in	the	image	below,	each	of	Parasoft’s	test	automation	solutions	
(C/C++test,	C/C++test	CT,	Jtest,	dotTEST,	SOAtest,	and	Selenic)	used	within	the	
development	life	cycle	supports	the	association	of	tests	with	work	items	defined	in	
these systems, such as requirements, defects, and test cases or test runs. The central
reporting	and	analytics	dashboard,	Parasoft	DTP,	manages	traceability.

DO-178C Software Compliance for Aerospace & Defense

60

Parasoft	DTP	correlates	the	unique	identifiers	from	the	management	system	with:		

 » Static	analysis	findings	

 » Code	coverage	

 » Results	from	unit,	integration,	and	functional	tests	

Results	are	displayed	within	Parasoft	DTP’s	traceability	reports	and	sent	back	to	the	
requirements	management	system.	They	provide	full	bidirectional	traceability	and	
reporting	as	part	of	the	system’s	traceability	matrix.

Figure 6-3: An
example of a
DO-178C reporting
dashboard that
captures the project’s
testing status and
progress towards
completion.

Figure 6-4:
Codebeamer
traceability matrix,
which lists system
requirements from
high level to low level
along with test cases
and test results.

DO-178C Software Compliance for Aerospace & Defense

61

The	traceability	reporting	in	Parasoft	DTP	is	highly	customizable.	The	following	image	
shows	a	requirements	traceability	matrix	template	for	requirements	authored	in	
Polarion	and	traces	to	the	test	cases,	static	analysis	findings,	the	source	code	files,	
and	the	manual	code	reviews.

The	bidirectional	correlation	between	test	results	and	work	items	provides	the	basis	
of	requirements	traceability.	Parasoft	DTP	adds	test	and	code	coverage	analysis	
to	evaluate	test	completeness.	Maintaining	this	bidirectional	correlation	between	
requirements,	tests,	and	the	artifacts	that	implement	them	is	an	essential	component	of	
traceability.

Code Coverage

Code	coverage	expresses	the	degree	to	which	the	application’s	source	code	is	exercised	
by	all	testing	practices,	including	unit,	integration,	and	system	testing—both	automated	
and manual.

Collecting	coverage	data	throughout	the	life	cycle	enables	more	accurate	quality	and	
coverage	metrics,	while	exposing	untested	or	under	tested	parts	of	the	application.		

As	with	traceability,	code	coverage	is	a	key	metric	in	airborne	systems	development.	
DO-178C	has	specific	requirements	in	Section	6.4.4	Test	Coverage	Analysis.	These	
requirements	extend	beyond	code	coverage	and	include	the	test	coverage	of	all	high-level	
and	low-level	requirements,	along	with	the	test	coverage	of	the	entire	software	structure.		

Figure 6-5:
Requirements
traceability matrix
template from
Parasoft DTP
integrated with
Siemens Polarion.

DO-178C Software Compliance for Aerospace & Defense

62

Section	6.4.4.2	Structural	Code	Analysis	requires	the	test	coverage	of	source	code	
beyond	what	may	already	be	covered	with	requirements-based	testing.	This	ensures	
that	all	code	is	executed	by	tests	before	certification.	This	code	coverage	analysis	
may	reveal	issues	such	as	missing	tests	and	dead	or	deactivated	code.	Section	
6.4.4.3	Structural	Coverage	Analysis	Resolution	requires	the	remediation	of	these	
discrepancies	discovered	during	coverage	analysis.	

Application	coverage	can	also	help	organizations	focus	testing	efforts	when	time	
constraints	limit	their	ability	to	run	the	full	suite	of	manual	regression	tests.	Capturing	
coverage	data	on	the	running	system	on	its	target	hardware	during	integration	and	
system	testing	completes	code	coverage	from	unit	testing.		

Benefits	of	Aggregate	Code	Coverage	

Captured	coverage	data	is	leveraged	as	part	of	the	continuous	integration	(CI)	process	
as	well	as	the	tester’s	workflow.	Parasoft	DTP	performs	advanced	analytics	on	code	
coverage	from	all	tests,	source	code	changes,	static	analysis	results,	and	test	results.	
The	results	help	identify	untested	and	undertested	code	and	other	high	risk	areas	in	
the	software.	

Analyzing	code,	executing	tests,	tracking	coverage,	and	reporting	the	data	in	a	
dashboard	or	chart	is	a	useful	first	step	toward	assessing	risk,	but	teams	must	still	
dedicate	significant	time	and	resources	to	reading	the	tea	leaves	and	hope	that	
they’ve	interpreted	the	data	correctly.		

Understanding	the	potential	risks	in	the	application	requires	advanced	analytics	
processes	that	merge	and	correlate	the	data.	This	provides	greater	visibility	into	the	

true	code	coverage	and	helps	
identify	testing	gaps	and	
overlapping	tests.	For	example,	
what's	the	true	coverage	for	
the	application	under	test	when	
your	tools	report	different	
coverage	values	for	unit	tests,	
automated	functional	tests,	and	
manual tests?

The	percentages	cannot	simply	
be	added	together	because	the	
tests	overlap.	This	is	a	critical	
step	for	understanding	the	
level	of	risk	associated	with	the	
application	under	development.	

Figure 6-6:
Aggregated code
coverage from various
testing methods

DO-178C Software Compliance for Aerospace & Defense

63

Understanding	the	Impact	of	Code	Changes	on	Testing	With	Test	Impact	
Analysis	

Test	impact	analysis	uses	data	collected	during	test	runs	and	changes	in	code	between	
builds	to	determine	which	files	have	changed	and	which	specific	tests	touched	those	
files.	Parasoft’s	analysis	engine	can	analyze	the	delta	between	two	builds	and	identify	
the	subset	of	regression	tests	that	need	to	be	executed.	It	also	understands	the	
dependencies	on	the	units	modified	to	determine	the	ripple	effect	the	changes	have	
made on other units.

Parasoft	Jtest	and	dotTEST	provide	insight	into	the	impact	of	software	changes	and	
recommend	where	to	add	tests	and	where	further	regression	testing	is	needed.			

Accelerating	Integration	&	System	Testing	With	Test	
Automation	Tools	
Parasoft’s	software	test	automation	tools	accelerate	verification	by	automating	
the	many	tedious	aspects	of	record	keeping,	documentation,	reporting,	analysis,	
and	reporting.	

 » Two-way	traceability	for	all	artifacts ensures requirements have code and tests
to	prove	they	are	being	fulfilled.	Metrics,	test	results,	and	static	analysis	results	
are traced to components and vice versa.

 » Code	and	test	coverage verifies all requirements are implemented and makes sure
the implementation is tested as required.

 » Target	and	host-based	test	execution supports different validation techniques as
required.

 » Smart	test	execution	manages	change	with	a	focus	on	tests	for	only	code	that	
changed	and	any	impacted	dependents.	

 » Reporting	and	analytics	provides	insight	to	make	important	decisions	and	keeps	
track	of	progress.	Decision	making	needs	to	be	based	on	data	collected	from	the	
automated processes.

 » Automated	documentation	generation from analytics and test results support
process and standards compliance.

 » Standards	compliance	automation reduces the overhead and complexity by
automating	the	most	repetitive	and	tedious	processes.	The	tools	can	keep	track	of	
the	project	history	and	relating	results	against	requirements,	software	components,	
tests, and recorded deviations.

DO-178C Software Compliance for Aerospace & Defense

64

Software System Testing
System	testing	tests	the	system	as	a	whole.	Once	all	the	components	are	integrated,	
the	entire	system	is	tested	rigorously	to	verify	that	it	meets	the	specified	functional,	
safety,	security,	and	other	nonfunctional	requirements.		

