
A Comparison of 
Static Analysis 
Violation Fixes

Parasoft vs GitHub Copilot

T E C H N I C A L  W H I T E P A P E R



A Comparison of Static Analysis Violation Fixes: Parasoft vs GitHub Copilot
Technical Whitepaper

2

Abstract
This study evaluates the effectiveness of code fixes generated by GitHub Copilot and Parasoft's 
prompt templates—both with and without reasoning questions—for static analysis violations detected 
by Parasoft C/C++test. 

The team generated fixes using GitHub Copilot's Fix command and Parasoft's prompt templates, 
employing the GPT-4o model. To assess quality, they used the GPT-4o-2024-08-06 model to perform 
pairwise comparisons and rank the fixes. 

Results indicate that fixes produced with Parasoft's prompts significantly outperformed those from 
GitHub Copilot. In comparisons with reasoning questions, Parasoft's fixes were superior in 64.45% of 
cases, tied in 20.5%, and underperformed in the remaining 15.05%.  

Similarly, bare prompts without reasoning questions outperformed Copilot in 57.16% of cases, 
tied in 22.9%, and underperformed in 19.94% of comparisons. A manual comparison of generated 
code fixes suggests that Parasoft's prompts lead to more complete and robust fixes that adhere 
to standard coding practices. The inclusion of rule documentation and the promotion of chain-of-
thought reasoning in the Parasoft prompts are hypothesized to enhance the model's fix generation 
capabilities. 

This study acknowledges several methodological limitations related to the scope of analysis and 
inherent constraints in the process. 



A Comparison of Static Analysis Violation Fixes: Parasoft vs GitHub Copilot
Technical Whitepaper

3

Methodology 
This study employed a systematic approach to evaluate and compare the effectiveness of different 
automated code violation fix generation methods.  

Input Data 

For input data, we constructed a CWE Violations dataset by analyzing 1,856 open-source projects 
with Parasoft C/C++test’s static analysis engine. We used the CWE Top 25 + On the Cusp 2023 test 
configuration and identified severity 1 through 4 violations, finding a total of 330,906 violations 
located within function bodies.  

Each violation includes the following:  

	» Associated C/C++test rule ID, for example, CODSTA-199 

	» Precise location within the associated source file 

	» Violation message, such as, “File not closed: uhook_fdin, new_fd” 

	» Rule description 

	» Code flow traces for flow analysis violations 

Sample Selection 

To sample a somewhat representative set of violations, we applied the following procedure. 

1.	 Calculated a rule frequency distribution in the entire dataset. 

2.	 Calculated a rule frequency distribution in each project. 

3.	 Selected a total of five projects with a rule distribution most similar to the rule distribution within 
the entire dataset. 

4.	 Selected a total of 20 of the most common rules in the entire dataset. Those 20 rules are 
responsible for over 97% of all discovered violations. 

5.	 Applied samplings to the five selected projects, selecting 30 samples for each of the 20 most 
common rules in the entire dataset.  

6.	 Used a total of 600 samples for further experiments. 

Experiment Design 

We obtained fixes by invoking the GitHub Copilot Fix command within VS Code and by applying 
Parasoft’s prompt templates, with and without Reasoning Questions (referred to further as bare and 
reasoning, respectively).  

The comparison used the GitHub Copilot plugin dated Nov 8, 2024, with accompanying GitHub 
Copilot Chat v0.22. 



A Comparison of Static Analysis Violation Fixes: Parasoft vs GitHub Copilot
Technical Whitepaper

4

Data Collection 

Due to technical limitations in the programmatic interface with Visual Studio Code, we successfully 
extracted fixes for 432 out of the 600 violations from the dataset using Github Copilot. The 
success rate across rules averaged approximately 72% with a singular notable outlier: Rule PB-66_a 
successfully obtained a fix for only a single sample, significantly deviating from this pattern. 

Both VS Code and Parasoft created fixes using the GPT-4o-2024-08-06 model. 

Evaluation Process 

We employed the GPT-4o-2024-08-06 model to rank the quality of the outputs. The model was 
asked with Ranking_Prompts to analyze two solutions to the same task of fixing a static analysis 
violation and return a response using the Ranking_Prompt_Response_Schema that proclaimed which 
solution was a winner or whether there was a tie. To control for potential order bias, we compared 
each input sample pair twice, alternating the presentation order of the analyzed solutions in the 
evaluation prompts.

