=l PARASOFT

Guide to C
Medica
Software

/CD for
Device

DevOps

INTRODUCTION

Medical device companies need to demonstrate their ability to provide medical devices and related
services that consistently meet customer and FDA regulatory requirements. In other words, they
need to be in command of every aspect and stage of the product development life cycle:

» Design and development » Installation
» Production » Servicing
» Storage and distribution » Provisioning

Therefore, medical device standard ISO 13485 is crucial in establishing organizational best practices
and processes for monitoring, maintaining, controlling, and ensuring regulatory requirements are met.
Most important of all is quality. That is quality that benefits the end user, patient, and hospital to
better protect and promote public health.

Today, modern medical devices are more connected than ever before, and software complexity is
growing. Software is now the key differentiator for manufacturers and the largest area of risk to
quality. Industry standard IEC 62304 mitigates risk in safety and quality by providing a framework
of life cycle processes with activities and tasks vital for the safe design and maintenance of medical
device software.

Additionally, competition is heating up. Especially in mobile and home healthcare with large
consumer electronics companies eyeing the same markets. To remain competitive, medical devices
manufacturers are looking to more modern software development practices, like continuous
integration and continuous delivery (Cl/CD), to reduce labor costs and the time-to-market curve.

This paper focuses on how CI/CD and DevOps can ensure quality and improve productivity in the
development of medical device software while simultaneously enhancing developer and tester
effectiveness. One of the biggest roadblocks to medical device software development efficiency is
the high cost of testing, which often happens last in the development process.

Testing is essential because it's the backbone of the validation and verification process that ensures
delivery of safe and secure software. State-of-the-art automation tools that perform the software
test regime required by IEC 62304 make continuous testing possible. Integrating static analysis, unit
testing, and structural code coverage into the Cl pipeline greatly reduces labor and delivery schedules
and increases test efficiency and software quality.

Figure 1:

Continuous integration
as part of a continuous
development cycle.

Whitepaper
Guide to CI/CD for Medical Device Software DevOps

AUTOMATION IN CI/CD

Without automation of the build process and, by extension, processes connected to creating
deployment, artifacts and build verification would be tedious and time consuming—the antithesis
of continuous.

Continuous integration relies on a single source repository and automated software build tools. It's
important that integration issues and broken builds are sorted out immediately. Following that, the
most critical step is to build a deployable product and test the integrated product.

This is the point where most CI/CD and iterative approaches grind to a halt. Testing takes time and
effort. It's difficult to decide what to test.

Manual testing can exacerbate this problem. Test automation is important, but more is needed than
just running tests. Further discussion of this follows in the paper.

Cl/CD FOR EMBEDDED SYSTEMS

Cl/CD continues to increase in popularity within medical device software development organizations.
However, projects are often constrained in ways that application development is not.

Besides the physical and computational constraints of the target hardware platform, there are
constraints in the marketplace. Medical device software has requirements for safety, security,
reliability, and extremely long life cycles. Products can remain in the market for decades.

Automation at the build level uses the same techniques. But when code needs to be executed, the
host/target barrier becomes significant. Automation that requires code execution needs special
support in medical device software development.

Automating testing for medical device software is more challenging due to the complexity of initiating
and observing tests on embedded targets, not to mention the limited access to target hardware that
software teams have. Software test automation is essential to make medical device testing workable
on a continuous basis from the host development system to the target system.

Figure 2:

A high-level view of
deploying, executing,
and observing tests
from host to target.

Whitepaper
Guide to CI/CD for Medical Device Software DevOps

Testing medical device software is particularly time consuming, especially regression tests, which
are required after any change. Automation of regression test suites provides significant time and
cost savings. In addition, test results and code coverage data collection from the target system are
essential for validation and standards compliance.

Traceability between test cases, test results, source code, and requirements must be recorded and
maintained so data collection is critical in test execution.

A solution like Parasoft C/C++test comes with an optimized test harness to take minimal additional
overhead for the binary footprint and provides it in the form of source code, where it can be
customized if platform-specific modifications are required.

Il

Test Executable

{ o
fipi" g

il

i
i

Runtime Library

T

Communication
Module
A

1§

J/

One huge benefit that the Parasoft C/C++test solution offers is dedicated integrations with
embedded compilers, debuggers, and industry-standard IDEs that make the process of executing
test cases smooth and automated.