DO-178C	specifies	both	software	and	hardware/software	integration	testing.	In	terms	
of	the	software	development	aspect	of	airborne	systems,	this	aligns	with	the	concept	
of	“system	testing”	for	the	purposes	here.	There	are	many	more	aspects	of	system	and	
flight	testing	of	airborne	systems	that	aren’t	covered	here.	

Section	6.4.3	a	Requirements-Based	Hardware/Software	Integration	Testing	focuses	on	
the	operation	of	the	software	on	the	target	hardware	environment.	The	aim	is	to	validate	
high-level	requirements.	It’s	also	important	to	point	out	that	nonfunctional	requirements	

must	be	tested,	and	Section	6.4.2.1	requires	normal	
range	tests	to	demonstrate	normal	operation	of	the	
software	alongside	Section	6.4.2.2,	which	requires	
robustness test cases. These are tests that use
abnormal	data	ranges	that	fall	outside	expected	
values for inputs to demonstrate the system can
handle	them	without	failure.		

This	type	of	testing	in	safety-critical	software	is	
performed	by	a	specialized	testing	team. System	
testing	falls	within	the	scope	of	black	box	testing.	
As	such,	it	shouldn't	require	any	knowledge	of	the	
inner	design	of	the	code	or	logic.		

An	important	distinction	with	system	level	testing	is	that	the	system	is	tested	in	an	
environment	that	is	close	to	the	production	environment	where	the	application	will	be	
deployed.	At	this	stage,	specific	safety	functions	are	verified,	and	system	wide	security	
testing	is	run.		

Service	Level	Testing	of	Airborne	Systems	
Airborne	systems	may	have	connectivity	into	larger	systems	that,	as	an	example,	collect	
and	analyze	status	and	flight	data.	Any	sort	of	communication	bus	or	network	must	be	
tested	for	data	integrity,	security,	and	confidentiality.	System	testing	needs	to	include	
these	environments	for	complete	validation.	

Instead	of	viewing	system	quality	in	terms	of	meeting	individual	component	
requirements,	the	scope	is	broadened	to	consider	the quality	of	the	services provided.	
Testing	at	the service	level ensures nonfunctional	requirements	are	met.	For	example,	

DO-178C Software Compliance for Aerospace & Defense

65

performance	and	reliability	are	difficult	to	assess	at	the	device	level	or	during	software	
unit	testing.	Service	based	testing	can	simulate	the	operational	environment	of	a	device	
to	provide	realistic	loads.		

Security	is	a	growing	concern	in	airborne	systems.	Cyberattacks	are	possible	in	modern	
systems	and	likely	originate	from	the	network	itself	by	attacking	the	exposed	APIs.	
Service	based	testing	can	create	simulated	environments	for	robust security testing,	
either	through	fuzzing	(random	and	erroneous	data	inputs)	or	denial-of-service	attacks.	

Virtual	Test	Environment	&	Service	Level	Testing	
A	real	test	lab	requires	the	closest	physical	manifestation	of	the	environment	in	which	
a	system	is	planned	to	work.	Even	in	the	most	sophisticated	lab,	it’s	difficult	to	scale	to	
a	realistic	environment.	A	virtual	lab	fixes	this	problem.		

Virtual	labs	evolve	past	the	need	for	hard-to-find	(or	nonexistent)	hardware	
dependencies.	They	use	sophisticated	service	virtualization	with	other	key	test	
automation	tools.	

Service Virtualization

Service	virtualization	simulates	all	of	the	dependencies	needed	by	the	device	under	
test	in	order	to	perform	full	system	testing.	This	includes	all	connections	and	protocols	
used	by	the	device	with	realistic	responses	to	communication.	For	example,	service	
virtualization	can	simulate	an	enterprise	server	backend	with	which	a	system	under	test	
communicates.	Similarly,	virtualization	can	control	and	simulate	a	dependent	system,	
like	patient	information,	in	a	realistic	manner.	

Service & API Testing

This	testing	drives	the	system	under	test	in	a	manner	that	ensures	the	services	and	
APIs	it	provides	perform	flawlessly.	These	tests	can	be	manipulated	via	the	automation	
platform	to	run	performance	and	security	tests	as	needed.	

Runtime Monitoring

This	detects	errors	in	realtime	on	the	system	under	test	and	captures	important	trace	
information.		

Test Lab Management & Analytics 

Once	virtualized,	an	entire	lab	setup	can	be	replicated	as	needed,	providing	overarching	
control	of	the	virtual	labs.	Test	runs	can	be	automated	and	repeated.	Analytics	provide	
the	necessary	summary	of	activities	and	outcomes.	

DO-178C Software Compliance for Aerospace & Defense

66

Parasoft	SOAtest	&	Virtualize	for	Service	Level	Testing	of	
Airborne	Software	
Developers	can	build	integrations	earlier,	stabilize	dependencies,	and	gain	full	control	
of	their	test	data	with	Parasoft	Virtualize.	Teams	can	move	forward	quickly	without	
waiting	for	access	to	dependent	services	that	are	either	incomplete	or	unavailable.	
Companies	can	enable	partners	to	test	against	their	applications	with	a	dedicated	
sandbox environment.

Parasoft	SOAtest	delivers	fully	integrated	API	and	web	service	testing	tools	that	
automate	end-to-end	functional	API	testing.	Teams	can	streamline	automated	testing	
with	advanced	functional	test	creation	capabilities	for	applications	with	multiple	
interfaces and protocols.

SOAtest	and	Virtualize	are	well	suited	for	network-based,	system-level	testing	of	
various	types,	including	the	following:	

 » Comprehensive	protocol	stack	that	supports	HTTP,	MQTT,	RabbitMQ,	JMS,	XML,	
JSON,	REST,	SOAP,	and	more.	

 » Security	and	performance	testing	during	integration	and	system	testing	with	
integration	into	the	existing	CI/CD	process.		

 » End-to-end	testing	that	combines	API,	web,	mobile,	and	database	interactions	into	
virtual test environments.

DO-178C Software Compliance for Aerospace & Defense

67

Structural Code Coverage
Collecting	and	analyzing	code	coverage	metrics	is	an	important	aspect	of	safety-critical	
software	development.	Code	coverage	measures	the	completion	of	test	cases	and	
executed	tests.	It	provides	evidence	that	verification	is	complete,	at	least	as	specified	
by	the	software	design.	The	objectives	for	test	coverage	analysis	include	achieving	the	
following	test	coverage	targets:	

 » High-level	requirements	

 » Low-level	requirements	

 » Software	structure	to	the	appropriate	coverage	criteria	

 » Software	structure,	both	data	coupling	and	control	coupling	

DO-178C	Section	6.4.4.1	covers	requirements	test	coverage	analysis,	which	determines	
how	well	functional	testing	has	verified	the	implementation	of	the	requirements.	It	is	
expected	that	code	coverage	analysis	is	collected	during	this	testing	and	the	remaining	

gaps	in	code	coverage	are	closed	with	
further	testing.	

Section	6.4.4.2	requires	analysis	to	
determine	what	remains	of	code	coverage,	
including	interfaces	between	components.	
Section	6.4.4.3	outlines	the	requirements	
to	resolve	any	of	the	gaps	in	coverage,	
including	the	identification	of	extraneous,	
dead,	and	deactivated	code.		

How	this	translates	to	types	and	
amounts	of	coverage	is	somewhat	open	
to	interpretation.	However,	in	airborne	

software	development,	the	onus	is	on	the	manufacturer	to	plan	for	code	coverage,	
adhere to the plan, document, and complete it.

Types	of	Code	Coverage	
Following	are	the	different	types	of	code	coverage.	

 » Statement	coverage	requires	that	each	program	statement	be	executed	at	least	
once.	Branch	and	MC/DC	coverage	encompass	statement	coverage.	

 » Branch	coverage	ensures	that	each	decision	branch	(if-then-else	constructs)	
is executed.