Results
GitHub Copilot vs C++test With Reasoning	

Win Rate Tie Rate Lose Rate
GitHub Copilot 0.150895 0.204604 0.644501

C++test with 
reasoning questions 

0.644501 0.204604 0.150895

GitHub Copilot vs C++test Without Reasoning 

Win Rate Tie Rate Lose Rate
GitHub Copilot 0.199488 0.2289 0.571611

C++test without 
reasoning questions

0.571611 0.2289 0.199488

Pairwise Win Rates

GitHub Copilot C++test With 
Reasoning 
Questions

C++test 
Without 
Reasoning 
Questions

GitHub Copilot 0.150895 0.199488

C++test with 
reasoning questions

0.644501 0.313433

C++test without 
reasoning questions

0.571611 0.186567



A Comparison of Static Analysis Violation Fixes: Parasoft vs GitHub Copilot
Technical Whitepaper

5

Conclusion
This analysis shows that fixes obtained with Parasoft’s prompts consistently rank better than those 
obtained from GitHub Copilot. The better performance is observed both for bare and reasoning 
prompt variants, with reasoning prompts performing slightly better.

Manual inspection of Sample Data revealed that fixes generated with Parasoft’s prompts are often 
more complete (such as fixing all instances of an issue in adjacent lines), robust (code has better 
error handling), and conform to standard practices. We hypothesize that the inclusion of rule 
documentation and enforcement of chain-of-thought reasoning in the prompts (either in the form of 
reasoning questions or the prompt structure of bare prompts) stimulate the model to produce better 
fixes.

Research Limitations
1.	 The analysis was limited to violations produced by Parasoft C/C++test and only violations 

appearing within function bodies were analyzed. Violations that appeared outside of function 
bodies were not included in this analysis.

2.	 Since the ranking prompts only included the function body and not other relevant code, it has 
access to the same limited information as Parasoft's fixing prompt, whereas Copilot uses full (or 
almost full) file context. In rare cases, this might create a bias against Copilot fixes. For example, 
when the solution returned by Parasoft's prompt templates indicates that a violation is a false 
positive or when the model lacks information to fix the violation, the ranking model, having access 
to the same limited data, might be inclined to agree with Parasoft's assessment.

Win, Tie, Lose Percentages: C++test vs Copilot

Percentages

57.2%

64.5%

22.9%

20.5%

19.9%

15.1%

Win
Tie
Lose

C++test without reasoning
vs Copilot

C++test with reasoning
vs Copilot

0.0 0.2 0.4 0.6 0.8 1.0

Win, Tie, Lose Percentages: C++test vs Copilot



A Comparison of Static Analysis Violation Fixes: Parasoft vs GitHub Copilot
Technical Whitepaper

6

TAKE THE NEXT STEP 
Contact us to learn more about Parasoft’s static analysis solutions.

About Parasoft

Parasoft helps organizations continuously deliver high-quality software with its AI-powered 
software testing platform and automated test solutions. Supporting the embedded, enterprise, and 
IoT markets, Parasoft's proven technologies reduce the time, effort, and cost of delivering secure, 
reliable, and compliant software by integrating everything from deep code analysis and unit testing 
to web UI and API testing, plus service virtualization and complete code coverage, into the delivery 
pipeline. Bringing all this together, Parasoft’s award-winning reporting and analytics dashboard 
provides a centralized view of quality, enabling organizations to deliver with confidence and succeed 
in today’s most strategic ecosystems and development initiatives—security, safety-critical, Agile, 
DevOps, and continuous testing.

Appendices: Prompts Templates
Ranking Prompts

System Prompt Template 

You will be presented with a programming task enclosed within 
<TASK></TASK> tags, and two solutions: Solution_A and Solution_B, 
within their respective <SOLUTION_A></SOLUTION_A> and <SOLUTION_
B></SOLUTION_B> tags.

Your job is to analyze both solutions with respect to the task 
description, then compare them and deliver a final verdict.

If both solutions are quite similar without any significant 
differences, choose 'tie' as the answer.

https://www.parasoft.com/contact/
https://www.parasoft.com/


A Comparison of Static Analysis Violation Fixes: Parasoft vs GitHub Copilot
Technical Whitepaper

7

User Prompt Template

<TASK>

{task}

</TASK>

<SOLUTION_A>

{solution_A}

</SOLUTION_A>

<SOLUTION_B>

{solution_B}

</SOLUTION_B>

Ranking Prompt Response Schema

class ABRankedSolutions(BaseModel):

    solution_A_analysis: str

    solution_B_analysis: str

    comparison: str

    final_verdict: str

    winning_solution: Literal["A", "B", "tie"]