Supported compilers include GNU GCC, IAR, ARM, Intel, Keil, Wind River, Green Hills, and many others.

Supported IDE environments include Eclipse, VS Code, Green Hills Multi, Wind River Workbench, IAR
EW, ARM MDK, ARM DS-5, TI CCS, Visual Studio, and more. See all of the technical specifications.

The Parasoft solution supports the creation of regression testing baselines as an organized collection
of tests and will automatically verify all outcomes. These tests are run automatically on a regular
basis to verify whether code modifications change or break the functionality captured in the
regression tests. If any changes are introduced, these test cases will fail to alert the team to the

https://www.parasoft.com/ctest/specifications/

Whitepaper
Guide to CI/CD for Medical Device Software DevOps

problem. During subsequent tests, C++test will report tasks if it detects changes to the behavior

captured in the initial test.

The parity of capabilities of remote target execution with host-based testing means that medical
device software teams can reap the same benefits of automation as any other type of application

development.

Containerized deployments of development
tools are becoming the bread and butter of
medical device development teams. Even though
containers were initially developed to solve
problems with the deployment of microservices
and web-based applications, they recently
gained popularity among development teams.
Especially big teams that use containers to
manage complex toolchains.

When it comes to managing complex
development environments, specifically in
safety-critical software development, teams
usually struggle with the following challenges.

» Synchronizing upgrades for the entire team to
a new version of a tool like a compiler, build
toolchain, and so on.

» Dynamically reacting to a new security patch
for the library or software development kit
(SDK), and the like.

» Assuring consistency of the toolchain
for all team members and the automated
infrastructure (CI/CD).

» Ability to version the development
environment and restoring it to service the
older version of the product that was certified
with the specific toolchain.

» Supporting the audit of tool chain
requirements.

» Onboarding and setting up new developers.

All these problems are easy to solve with
containers.

It’s easy to configure the command-line based
tool, Parasoft C/C++test Professional, to work
with a compilation toolchain and the execution
environment deployed in containers. For
example, the Parasoft tools can be deployed
with a single compressed archive to dramatically
simplify and accelerate container initialization.
The tool supports deployments that are based
on Linux and Docker containers.

Containerized deployments of development
tools are becoming the bread and butter of
embedded development teams. Even though
containers were initially developed to solve
problems with the deployment of microservices
and web-based applications, they have gained
popularity among embedded teams—especially
big teams that use containers to manage
complex toolchains.

As a command-line based tool, Parasoft
C/C++test standard is very fitting for in-
container deployments. It can be packaged
with the compiler and build system into one
container image, used for CI/CD, and deployed
to developers’ desktops for the local command-
line scans.

The tool accesses the containerized compiler
(GNU GCC) and the runtime environments.
In this specific setup, there are two separate
Docker containers:

» One for the compiler and build tools

» Another for the execution environment, such
as a stripped down version of embedded
Linux

Figure 3:

An example deployment
of the command-line
based tool with Docker
build and run containers

Whitepaper
Guide to CI/CD for Medical Device Software DevOps

Dev [desktop

%, 4,
- Build G‘??

Git Server
il A."(
Pullcode | ‘g CMake
Y —l T < ——
<++>\ A2
v
58

The diagram shows Jenkins using containerized C/C++test to run static analysis. In this specific setup,
the tool, the compilation toolchain, and the build tools are deployed in the container shown in the top
right corner of the diagram.

The container below it in the bottom right, provides the execution environment, which may be
required to execute runtime tests, like unit tests or automated system level tests. If you on want to
implement static analysis, then the setup will most likely include only one type of container with the
compilation toolchain and Parasoft C/C++test.

BENEFITS OF CI/CD

The biggest benefit of CI/CD is reducing project risk. In the past, too many projects relied on “big
bang” software integration efforts where software teams attempted to integrate their software too
close to the end of product development. These teams encountered huge issues with integration
and were often under massive crunch schedules to get the project finished. Testing was pushed even
further to the end of the project where it became a large effort that caused frustration and delays.

By using continuous integration, software teams always have a full build of the product ready for
testing, delivery, and release. Rather than throw things together in one big bang, the team goes
through smaller integration steps, continuously, to find compliance issues early and reduce the risk
from late cycle integration.

Here are more benefits to continuous integration. Think of this list as incremental and contributing
to reduced risk and better quality.

» Integration testing is early and often, which »
means bugs are exposed earlier where they
can be fixed easier and more cheaply.