DO-178C Software Compliance for Aerospace & Defense

68

 » Modified	condition/decision	coverage	(MC/DC) requires the most complete code
coverage	to	ensure	test	cases	execute	each	decision	branch	and	all	the	possible	
combinations	of	inputs	that	affect	the	outcome	of	decision	logic.	For	complex	logic,	
the number of test cases can explode, so the modified condition restrictions are used
to	limit	test	cases	to	those	that	result	in	standalone	logical	expressions	changing.	

 » Executable/object	code	is	required	if	the	software	level	criteria	is	at	A.	This	is	due	
to	the	fact	that	a	compiler	or	linker	generates	additional	assembly	code	that	is	not	
directly	traceable	to	source	code	statements.	Therefore,	object	level	coverage	must	
be performed.

Advanced	unit	test	automation	tools,	such	as	Parasoft	C/C++test,	provide	all	these	code	
coverage	metrics	and	more.	C/C++test	CT	also	automates	this	data	collection	on	host	
and	target	testing	and	accumulates	test	coverage	history	over	time.	This	code	coverage	
history	can	span	unit,	integration,	and	system	testing	to	ensure	coverage	is	complete	
and	traceable	at	all	levels	of	testing.	

Coverage	From	System	Testing	
Obtaining	code	coverage	through	system	testing	is	an	excellent	method	to	determine	
if	enough	testing	has	been	performed.	The	approach	is	to	run	all	your	system	tests,	and	
then	examine	what	parts	of	the	code	have	not	been	exercised.		

The	unexecuted	code	implies	that	there	may	be	need	for	new	test	cases	to	exercise	the	
untouched	code	where	a	defect	may	be	lurking	and	helps	answer	the	question:	Have	I	
done	enough	testing?	

When	teams	perform	system	testing,	the	average	resulting	metric	is	60%	coverage.	
Much	of	the	40%	unexecuted	code	is	due	to	defensive	code	in	your	application.	
Defensive	code	only	executes	upon	the	system	triggering	a	fault	or	entering	a	
problematic	state	that	may	be	difficult	to	produce.	Conditions	like	memory	leakage	
or	other	types	of	faults	caused	by	hardware	failure	may	take	weeks,	months,	or	years	
to encounter.

There’s	also	defensive	code	mandated	by	your	coding	guidelines	where	system	test	
cases	can	never	get	you	to	execute.	For	these	reasons,	system	testing	cannot	take	you	
to	100%	structural	code	coverage.	You’ll	need	to	employ	other	testing	methods	like	
manual	and/or	unit	testing	to	reach	100%.	

DO-178C Software Compliance for Aerospace & Defense

69

Figure 8-1:
Unreachable return
0; Statement

Coverage	From	Unit	Testing	
As	mentioned,	unit	testing	can	be	used	as	a	complementary	approach	to	system	testing	
to	obtain	100%	coverage.	Obtaining	code	coverage	through	unit	testing	is	one	of	the	
more	popular	methods	used,	but	it	doesn’t	expose	whether	you	have	done	enough	
testing	of	the	system	because	the	focus	is	at	the	unit	level	(function/procedure).	

The	goal	here	is	to	create	a	set	of	unit	test	cases	that	exercise	the	entire	unit	at	the	
required	coverage	need	(statement,	branch,	and	MC/DC)	in	order	to	reach	100%	
coverage	for	that	single	unit.	This	is	repeated	for	every	unit	until	the	entire	code	
base	is	covered.	However,	to	get	the	most	out	of	unit	testing,	do	not	solely	focus	
on	obtaining	code	coverage.	That	can	generally	be	accomplished	through	sunny	day	
scenario test cases.

Truly	exercise	the	unit	through	sunny	and	rainy-day	scenarios	to	ensure	robustness,	
safety,	security,	and	low-level	requirements	traceability.	Let	code	coverage	be	a	
biproduct	of	your	test	cases	and	fill	in	coverage	where	needed.	

To	help	expedite	code	coverage	through	unit	testing,	configurable	and	automated	test	
case	generation	capabilities	exist	in	Parasoft	C/C++test.	Test	cases	can	be	automatically	
generated	to	test	for	use	of	null	pointers,	min-mid-max	ranges,	boundary	values,	and	
much	more.	This	automation	can	get	you	far.	In	minutes,	you’ll	obtain	a	substantial	
amount	of	code	coverage.	

Additionally,	C/C++test	CT	extends	development	workflows	with	code	coverage	by	
integrating	with	proprietary	unit	testing	frameworks	and	IDEs.	Tightly	integrate	code	
coverage	line,	statement,	simple	condition,	decision,	branch,	function,	call,	and	MC/DC	
with	proprietary	unit	testing	frameworks	like	GoogleTest	and	CppUnit	and	IDEs	like	
VS	Code.	

However,	as	in	system	testing,	obtaining	100%	
code	coverage	is	elusive	due	to	the	use	of	
defensive	code	or	formal	language	semantics.	At	
the	granular	level	of	a	unit,	defensive	code	may	
come in the form of a default statement in a switch.
If every possible case in a switch is captured,
this leaves the default statement unreachable. In
the	example	below,	the	return 0;	will	never	get	
executed because the while (1)	is	infinite.	

DO-178C Software Compliance for Aerospace & Defense

70

How does one obtain 100% coverage for these special cases?

Answer:	Deploying	manual	methods.	

Follow	these	steps.	

1. Label	or	notate	the	statement	as	covered	by	using	a	debugger.	

2. Modify the call stack and execute the return 0; statement.

3. Visually	witness	the	execution	and,	at	minimum,	document	the	file	name,	line	of	
code,	and	code	statement	that	is	now	considered	covered.	

This	coverage	performed	through	manual/visual	inspection	and	reports	can	be	used	to	
supplement	the	coverage	captured	through	unit	testing.	The	addition	of	both	coverage	
reports	can	be	used	to	prove	100%	structural	code	coverage.	

The	goal	of	obtaining	code	coverage	is	an	added	means	to	help	ensure	code	safety,	
security, and reliability.

Code	Instrumentation	
Code	coverage	is	more	often	than	not	identified	by	having	the	code	instrumented.	
Instrumented	refers	to	having	the	user	code	adorned	with	additional	code	to	ascertain	
during	execution	if	that	statement,	branch,	or	MC/CD	has	been	executed.	

Based	on	the	target	or	system	under	test,	the	coverage	data	can	be	stored	in	the	file	
system,	written	to	memory,	or	sent	out	through	various	communication	channels,	such	
as	the	serial	port,	TCP/IP	port,	USB,	and	even	JTAG.	

Partial Instrumentation

Be	aware	that	code	instrumentation	causes	code	bloat.	The	increase	in	code	size	may	
impact	the	ability	to	load	the	code	onto	memory-constrained	target	hardware	for	testing.	

The	workaround	is	to	instrument	part	of	the	code	by	following	these	steps:	

1. Run	your	tests	and	capture	the	coverage.	

2. Instrument the other part of the code.

3. Run	your	tests	again.	

4. Capture	the	coverage.	

5.	 Merge	the	coverage	from	the	previous	test	execution.	

DO-178C Software Compliance for Aerospace & Defense

71

Coverage	Advisor	
Parasoft	C/C++test	resolves	coverage	gaps	in	test	suites.	Parasoft	discovered	how	to	
use	advanced	static	code	analysis	(data	and	control	flow	analysis)	to	find	values	for	the	
input	parameters	required	to	execute	specific	lines	of	uncovered	code.		

In	complex	code,	there	are	always	those	elusive	code	statements	for	which	it	is	
exceedingly	difficult	to	obtain	coverage.	It’s	likely	there	are	multiple	input	values	with	
various	permutations	and	possible	paths	that	make	it	mind	twisting	and	time	consuming	
to	decipher.	But	only	one	combination	can	get	you	the	coverage	you	need.	Parasoft	
makes	it	easy	to	obtain	coverage	of	those	difficult	to	reach	lines	of	code.	

When	you	select	the	line	of	code	you	want	to	cover,	the	Coverage	Advisor	will	tell	you	
what	input	values,	global	variables,	and	external	calls	you	need	to	stimulate	the	code	
and	obtain	coverage.	

The	figure	below	shows	an	analysis	report	providing	the	user	with	a	solution.	The	
Preconditions	field	expresses:	

 » The	range	and	input	values	for	mainSensorSignal and coSensorSignal

 » The expected outputs from the external calls

Upon	creating	the	unit	test	case	with	these	set	parameter	values	and	stubs	for	external	
calls,	you	get	coverage	of	the	line	selected,	plus	the	additional	lines	expressed	in	the	
Expected	Coverage	field.

Figure 8-2: Invoking
Coverage Advisor by
right-clicking on the
line of code.

DO-178C Software Compliance for Aerospace & Defense

72

Object	Code	Coverage	
For	the	most	stringent	safety-critical	applications,	DO-178C	Level	A,	Object	Code	
Coverage	is	required.	Therefore,	assembly	level	coverage	must	be	performed.	Imagine	
the	rigor	and	labor	cost	of	having	to	perform	this	task.	Fortunately,	Parasoft	ASMTools	
provides	an	automated	solution	for	obtaining	object	code	coverage.	

Figure 8-3: Two
test case solutions
provided by Coverage
Advisor.

Figure 8-4: Parasoft
ASMTool for
Assembly/Object
Code Coverage

DO-178C Software Compliance for Aerospace & Defense

73

Requirements & the Traceability Matrix
In	airborne	systems,	requirements	management	is	a	mandatory	part	of	the	software	
development	process	and	the	traceability	of	those	requirements	to	implementation.	
Subsequently,	teams	must	ensure	proof	of	correct	implementation.	

Requirements	traceability	is	defined	as	“the	ability	to	describe	and	follow	the	life	of	a	
requirement	in	both	a	forwards	and	backwards	direction	(i.e.,	from	its	origins,	through	
its	development	and	specification,	to	its	subsequent	deployment	and	use,	and	through	
periods	of	on-going	refinement	and	iteration	in	any	of	these	phases).”	

The	objectives	of	traceability	are	to	ensure	the	following:	

 » Functional, performance, and safety-related requirements of the system that are
allocated	to	software	were	developed	into	the	high-level	requirements.	

 » High-level	requirements	and	derived	requirements	were	developed	into	the	low-
level requirements.

 » Low-level	requirements	were	developed	into	source	code.	

 » Traceability	between	requirements	and	test	cases,	test	procedures,	and	test	results.	

In the simplest sense, requirements traceability
keeps	track	of	each	requirement's	decomposition	
into	software	and	the	tests	used	to	verify	and	
validate each requirement. It also tracks exactly
what	you’re	building	when	writing	software.	
This	means	making	sure	the	software	does	what	
it’s	supposed	to	and	that	you’re	only	building	
what's	needed.		

If there are architectural elements or source code
that	can’t	be	traced	to	a	requirement,	then	it’s	a	
risk	and	shouldn’t	be	there.	The	benefits	also	go	
beyond	providing	proof	of	the	implementation.	
Tracking	each	requirement's	analysis	and	
decomposition	is	commonly	used	for	visibility	

into	development	progress.		

Requirements	analysis	requires	that	“All	software	requirements	should	be	identified	in	
such	a	way	as	to	make	it	possible	to	demonstrate	traceability	between	the	requirement	
and	software	system	testing.”			

DO-178C Software Compliance for Aerospace & Defense

74

It’s	important	to	realize	that	many	requirements	in	safety-critical	software	are	derived	
from	safety	analysis	and	risk	management.	The	system	must	perform	its	intended	
functions,	of	course,	but	it	must	also	mitigate	risks	to	greatly	reduce	the	possibility	
of	injury.	Moreover,	in	order	to	document	and	prove	that	these	safety	functions	are	
implemented	and	tested	fully	and	correctly,	traceability	is	critical.		

Tracing	requirements	isn’t	simply	linking	a	paragraph	from	a	document	to	a	section	of	
code	or	a	test.	Traceability	must	be	maintained	throughout	the	phases	of	development	
as	requirements	manifest	into	design,	architecture,	and	implementation.	Consider	the	
typical	V-model	of	software.	

Figure 9-1: The classic
V-model diagram
shows how traceability
goes forward and
backward through
each phase of
development.

Each	phase	drives	the	subsequent	phase.	In	turn,	the	work	items	in	these	phases	
must	satisfy	the	requirements	from	the	previous	phase.	System	design	is	driven	from	
requirements.	System	design	satisfies	the	requirements	and	so	on.		

Requirements	traceability	management	(RTM)	proves	that	each	phase	is	satisfying	the	
requirements	of	each	subsequent	phase.	However,	this	is	only	half	of	the	picture.	None	
of	this	traceability	demonstrates	that	requirements	are	being	met.	That	requires	testing.	

DO-178C Software Compliance for Aerospace & Defense

75

In	the	V-model,	each	testing	phase	verifies	and	validates	(V&V)		the	corresponding	
design/implementation	phase.	In	the	example,	you	see:	

 » Acceptance	testing	validates	requirements.	

 » System	testing	verifies	the	system	design.	

 » Integration	testing	verifies	architecture	design.	

 » Unit	testing	verifies	module	design	and	so	on.		

Software	development	on	any	realistic	scale	will	have	many	requirements,	complex	
design	and	architecture,	and	possibly	thousands	of	units	and	unit	tests.	Automation	
of	RTM	in	testing	is	necessary,	especially	for	safety-critical	software	that	requires	
documentation	of	traceability	for	certifications	and	audits.	

Requirements	Traceability	Matrix	
A	requirement	traceability	matrix	is	an	artifact	or	document	that	illustrates	the	linking	
of	requirements	with	corresponding	work	items,	like	a	unit	test,	module	source	code,	
architecture	design	element,	other	requirements,	and	so	on.		

The	matrix	is	often	displayed	as	a	table,	which	shows	how	each	requirement	is	“checked	
off”	by	a	corresponding	part	of	the	product.	Creation	and	maintenance	of	these	
matrices	are	often	automated	with	requirements	management	tools	with	the	ability	to	
display them visually in many forms and even hard copy, if required.

Below	is	a	requirements	traceability	matrix	example	from	Intland	Codebeamer.	It	shows	
system	level	requirements	decomposed	to	high-level	and	low-level	requirements,	and	
the test cases that verify each.

Validates
Requirements

System
Design

Architecture
Design

Module
Design

Unit
Testing

Integration
Testing

System
Testing

Acceptance
Testing

Coding

Verifies

Verifies

Verifies

Figure 9-2: The
other important
part of requirements
traceability is
verification testing
to prove the
implementation of the
specification from the
corresponding design
phase.

DO-178C Software Compliance for Aerospace & Defense

76

Automating	Bidirectional	Traceability	
Maintaining	traceability	records	on	any	sort	of	scale	requires	automation.	Application	
life	cycle	management	tools	include	requirements	management	capabilities	that	are	
mature	and	tend	to	be	the	hub	for	traceability.	Integrated	software	testing	tools	like	
Parasoft	complete	the	verification	and	validation	of	requirements	by	providing	an	
automated	bidirectional	traceability	to	the	executable	test	case,	which	includes	the	
pass	or	fail	result	and	traces	down	to	the	source	code	that	implements	the	requirement.		