Incremental improvements of the product in
terms of adding and testing new features and
removing bugs. It’s easier to build in quality

. . . and security in an incremental fashion.
» Regression testing starts earlier so that new

features can be tested to see how they impact »
existing code. New tests are added to the
regression test suite after each iteration.

Enables continuous testing and delivery,
which are equal parts of the continuous
development process. Continuous integration
alone isn't effective without continuous
testing and continuous delivery.

Whitepaper
Guide to CI/CD for Medical Device Software DevOps

CI/CD NEEDS CONTINUOUS TESTING

Continuous integration is just part of a continuous development process that needs testing and
delivery to reap the benefits of the approach.

Continuous testing provides an automated, unobtrusive way to obtain immediate feedback on a
software release candidate. Continuous testing isn’'t simply more test automation. The purpose is
to build quality and security into the product as part of a continuous integration/release/delivery
process. Here are some of the included activities.

»

»

»

»

»

»

»

Static analysis for early detection of bugs and security vulnerabilities. Early detection, usually at
the developer’s desktop, prevents bugs from wasting unit testing time and entering the software
build.

Coding standard enforcement helps conform to required industry standards, like MISRA C/C++
or SEI CERT C, and prevents whole classes of defects and poor coding practices from entering the
build to become larger issues later on.

Automated test execution is needed as soon as the application is built. The required tests that
need to verify units also include nonfunctional, load, security, and performance testing. These
tests are executed directly from the Cl orchestration system. The results from these tests get
pulled back into the same build and gathered. Code coverage information (statement, branch, and
MC/DC) is cross referenced by unit, file, test, and build number.

Requirements traceability correlates code, tests, and other assets with business requirements.
This provides an objective assessment of the requirements that are working as expected, which
ones require validation, and the ones at risk.

Test impact analysis provides direction to the team on where testing efforts need to go. From a
risk perspective, changed code impacts more than the software itself, it impacts relevant tests and
assets. As teams make code changes, questions arise:

» Do we need new tests or modify existing ones?
» What are the impacts on dependencies?
Automation helps teams focus only on the tests that are impacted.

Test data management significantly increases the effectiveness of a continuous testing strategy.
Good test data and test data management practices increase coverage and drive more accurate
results. However, developing or accessing test data can be a considerable challenge in terms of
time, effort, and compliance.

Data generation underpins continuous testing. You can continuously generate data appropriate
for the type of scenario you're trying to execute instead of trying to rely on production data
sources and hoping that all the right data is in the right place. Combining data generation with
simulation will allow you to inject the right data in the right place at the right time.

Figure 4:

Finding and fixing security
vulnerabilities early is
cheaper and less risky.

Whitepaper
Guide to CI/CD for Medical Device Software DevOps

SHIFT LEFT WITH CI/CD

The drive to shift-left quality, safety, and security in the software development life cycle (SDLC)
comes from the desire to find and fix bugs and security vulnerabilities as early as possible. Issues are
much easier, cheaper, and less risky to fix earlier, not later. Common sense, but the software industry
is full of examples where critical defects caused catastrophic results.

640 X

== Cost to repair defect
s 0y Defects found
s 0 Defects introduced

85%

Percentage
of defects

1X

Coding UnitTest Functional System Release
Test Test

The essential requirements to shift-left center around the need to incorporate quality into any and all
applications at the very beginning. Quality and security can’t be added on. They must be built in. Here
are some recommendations to shift left in the CI/CD pipeline that help create the necessary platform
for continuous testing.

» Improve test automation. » Automate bidirectional traceability.
» Increase code coverage. » Monitor commits made into the software
repository.

It should be clear at this point that test automation is a key aspect of achieving quality and security in
a CI/CD pipeline. In turn, it becomes clear that test automation needs to be a focus for improvement
and optimization. The largest struggle teams face is what to test. Since full system testing with each
new candidate release is too time consuming and expensive, teams inevitably compromise testing by
picking parts of the test suite to execute.

Focusing testing on exactly what is needed to increase code coverage and determine which
regression tests are needed after each code change is critical to speed up testing, enable continuous
testing, and accelerate the pipeline.

In general, code coverage is a measurement of
how much of the production code is executed
while your automated tests are running. By
running a suite of tests and looking at code
coverage data, there is a general sense of how
much of the application is being tested.

There are multiple kinds of code coverage.