Parasoft	integrates	with	market-leading	requirements	management	and	Agile	planning	
systems	including:	

Figure 9-3:
Requirements
traceability matrix
example in Intland
Codebeamer

 » IBM	DOORS	Next

 » PTC	Codebeamer	

 » Siemens	Polarion

 » Jama	Connect	

 » Atlassian	Jira	

 » CollabNet	VersionOne	

 » TeamForge		

 » Azure	DevOps	Requirements

As	shown	in	the	image	below,	each	of	Parasoft’s	test	automation	tools,	C/C++test,	
C/C++test	CT,	Jtest,	dotTEST,	SOAtest,	and	Selenic,	support	the	association	of	tests	
with	work	items	defined	in	these	systems,	such	as:	

 » Requirements

 » Stories

 » Defects

 » Test case definitions

Traceability	is	managed	through	the	central	reporting	and	analytics	dashboard,	
Parasoft	DTP.

DO-178C Software Compliance for Aerospace & Defense

77

Parasoft	DTP	correlates	the	unique	identifiers	from	the	management	system	with	
the	following:	

 » Static	analysis	findings	

 » Code	coverage	

 » Test	results	from	unit,	integration,	and	functional	tests.		

Results	are	displayed	within	Parasoft	DTP’s	traceability	reports	and	sent	back	to	the	
requirements	management	system.	They	provide	full	bidirectional	traceability	and	
reporting	as	part	of	the	system’s	traceability	matrix.		

The	traceability	reporting	in	Parasoft	DTP	is	highly	customizable.	The	following	image	
shows	a	requirements	traceability	matrix	template	with	requirements	authored	in	
Polarion	that	trace	to	the	following:	

Figure 9-4: Parasoft
provides bidirectional
traceability from work
items to test cases and
test results, displaying
traceability reports
with Parasoft DTP and
reporting results back
to the requirements
management system.

 » Test cases

 » Static	analysis	findings	

 » Source code files

 » Manual	code	reviews

DO-178C Software Compliance for Aerospace & Defense

78

The	bidirectional	correlation	between	test	results	and	work	items	provides	the	basis	
of	requirements	traceability.	Parasoft	DTP	adds	test	and	code	coverage	analysis	
to	evaluate	test	completeness.	Maintaining	this	bidirectional	correlation	between	
requirements,	tests,	and	the	artifacts	that	implement	them	is	an	essential	component	
of traceability.

Bidirectional	traceability	is	important	so	that	requirement	management	tools	and	other	
life	cycle	tools	can	correlate	results	and	align	them	with	requirements	and	associated	
work	items.	

The	complexity	of	modern	software	projects	requires	automation	to	scale	
requirements	traceability.	Parasoft	tools	are	built	to	integrate	with	best-of-breed	
requirement	management	tools	to	aid	traceability	of	test	automation	results	and	
complete	the	software	test	verification	and	validation	of	requirements.

Figure 9-5: Jama
Requirements matrix,
and integration with
Parasoft DTP

DO-178C Software Compliance for Aerospace & Defense

79

A Unified, Fully Integrated Testing
Solution for C/C++ Software
Development
Tool Qualification for Safety-Critical Airborne
Systems
Safety-critical	software	development	standards	recommend	that	manufacturers	prove	
that	the	tools	they're	using	to	develop	software	don’t	introduce	issues	and	do	provide	
correct, predictable results.

The	process	of	providing	such	evidence	is	known	as	tool	qualification.	While	it’s	a	
necessary	process,	tool	qualification	is	often	a	tedious	and	time-consuming	activity	for	
which	many	organizations	fail	to	plan.	To	make	this	painless,	select	tools	are	certified	
and	have	a	history	of	being	used	in	the	development	of	safety-critical	applications.	

In	the	case	of	airborne	systems	software	development,	DO-330,	Software	Tool	
Qualification	Considerations,	provides	guidance	on	tool	qualification.	The	purpose	
is	to	provide	a	framework	for	a	tool	qualification	life	cycle	that	includes	planning,	
verification,	quality	assurance,	and	documentation.	There	are	different	levels	of	tool	
qualification	from	1	to	5,	with	5	being	the	least	rigorous.	The	level	is	based	on	the	
possible impact of the tool on system safety.

Here	are	some	of	the	key	steps	involved	in	tool	qualification,	according	to	DO-330.	

 » Plan	for	tool	qualification.	A	comprehensive	tool	qualification	plan	(TQP)	is	required.	
In this plan, define the scope of the qualification effort, identify the tools to be
qualified, outline the qualification activities, and specify the qualification objectives.

 » Tool classification.	Software	tools	are	classified	based	on	their	impact	on	system	
safety primarily but also the potential impact on the development and verification
processes.	Tools	are	classified	into	one	of	five	Tool	Qualification	Levels	(TQL):	
TQL	1,	TQL	2,	TQL	3,	TQL	4,	TQL	5.	TQL	1	represents	the	highest	impact	and	
TQL	5	the	lowest.	

 » Tool assessment.	Conduct	a	thorough	assessment	of	each	tool's	development	
process, documentation, and characteristics to determine its qualification
requirements.	This	includes	reviewing	the	tool's	design,	verification,	validation,	
and maintenance procedures. Obviously, this requires cooperation if tools are
purchased from third parties.

DO-178C Software Compliance for Aerospace & Defense

80

 » Tool	qualification	assurance	levels	(AL).	Assign	an	Assurance	Level	that	corresponds	
to	DO-278A	assurance	levels	to	each	tool	based	on	the	TQL	and	the	level	of	
confidence	in	the	tool's	development	process.	ALs	range	from	AL	1	(highest	
assurance)	to	AL	5	(lowest	assurance).	

 » Tool	verification	and	validation.	Perform	the	necessary	verification	and	validation	
activities	for	each	tool,	demonstrating	correct	operation	and	accurate	results.	

 » Tool	life	cycle	maintenance.	Establish	a	process	for	the	ongoing	maintenance	and	
monitoring	of	each	tool.	This	includes	periodic	reviews,	updates,	and	requalification	
as	needed	when	changes	occur	to	the	tool	or	its	environment.	

 » Qualification	records.	Maintain	records	of	all	tool	qualification	activities,	including	
the assessment, verification, validation, and results. These records are essential for
audit	purposes	and	to	demonstrate	compliance	with	DO-330.	

 » Final	qualification	report.	Prepare	a	final	qualification	report	for	each	tool,	
summarizing	the	entire	qualification	process,	the	results	of	assessments	and	
verification	and	validation	activities,	and	the	compliance	status	with	DO-330	
requirements.

The	end	deliverable	is	proof	in	the	form	of	documentation.	The	qualification	process	
outlined	in	DO-330	is	complex	and	time	consuming.	Parasoft’s	Qualification	Kits	for	
C/C++test	includes	a	convenient	tool	wizard	that	brings	automation	into	the	picture	
and	reduces	the	time	and	effort	required	for	tool	qualification.	

Precertified	Tools	
Tool	qualification	needs	to	start	with	tool	selection	to	ensure	
that	you're	using	a	development	tool	that's	certified	by	an	
organization	like	TÜV	SÜD.	This	will	significantly	reduce	the	
effort	when	it	comes	to	tool	qualification. 	

Parasoft	C/C++test, C/C++test	CT, and	DTP	are	certified	
by	TÜV	SÜD	for	functional	safety	according	to	IEC,	ISO,		
and	other	functional	safety	industry	standards	for	both	
host	based	and	embedded	target	applications.	Though	
the	certificate	is	not	enough	for	RTCA	DO-178C/DO-330,	
it	demonstrates	a	historical	commitment	by	Parasoft	in	
providing	quality	products.		

To	satisfy	DO-330	tool	qualification	requirements,	C/C++	
software	development	paves	the	way	for	a	streamlined	
qualification	of	static	analysis,	unit	testing,	and	coverage	
requirements	for	the	safety-critical	standards	by	offering	a	
tool	qualification	kit	that	automates	the	tool	qualification	
process	for	any	development	host	and/or	target	ecosystem.		

Figure 10-1:
Parasoft CIC++test
and C/C++test CT
TÜV SÜD certificate

DO-178C Software Compliance for Aerospace & Defense

81

https://www.parasoft.com/solutions/qualification-kits
https://www.parasoft.com/solutions/qualification-kits
https://www.parasoft.com/products/parasoft-c-ctest/
https://www.parasoft.com/products/parasoft-c-ctest/
https://www.parasoft.com/products/parasoft-dtp/

Automating	Tool	Qualification	Testing	
Traditionally,	tool	qualification	has	meant	significant	amounts	of	manual	labor,	testing,	
and	documenting	to	satisfy	a	certification	audit.	But	this	documentation-heavy	process	
requires	manual	interpretation	and	completion.	As	a	result,	it's	time	consuming	and	
adds	to	an	organization's	already	heavy	testing	schedule	and	budget.	

Parasoft	leverages	its	own	software	test	automation	tool	qualification	with	
Qualification	Kits,	which	include	a	documented	workflow	to	dramatically	reduce	the	
amount	of	effort	required.	

Benefits of Using the Qualification
Kits

 » Automatically reduce the scope of
qualification to only the parts of the
tool in use.

 » Automate tests required for
qualification as much as possible.

 » Manage	any	manual	tests	as	eloquently	
as	possible	and	integrate	results	
alongside	automated	tests.	

 » Automatically	generate	audit-ready	
documentation that reports on
exactly	what’s	being	qualified—not	
more, not less.

Qualify	Only	the	Tools	Used	
There	should	be	no	need	to	do	any	extra	work	for	qualifying	capabilities	not	used	
during	development.	Reducing	the	scope	of	testing,	reporting,	and	documentation	is	
a	key	way	to	reduce	the	qualification	workload.	

For	example,	as	part	of	the	DO-178C/DO-330	tool	qualification	kit	and	process,	users	
can	select	Parasoft	C/C++test	for	static	analysis	of	C/C++	code	to	check	its	compliance	
to	the	MISRA	C:2023	standard.	The	tool	then	selects	only	the	parts	of	the	qualification	
suite	needed	for	this	function.

DO-178C Software Compliance for Aerospace & Defense

82

Leverage	Test	Automation	&	Analytics	
A	unique	advantage	to	qualifying	test	automation	tools	is	that	the	tools	can	be	used	to	
automate	their	own	testing.	Automating	this	as	much	as	possible	is	key	to	making	it	as	
painless	as	possible.	Even	manual	tests,	which	are	inevitable	for	any	development	tool,	
are	handled	as	efficiently	as	possible.	Step	by	step	instructions	are	provided	and	results	
are	entered	and	stored	as	part	of	the	qualification	record.	

Figure 10-2: Parasoft
Qualification Kits
allow users to select
the options required
for their project. Upon
selection, only tests
and documentation
are used and provided
from this point
forward.

DO-178C Software Compliance for Aerospace & Defense

83

Managing	Known	Defects	
Every	development	tool	has	known	bugs	and	any	vendor	selling	products	for	safety-
critical	development	must	have	these	documented.	There's	more	to	dealing	with	
known	defects	than	just	documenting	them.		

Tool	qualification	requires	proof	that	these	defects	are	not	affecting	the	results	used	
for	verification	and	validation.	For	each	known	defect,	the	manufacturer	must	provide	
a	mitigation	for	each	one	and	document	it	to	the	satisfaction	of	the	certifying	auditor.	

It’s	incumbent	on	the	tool	vendor	to	automate	the	handling	of	known	defects	as	
much	as	possible.	After	all,	the	vendor	is	expecting	customers	to	deal	with	third-party	
software	bugs	as	part	of	their	workload!		

Figure 10-3:
Leveraging centralized
data collection and
automating the
qualification process
greatly reduces
manual tracking of the
compliance progress.

Parasoft	C/C++test	collects	and	stores	all	test	results	from	each	build.	Tests	run	as	
they	do	for	any	type	of	project.	These	results	are	brought	into	the	test	status	wizard	in	
the	Parasoft	Qualification	Kits	to	provide	a	comprehensive	overview	of	the	results	like	
those	shown	below.

DO-178C Software Compliance for Aerospace & Defense

84

Automation	of	Tool	Qualification	Documentation	
The	end	result	of	tool	qualification	is	documentation	and	lots	of	it.	Every	test	executed	
with	results,	every	known	defect	with	mitigation,	manual	test	results,	and	exceptions	
are	all	recorded	and	reported.	Qualification	kits	from	other	vendors	can	be	just	
documentation	alone	and,	without	automation,	documenting	compliance	is	tedious.	

Instead,	using	the	Qualification	Kits	for	C/C++test,	the	critical	documents	are	
generated	automatically	as	part	of	the	workflow.	

 » Tool Classification Report determines	the	qualification	needed	and	presents	the	
maximum	safety	level	classification	for	C/C++test	and	C/C++test	CT	based	on	the	
use cases selected by the user.

 » Tool	Qualification	Plan describes	how	C/C++test	and	CC++test	CT	will	be	qualified	
for use in a safety relevant development project.

 » Tool Qualification Report demonstrates	that	C/C++test	and	C/C++test	CT	have	has	
been	qualified	according	to	the	tool	qualification	plan.	

 » Tool	Safety	Manual describes	how	C/C++test	and	C/C++test	CT	should	be	used	
safely,	for	example,	in	compliance	with	safety	standards	like	IEC	62304	in	safety-
critical projects.

In	each	of	these	documents,	only	the	documentation	required	for	the	tool	featured	
in	use	is	generated	because	the	scope	of	the	qualification	was	narrowed	down	at	
the	beginning	of	the	project.	Teams	greatly	reduce	the	documentation	burden	with	
automation	and	narrowing	the	qualification	scope.		

The	Parasoft	C/C++test	Qualification	Kits	include	a	wizard	to	automate	the	recording	
of	mitigation	for	known	defects	as	shown	in	the	example	below.	

Figure 10-4: Known
defects are managed
directly in Parasoft
C/C++test.

DO-178C Software Compliance for Aerospace & Defense

85

Reporting & Analytics for Safety-Critical Airborne
Systems
Parasoft’s	extensive	reporting	capabilities	bring	the	results	of	Parasoft	C/C++test	and	
C/C++test	CT	into	context.	Test	results	can	quickly	be	accessed	within	the	IDE	or	
exported	into	the	web-based	reporting	system,	DTP. 	

In	DTP,	reports	can	be	automatically	generated	as	part	of	CI	builds	and	printed	for	code	
audits	in	safety-critical	organizations.	Results	from	across	builds	can	be	aggregated	to	
give	the	team	a	detailed	view	without	requiring	access	to	the	code	within	their	IDE.		

In	the	reporting	dashboard,	Parasoft’s	Process	Intelligence	Engine	(PIE)	helps	managers	
understand	the	quality	of	a	project	over	time.	It	illustrates	the	impact	of	change	after	
each	new	code	change.	Integrating	with	the	overall	toolchain,	PIE	provides	advanced	
analytics	that	pinpoint	areas	of	risk.	

Developer’s	View	in	the	IDE	
Parasoft	C/C++test	helps	teams	efficiently	understand	results	from	software	testing	by	
reporting	and	analyzing	results	in	multiple	ways.	Users	can	view	the	following	directly	
in	the	developer’s	IDE:	

 » Static	analysis	findings	including	warnings	and	coding	standard	violations	

 » Unit	testing	details	like	passed/failed	assertions,	exceptions	with	stack	traces,	
info/debug	messages	

 » Runtime	analysis	failures	with	allocation	stack	traces	

 » Code	coverage	details	such	as	percentage	values	and	code	highlights	like	coverage	
test case correlation

The	Quality	Tasks	view	in	the	IDE	makes	it	easy	for	developers	to	sort	and	filter	the	
results,	for	example,	by	file,	rule,	or	project.	Developers	can	make	annotations	directly	
in	the	source	code	editors	to	correlate	issues	with	the	source	code.	This	provides	
context	and	more	details	about	reported	issues	and	how	to	apply	a	fix.		