For medical device software, you may need

to measure and record code coverage like
statement, branch, and MC/DC (modified
condition/decision coverage). Code coverage may
also be required for the strictest requirements,
such as building FDA Class C devices, object
code verification, or assembly language.

Structural Code Coverage

Collecting and analyzing code coverage metrics
is an important aspect of safety-critical medical
device software development. Code coverage
measures the completion of test cases and
executed tests. It provides evidence that
validation is complete, at least as specified by
the software design.

It also demonstrates the absence of unintended
behavior. Code that isn't covered by any test

is a liability since its behavior and functionality
are unknown. The amount and extent of code
coverage depends on the safety integrity level.
The higher the integrity level, the higher the rigor
used. And, inevitably, the higher the number and
complexity of test cases. Below are examples of
types of recommended code coverage.

» Statement coverage requires that each
program statement be executed at least once.
Branch and MC/DC coverage encompasses
statement coverage.

» Branch coverage ensures that each possible
decision branch (if-then-else constructs) is
executed.

Whitepaper
Guide to CI/CD for Medical Device Software DevOps

» Modified condition/decision coverage
(MC/DC) requires the most complete code
coverage to ensure test cases execute
each decision branch and all the possible
combinations of inputs that affect the
outcome of decision logic. For complex logic,
the number of test cases can explode so the
modified condition restrictions are used to
limit test cases to those that result in stand
alone logical expressions changing. See this
tutorial from NASA.

Advanced unit test automation tools like Parasoft
C/++test provide all of these code coverage
metrics and more. C/C++test automates this

data collection on host and target testing and
accumulates test coverage history over time. This
code coverage history can span unit, integration
and system testing to ensure coverage is
complete and traceable at all levels of testing.

Code Coverage With Automated Unit Test Case
Creation

The creation of productive unit tests has always
been a challenge. Functional safety standards
compliance demands high-quality software,
which drives a need for test suites that affect and
produce high code coverage statistics.

Teams require unit test cases that help them
achieve their coverage goals. These goals are
important even outside the realm of safety-
critical software. Any code not covered by at
least one test is shipping untested!

Increasing code coverage can be challenging.
Analyzing branches in the code and trying

to find reasons why certain code sections
aren’t covered, continues to steal cycles from
development teams.

https://shemesh.larc.nasa.gov/fm/papers/Hayhurst-2001-tm210876-MCDC.pdf
https://www.parasoft.com/how-to-obtain-100-structural-code-coverage-of-safety-critical-systems/

Whitepaper
Guide to CI/CD for Medical Device Software DevOps

Resolve Coverage Gaps

Teams can resolve coverage gaps in test suites using a coverage advisor. Parasoft discovered how
to use advanced static code analysis (data and control flow analysis) to find values for the input
parameters required to execute specific lines of uncovered code.

This analysis computes preconditions for function parameters, global variables, and external function
calls required to execute a specific line of code. The Coverage Advisor view presents a collection of
solutions for the user-selected lines of code. Presented values are used for creating new unit test
cases. The functionality boosts the productivity of developers working on unit test cases to improve
code coverage.

@ Flow Analysis Fast .. @ Stubs il Coverage &l Coverage Advisor 2 & Console = B8
Pre-conditions for executing line 13 in processor.cpp - process(int, Point *, int)
~ Solution #1
Required dependencies:

© Function parameter(s): int x
Pre-conditions:

@ x> 100

Expected coverage:

il 6lines (6,8, 9 10,12, 13)
= Solution #2

Required dependencies:
© External function call(s): int calculateValue(int)
© Function parameter(s): Point * point, int x

Figure 5:

Coverage Advisor displays Pre-conditions:

what input values, global O x<=100

variables, and external

calls are needed for a test o pﬂ.int =0

case to obtain the needed

code coverage. @ calculateValue(int) > point->Xx
El'pett!d coverage:

il 5lines (6,89, 12 13)

10

Each coverage solution includes:

» Required dependencies. Dependencies that
need to be customized to cover the selected
line. These may include function parameters,
external function calls, global variables, local
variables, and class members.

» Preconditions. Conditions that must be
satisfied by the required dependencies
to cover the selected line. Clicking a
precondition navigates to the related
code line.

» Expected coverage. Code lines that will
be covered if all of the preconditions
are satisfied.

Requirements traceability is defined as “the ability
to describe and follow the life of a requirement,

in both a forwards and backwards direction (i.e.
from its origins, through its development and
specification, to its subsequent deployment and
use, and through periods of on-going refinement
and iteration in any of these phases).”

In the simplest sense, requirements traceability

is needed to keep track of exactly what you're
building when writing software. This means
making sure the software does what it's supposed
to and that you're only building what's needed.

Traceability works both to prove you satisfied
the requirements and to identify anything that
doesn't. If there are architectural elements

or source code that can't be traced to a

Whitepaper
Guide to CI/CD for Medical Device Software DevOps

requirement, then it’s a risk and shouldn’t be
there. The benefits go beyond providing proof of
the implementation. Disciplined traceability is an
important visibility into development progress.

It's important to realize that many requirements
in medical device software are derived from
safety analysis and risk management. The system
must perform it's intended functions, of course,
but it must also mitigate risks to greatly reduce
the possibility of injury. Moreover, in order to
document and prove that these safety functions
are implemented and tested fully and correctly,
traceability is critical.

Maintaining traceability records on any sort of
scale requires automation. This is particularly
important in a Cl/CD pipeline since manual
maintained traceability would slow down each
iteration. Application life cycle management
tools include requirements management
capabilities that are mature and tend to be the
hub for traceability.

Integrated software testing tools can complete
the verification and validation of requirements by
providing an automated bidirectional traceability
to the executable test case, which includes the
pass or fail result and traces down to the source
code that implements the requirement.

Parasoft integrates with market-leading
requirements management and Agile planning
systems like Intland, codebeamer, Polarion
from Siemens, Jama Connect, Atlassian Jira,
CollabNet, VersionOne, and TeamForge.

11

https://www.inflectra.com/ideas/topic/requirements-traceability.aspx#:~:text=Requirements%20traceability%20refers%20to%20the,iteration%20in%20any%20of%20these

Figure 6:

Bidirectional traceability
from work items to test
cases and test results.
Traceability reports

are displayed, and
results are sent back

to the requirements
management system.

Figure 7:

Requirements traceability

matrix template.

Whitepaper
Guide to CI/CD for Medical Device Software DevOps

As shown in the image below, each of Parasoft’s test automation tools, C/C++test, Jtest, dotTEST,
SOAtest, and Selenic, support the association of tests with work items defined in these systems.
That includes requirements, stories in IT, defects, test runs, test cases, and more. Traceability is
managed through a central reporting and analytics dashboard, Parasoft DTP.

: Deploy/ :

Nonfunctional
Requirements

Non-functional

Requirements Test Automation

Code Analysis Test Automation Test Automation

* APITest
* UlTest

* APITest
* UlTest

- TDD
* UnitTest

* Load/Performance
Testing

* Security
* Reliability

* Load/Performance
Testing

<++>C]C++test ¢¢ »Jtest < o >dotTEST -"¢ SOAtest s-) Selenic + < SOAtest - 5a> Selenic

Project X Dashboard

i - —e—s -
Requirements ® - e re—— — ——
Management ——————— ¥

System 4 Bidirectional Traceability |
: |
: |
I Traceability Reporting I
‘ !
D T —— -

Parasoft DTP correlates the unique identifiers from the management system with static analysis
findings, code coverage, and test results from unit, integration, and functional tests. Results are
displayed within traceability reports and sent back to the requirements management system.
They provide full bidirectional traceability and reporting as part of the system’s traceability matrix.

The traceability reporting is highly customizable. The following image shows a requirements
traceability matrix template that traces to the test cases, static analysis findings, source code files,
and manual code reviews.

Polarion Requirement Traceability
Filter: Automotwe [T Target Buld: ALM

12

The bidirectional correlation between test
results and work items provides the basis of
requirements traceability. Parasoft DTP adds
test and code coverage analysis to evaluate test
completeness. Maintaining this bidirectional
correlation between requirements, tests, and
the artifacts that implement them is an essential
component of traceability.

Bidirectional traceability is important so that
requirement management tools and other life
cycle tools can correlate results and align them
with requirements and associated work items.

Continuous quality in a CI/CD pipeline requires
monitoring of all inputs into the software build.
A good way to do this is to monitor commits
made into the software repository. In other
words, when developers check in their code
after making additions or other changes, it
triggers the Cl pipeline, resulting in a compile,

Whitepaper
Guide to CI/CD for Medical Device Software DevOps

build, and test cycle. If code doesn’t meet coding
standards or if tests fail, the code/branch is not
merged into the master branch. This maintains
code quality at all times for the master branch.