Code	coverage	information	is	presented	with	visual	green	and	red	highlights	displayed	
in	the	code	editor,	together	with	percentage	values	for	project,	file,	and	function	in	a	
dedicated	Coverage	view.	

DO-178C Software Compliance for Aerospace & Defense

86

Analysis	results	for	both	IDE	and	command	line	workflows	can	also	be	exported	to	
standard	HTML	and	PDF	reports	for	local	reporting.	For	safety-critical	software	
development,	C/C++test	provides	an	additional	dedicated	report	format.	It	details	
unit	test	case	configuration	and	includes	the	log	of	results	from	test	execution.	Users	
get	a	complete	report	of	how	the	test	case	was	constructed	and	what	happened	
during	runtime.	

Figure 11-1: Parasoft
C/C++test IDE unified
code coverage and
unit testing view

Team	Web-Based	Reporting
For	team	collaboration,	Parasoft	C/C++test	and	C/C++test	CT	publishes	analysis	results	
to	DTP,	a	centralized	server.	Developers	can	access	test	results	from	automated	runs	
and	project	managers	can	quickly	assess	the	quality	of	the	project.	Reported	results	
are	stored	with	a	build	identifier	for	full	traceability	between	the	results	and	the	build.	
Those	results	include	details	about	the	following:

 » Static analysis

 » Metric analysis

 » Unit	testing

 » Code	coverage

 » Source code

DO-178C Software Compliance for Aerospace & Defense

87

Test	Impact	Analysis	
Each	and	every	test	performed,	including	manual,	system	level,	and	UI-based,	is	
recorded	as	a	pass/fail	result,	including	the	coverage	impact	on	the	code	base.	Each	
additional	test	is	overlaid	on	this	existing	information,	creating	a	complete	picture	of	
test	success	and	coverage.		

As	code	is	changed,	the	impact	is	clearly	visible	on	the	underlying	record,	highlighting	
tests	that	now	fail	or	code	that	is	now	untested.	Raising	this	information	in	various	
degrees	of	detail	allows	developers	and	testers	to	quickly	identify	what	needs	to	be	
altered	or	fixed	for	the	next	test	run.	

When	integrating	into	CI/CD	workflows,	Parasoft	users	benefit	from	a	centralized	and	
flexible	web-based	interface	for	browsing	results.	The	dynamic	web-based	reporting	
dashboard	includes:

 » Customizable	reporting	widgets

 » Source	code	navigation

 » Advanced	filtering

 » Advanced	analytics	from	the	Process	Intelligence	Engine

Users	can	access	historical	data	and	trends,	apply	baselining	and	test	impact	analysis,	
and	integrate	with	external	systems	like	those	for	test	requirements	traceability.

Figure 11-2:
Centralized web
based dashboard
for test impact
analysis and more

DO-178C Software Compliance for Aerospace & Defense

88

Risk-Based	Assessment	
In	addition	to	change	impact	analysis,	static	analysis	can	be	used	to	highlight	areas	of	
the	code	that	appear	riskier	than	others.	Risk	can	take	a	variety	of	forms	including:	

 » Highly	complex	code	

 » Unusually	high	number	of	coding	standard	violations		

 » High	number	of	reported	static	analysis	warnings		

These	are	areas	of	code	that	may	require	additional	test	coverage	and	even	refactoring.	

Functional	Safety	Reporting	
Parasoft	C/C++test	and	C/C++test	CT	provide	specific	reporting	capabilities	suited	to	
functional	safety	development.	Here	are	two	report	examples.		

1. Unit	Testing	Execution	Details	Tests	to	Requirements	Traceability	

2. Test	to	Code	Coverage	Traceability	

Code	Coverage	Metrics	
There	are	various	coverage	metrics	to	consider.	For	safety-critical	airborne	systems,	
coverage	may	be	one	of	the	following:		

 » Statements

 » Branch	

 » Modified	condition/decision	coverage	(MC/DC)	

 » Object/assembly	code	for	the	strictest	requirements	

Parasoft	supports	gathering	all	of	these	coverage	metrics,	including	terms	other	
industries	use	like	block,	call,	function,	path,	decision,	and	more.

DO-178C Software Compliance for Aerospace & Defense

89

Custom	Analytics,	Reports,	&	Dashboards	
Parasoft	DTP	is	highly	customizable	and	supports	a	user-configured	custom	processor	
for	project-specific	analysis,	custom	widgets,	and	dashboards.	

Benefits of Centralized, Aggregated Data Analysis & Reporting

Development	teams	with	one	analysis	and	reporting	system	for	compliance	reap	the	
following	benefits.	

 » Efficiency,	visibility,	and	ease	of	use	

 » Reduced overhead

 » Clear	insight	into	new	and	legacy	code	

Manage	Compliance	With	Efficiency,	Visibility,	&	Ease	

Instead	of	just	providing	static	analysis	checkers	with	basic	reporting	and	trends	
visualization,	Parasoft’s	solution	for	coding	standards	compliance	provides	a	complete	
framework	for	building	a	stable	and	sustainable	compliance	process.		

In	addition	to	standard	reporting,	Parasoft	provides	a	dedicated	compliance	reporting	
module	that	gives	users	a	dynamic	view	into	the	compliance	process.	Users	can	see	
results	grouped	according	to	categorizations	from	the	original	coding	standard,	manage	
the	deviations	process,	and	generate	compliance	documents	required	for	code	audits	
and	certification	as	defined	by	the	MISRA	Compliance:2020	specification.	

Figure 11-3: Individual
code coverage metrics
available within the
reporting dashboard

DO-178C Software Compliance for Aerospace & Defense

90

Reduce	the	Overhead	of	Testing	

With	a	unified	reporting	framework,	Parasoft	C/C++test	efficiently	provides	multiple	
testing	methodologies	required	by	the	functional	safety	standards	including	static	
analysis,	unit	testing,	and	code	coverage.		

By	presenting	cumulative	results	from	the	multiple	testing	techniques,	Parasoft	
provides	consistent	reporting	that	reduces	the	overhead	of	testing	activities.	The	
analytics,	reports,	and	dashboards	provide	the	following	benefits.		

 » Simplify code audits and the certification process.

 » Eliminate	the	need	for	users	to	manually	process	reporting	to	build	documentation	
for the certification process.

 » Focus	testing	efforts	where	needed	by	eliminating	extraneous	testing	and	
guesswork	from	test	management.		

 » Reduce	the	costs	of	testing	while	improving	test	outcomes	with	better	tests,	more	
coverage,	and	streamlined	test	execution.		

 » Minimize	the	impact	of	changes	by	efficiently	managing	the	change	itself.	

Pinpoint	Priority	&	Risk	Between	New	&	Legacy	Code	

Parasoft’s	Process	Intelligence	Engine	enables	users	to	look	at	the	changes	between	
two	builds	to	understand,	for	example,	the	level	of	code	coverage	or	static	analysis	
violations	on	the	code	that	has	been	modified	between	development	iterations,	
different	releases,	or	an	incremental	development	step	from	the	baseline	set	on	the	
legacy	code.		

Teams	can	converge	on	better	quality	over	time	by	improving	test	coverage	and	
reducing	the	potential	risky	code.	The	technical	debt	due	to	untested	code,	missed	
coding	guidelines,	and	potential	bugs	and	security	vulnerabilities	can	be	reduced	
gradually	build	by	build.	Using	the	information	provided	by	Parasoft	tools,	teams	can	
focus	in	on	the	riskiest	code	for	better	testing	and	maintenance.		

91

Take the Next Step
Request a demo	to	see	how	your	embedded	development	team	can	accelerate	the	
delivery	of	high-quality,	compliant	software	for	safety-critical	airborne	systems.	

About	Parasoft

Parasoft	helps	organizations	continuously	deliver	high-quality	software	with	its	AI-
powered	software	testing	platform	and	automated	test	solutions.	Supporting	the	
embedded,	enterprise,	and	IoT	markets,	Parasoft’s	proven	technologies	reduce	the	time,	
effort,	and	cost	of	delivering	secure,	reliable,	and	compliant	software	by	integrating	
everything	from	deep	code	analysis	and	unit	testing	to	web	UI	and	API	testing,	plus	
service	virtualization	and	complete	code	coverage,	into	the	delivery	pipeline.	Bringing	
all	this	together,	Parasoft’s	award-winning	reporting	and	analytics	dashboard	provides	
a	centralized	view	of	quality,	enabling	organizations	to	deliver	with	confidence	and	
succeed	in	today’s	most	strategic	ecosystems	and	development	initiatives—security,	
safety-critical,	Agile,	DevOps,	and	continuous	testing.	

“MISRA”, “MISRA C” and the triangle logo are registered trademarks of The MISRA Consortium Limited. ©The MISRA Consortium
Limited, 2021. All rights reserved.

DO-178C Software Compliance for Aerospace & Defense

92

https://www.parasoft.com/products/parasoft-c-ctest/c-c-request-a-demo/

More Resources
Safety-Critical Airborne Systems Software
Development

Case	Studies	
 » Federal	Agency	Fulfills	Rigorous	DO-178C	Standard	With	Unified	Automated	
Testing	Solution

 » Industry	Leader	Streamlines	Workflow	&	Delivers	Safe,	Secure	Avionic	Systems	

 » Aerospace/Defense	Company	Deploys	Parasoft	to	Support	DevSecOps	for	Major	
DoD Initiative

Website
 » Software	Testing	for	Military	and	Defense	Systems

 » DO-178C	Compliance	With	Parasoft

 » MISRA	Compliance	With	Parasoft

 » Easily	Automate	the	Tool	Qualification	Process

Whitepapers	
 » Developing	DO-178C	Compliant	Software	for	Airborne	Systems

 » A	Practical	Guide	to	Accelerate	MISRA	C	2023	Compliance	With	Test	Automation

 » How	to	Streamline	Unit	Testing	for	Embedded	and	Safety-Critical	Systems

 » Embedded	Cybersecurity	Through	Secure	Coding	Standards	CWE	and	CERT

	Datasheets	
 » Develop	Compliant	DO-178C	Software	for	Airborne	Systems

 » Assembly	Coverage	Tool

 » Parasoft	C/C++test

 » Parasoft	C/C++test	CT

DO-178C Software Compliance for Aerospace & Defense

93

https://www.parasoft.com/resources/case-studies/federal-agency-fulfills-rigorous-do-178c-standard-with-unified-automated-testing-solution/
https://www.parasoft.com/resources/case-studies/federal-agency-fulfills-rigorous-do-178c-standard-with-unified-automated-testing-solution/
https://www.parasoft.com/resources/case-studies/avionics-leader-streamlines-workflow-delivers-safe-secure-avionic-systems/
https://www.parasoft.com/resources/case-studies/aerospace-defense-company-deploys-parasoft-to-support-devsecops-for-major-dod-initiative/
https://www.parasoft.com/resources/case-studies/aerospace-defense-company-deploys-parasoft-to-support-devsecops-for-major-dod-initiative/
https://www.parasoft.com/industries/embedded/military-defense/
https://www.parasoft.com/solutions/compliance/do-178/
https://www.parasoft.com/solutions/compliance/misra/
https://www.parasoft.com/solutions/compliance/tool-qualification/
https://www.parasoft.com/white-paper/developing-do-178b-c-compliant-software-for-airborne-systems/?gtd=false
https://www.parasoft.com/white-paper/a-practical-guide-to-accelerating-misra-c-2012-compliance-with-test-automation/?gtd=false
https://www.parasoft.com/white-paper/streamlining-unit-testing-for-embedded-and-safety-critical-systems/?gtd=false
https://www.parasoft.com/white-paper/embedded-cybersecurity-through-secure-coding-standards-cwe-and-cert/?gtd=false
https://www.parasoft.com/data-sheet/develop-compliant-do-178c-software-for-airborne-systems/
https://www.parasoft.com/data-sheet/assembly-coverage-tool/
https://www.parasoft.com/data-sheet/parasoft-c-ctest/
https://www.parasoft.com/data-sheet/parasoft-c-ctest-ct/

Blog	Posts	
 » How	to	Obtain	100%	Structural	Code	Coverage	of	Safety-Critical	Systems

 » Regression	Testing	of	Embedded	Systems

 » Verification	vs	Validation	in	Embedded	Software

 » Robustness	Testing:	What	Is	It	&	How	to	Deliver	Reliable	Software	Systems	With	
Test Automation

 » Reducing	the	Risk	and	Cost	of	Achieving	Compliant	Software

 » MISRA	C/C++	Code	Checking

 » The	Two	Big	Traps	of	Code	Coverage

 » Shift-Left	Your	Safety-Critical	Software	Testing	With	Test	Automation

 » Requirements	Management	and	the	Traceability	Matrix

Webinars
 » Object	Code	Structural	Coverage	for	DO-178	C

 » How	to	Validate	DO-326A	Airworthiness	Security	Requirements

 » How Industry	Leaders	Are	Delivering	Safe	&	Secure Software 		

 » Cut	Compliance	Costs	and	Ensure	Lifecycle	Traceability	With	codebeamer	ALM	
&	Parasoft

 » Make	Your	C/C++	Applications	Safe	and	Secure	With	MISRA	and	CERT

 » Automate	Essential	Testing	to	Verify	&	Validate	Polarion	Requirements

 » Requirement Traceability for Safety-Critical Applications

 » Mastering	Aviation	Safety	&	Cybersecurity:	DO-178C	&	DO-326A

DO-178C Software Compliance for Aerospace & Defense

94

https://www.parasoft.com/blog/how-to-obtain-100-structural-code-coverage-of-safety-critical-systems/
https://www.parasoft.com/regression-testing-of-embedded-systems/
https://www.parasoft.com/verification-vs-validation-in-embedded-software/
https://www.parasoft.com/blog/what-is-robustness-testing/
https://www.parasoft.com/blog/what-is-robustness-testing/
https://www.parasoft.com/reducing-the-risk-and-cost-of-achieving-compliant-software/
https://www.parasoft.com/blog/misra-c-c-code-checking/
https://www.parasoft.com/the-two-big-traps-of-code-coverage/
https://www.parasoft.com/shift-left-your-safety-critical-software-testing-with-test-automation/
https://www.parasoft.com/requirements-management-and-the-traceability-matrix/
https://www.youtube.com/watch?v=T4-5U9A68JY
https://www.youtube.com/watch?v=LVmO6iDpVl8
https://www.youtube.com/watch?v=0XRbf2M5yaM
https://www.youtube.com/watch?v=Zv_u9-kY8jo&t=5s
https://www.youtube.com/watch?v=Zv_u9-kY8jo&t=5s
https://www.youtube.com/watch?v=IzOLpMudkHY&t=1603s
https://www.youtube.com/watch?v=0ysA8VAZffo&t=4s
https://www.youtube.com/watch?v=VoCptD9BRVI
https://www.parasoft.com/video/mastering-aviation-safety-cybersecurity-do-178c-do-326a/

	Overview
	Aerospace Industry Outlook for Commercial
& Defense
	What Is RTCA DO-178C?

	Requirements for Compliance in Testing
	Static Analysis
	Unit Testing
	Regression Testing
	Software Integration Testing
	Software System Testing
	Structural Code Coverage
	Requirements & the Traceability Matrix

	A Unified, Fully Integrated Testing Solution for C/C++ Software Development
	Tool Qualification for Safety-Critical Airborne Systems
	Reporting & Analytics for Safety-Critical Airborne Systems

	More Resources
	Safety-Critical Airborne Systems Software Development