Developers facing failed coding rules or SAST
tool warnings will have to fix or justify the
deviation at the time of writing the code.

This documentation trail is critical for later
audit preparation. Plus, performing this early
detection and documentation is the easiest
and most efficient point in the cycle. Similarly,
with failed tests, developers need to document
fixes to either the code or the tests to confirm
verification and validation.

Trying to use SAST tools or code standard checks
on a large body of code all at once is a tedious
and time-consuming task. Instead, introducing
quality control at the earliest stages of
development, built into a developer’s workflow,
lessens the impact of tool adoption, and increases
quality and security.

IMPROVING SECURITY WITH DEVSECOPS

It's worth mentioning that DevOps and
DevSecOps methodologies share the use of
automation and continuous processes for

establishing collaborative cycles of development.

While DevOps prioritizes delivery speed,
DevSecOps shifts security to the left, which is
more important in software that's classified as
embedded safety- and security-critical.

DevSecOps represents a shift in software
development processes that stresses a
significant focus on security with collaboration
between end users and developers. Software
test automation can enhance these connections
and help organizations accelerate secure
software development.

Software test automation plays an important
role but it's just one piece of the DevSecOps
puzzle. Testing is often one of the greatest
constraints in the SDLC so optimizing security
processes that allow testing to begin earlier—and
shrink the amount of testing required—has a

significant impact on the security of the software
and development efficiency.

Modern DevSecOps initiatives require the ability
to assess the risks associated with a release
candidate—instantly and continuously. Continuous
testing within the CI/CD pipeline provides an
automated, unobtrusive way to obtain immediate
feedback on the security risks associated with a
software release candidate. It guides development
teams to meet security requirements and helps
managers make informed trade-off decisions to
optimize the release candidate.

Continuous testing delivers a quantitative
assessment of risk as well as actionable tasks
that mitigate risks before they progress to the
next stage of the SDLC. The goal is to eliminate
meaningless activities while improving quality
and security and driving development towards a
successful release.

13

Whitepaper
Guide to CI/CD for Medical Device Software DevOps

SUMMARY

Continuous integration and delivery has a role to play in medical device development. Migrating

a waterfall process to CI/CD and Agile development pays off with risk reduction and quality and
security improvements. Security is top of mind for medical device developers and CI/CD is an enabler
for DevSecOps, which introduces security requirements and controls into all aspects of the pipeline.

Containers are a perfect fit with CI/CD. They support rapid deployment and portability across
different host environments with support for versioning and centralized control. Containerized
development environments are important for secure development in a DevSecOps pipeline since it’s
possible to provide a reproducible application environment with built-in security controls.

Testing is by far the most time and resource consuming activity in medical device development.
Continuous testing is a necessary component of a well-oiled CI/CD pipeline and provides a
framework to shift testing earlier in the life cycle.

With the right application of automation and focus on the highest risk areas of the application, it’s
possible to streamline testing to be less of an inhibitor in continuous processes. Continuous testing
requires tool support for automation and optimization. Tools that drive larger code coverage, smart
test execution, and bidirectional traceability further improve continuous testing.

\
TAKE THE NEXT STEP

Request a demo to see how your medical device software development organization can
streamline testing with continuous integration and continuous delivery.

_J

Parasoft helps organizations continuously deliver quality software with its market-proven, integrated
suite of automated software testing tools. Supporting the embedded, enterprise, and loT markets,
Parasoft’s technologies reduce the time, effort, and cost of delivering secure, reliable, and compliant
software by integrating everything from deep code analysis and unit testing to web Ul and API
testing, plus service virtualization and complete code coverage, into the delivery pipeline. Bringing all
this together, Parasoft’s award winning reporting and analytics dashboard delivers a centralized view
of quality enabling organizations to deliver with confidence and succeed in today’s most strategic
ecosystems and development initiatives — security, safety-critical, Agile, DevOps, and continuous
testing.

“MISRA”, “MISRA C” and the triangle logo are registered trademarks of The MISRA Consortium Limited. ©The MISRA Consortium
Limited, 2021. All rights reserved.

14

https://www.parasoft.com/products/parasoft-c-ctest/c-c-request-a-demo/
https://www.parasoft.com/

