P
\

=L PARASOFT

How to Maximize
Functional Testing
Productivity With Al
and a Lean Web Ul
Test Strategy
|

Overview

As applications become more complex with underlying microservices and distributed architectures,
testing them becomes more challenging. Each use case or test scenario increases in complexity to
achieve end-to-end validation.

Today, many organizations still rely on web Ul testing as the primary form of validation. However, as
applications modernize and move to microservice architectures or highly distributed systems, efficient
complements to web Ul testing with its scalability challenges offer big productivity boosts

in functional test strategies.

Teams must look beyond web Ul testing and focus more testing efforts on the API layers to achieve
a scalable and maintainable test automation strategy that keeps in-sprint testing velocity in focus.

Technical Whitepaper
How to Maximize Functional Testing Productivity With Al and a Lean Web Ul Test Strategy

How the Limitations of Web Ul Testing Impact Team Velocity

When it comes to adopting a test automation strategy, there are usually four primary business goals
that motivate the investment to adopt test automation.

1. Increase the speed of software delivery.

2. Increase the quality of software.

3. Reduce costs.

4. Reduce risks associated with software releases.

Web Ul testing helps validate end-to-end functionality, cross-browser compatibility, client-side logic,
and the user experience. However, it does have limitations that can impact a QA team’s testing
velocity and ability to scale as applications under test mature, including the following:

» Application changes have a high impact on web Ul tests, making them brittle and high test
maintenance burdens.

» Web Ul tests require a significant amount of time to execute, resulting in long regression runs and
delayed testing feedback to development.

» lIssues are difficult to diagnose, which slows defect remediation and reduces team velocity.
» Use cases are time-consuming and difficult to create, leading to test complexity challenges.

Limitations often become more pronounced as application teams try to scale their automated testing
practices, impacting their ability to reach goals around increasing speed and quality while reducing
costs and risks.

High Test Maintenance Burdens

Application teams that depend too heavily on web Ul testing for functional validation face a high
test maintenance burden since tests break frequently when development releases new versions and
the application changes. When first starting out, this may not seem like a big problem, but as the test
suite grows, QA teams will need to allocate a lot of time to diagnose test failures and update tests
that have broken due to application change.

To address the increasing workload and maintain the same level of testing productivity, management
must do one or more of the following:

» Increase staffing numbers to keep up with testing requirements. However, expanding the team
through hiring is both time-consuming and costly. In addition to factoring in the salary or hourly
rate of the new team members, there are also costs associated with training, tech stack, and
internal processes.

» Release with lower confidence and risk more defects in production. This is a judgement call
for the application owner’s tolerance for risk and is not an option for business-critical or
safety-critical applications.

Technical Whitepaper
How to Maximize Functional Testing Productivity With Al and a Lean Web Ul Test Strategy

» Delay the release to allocate more time for testing. There can be real business ramifications
involved in delaying releases. It puts extra pressure on the team to catch up. Delaying the time
to market can impact customer satisfaction and increase project costs. It also impacts longer-term
roadmap plans, which affects the development team's ability to frequently iterate and keep up
with changing requirements.

While there are some commercial solutions on the market today that include capabilities to heal
or mitigate the test maintenance burden, many open source and commercial solutions do not offer
these capabilities. Without them, scalability challenges are a common factor for QA teams that
overrely on Ul testing as a functional testing strategy.

Long Regression Runs and Slow Testing Feedback

When teams first start their test automation journey, the time it takes to execute web Ul tests may
not have a heavy impact on the velocity of testing cycles. However, when the test suite has grown
to thousands of test cases, regression testing is going to take considerably longer to complete.

This, combined with frequent Ul changes, means it takes longer than one would expect to run a full,
automated regression suite that accounts for maintenance issues and re-running tests that need to
be stabilized. This leads to

» Delays in providing feedback to development.

» Slower defect remediation.

» Increased project costs.

» Decreased developer productivity due to context switching.
Slow Defect Remediation

The primary goal of testing should always be to find and fix defects as quickly as possible. However,
with Ul testing, when an issue is found, it can be difficult to pinpoint the exact location of the defect
in the application. This can cause a slowdown, as development must first succeed in reproducing the
issue before they can identify the root cause to remediate. This impacts the time to remediation,
resulting in a higher cost of fixing the defect.

Test Complexity Challenges

As applications and websites today become more feature-rich, distributed, and interconnected,

the necessary tests will also become more complex and difficult to automate. This leads to scalability
challenges where end-to-end tests can take hours to create and maintain. To mitigate these
challenges, testing teams need to expand beyond web Ul testing and focus more of their efforts

on API test automation, adopting a lean web Ul test strategy where the underlying business logic

of the application is validated through the APIs and web Ul testing is narrowly focused on validating
the presentation and interactions on the user interface.

API Exposure Maturity

Technical Whitepaper
How to Maximize Functional Testing Productivity With Al and a Lean Web Ul Test Strategy

How Modern API Architecture Is Changing Testing Strategies

When it comes to expanding beyond web Ul testing, it's important to understand where most
modern software architectures are heading, the increased reliance on APIs, and the different ways
they’re being used.

There are three primary types of APl exposure maturity.

1. System and process APIs. Fundamental layers that expose core assets and business logic via a
consistent contract. System APIs represent all the functions, features, and resources a system
exposes to outside clients, while process APIs represent middleware and orchestration of
functions across multiple systems. Using an API’s contract, thorough testing should be conducted
against these endpoints to ensure proper functionality, security, and performance before
advancing to a higher scope end-to-end testing.

2. Experience APls. Sometimes called frontend or browser-based, this type of API can be thought of
as a “functionality wireframe” for the resulting user experience in the Ul. It’s the Experience API
that delivers dynamic chunks of data that allow frontend engineers to enrich the user experience
while not requiring a page reload. Popular frontend frameworks like Angular and React support
this paradigm of UI/UX built on top of Experience APIs. These APIs are often undertested or
assumed to be (indirectly) tested by Ul tests, which leads to gaps in test coverage and difficulty
keeping automated regression testing caught up within each sprint. Within modern system
architectures, Experience APIs open the door for higher testing velocity while regression testing
end-to-end use cases.

3. Open APIs. The final level of APl exposure maturity is where you publicly document and
encourage public use of your software. Many successful businesses have been born out of an
open APl monetization strategy, and generating revenue with use cases like partner integration
also necessitates comprehensive API testing.

APIs for revenue

Public APIs generation

Differentiation | Open API

APIs for Partner B2B via APls, multi-org
Collaboration [l Im integration, loT

Strategic | Experlence APl] APIs for Omnichannel _B2C APIs for web, mobile app, social,
Enablement direct, internal loT, and more

APIs for Enterprise Q Multi-device APIs for employee productivity,
Mobility such as Q2C, P2P, R2R, and HZR

System &
Tactical Process APls

APIs for Systems Cloud/on-premise connectivity APls: ERP, CRM, HCM,
Connectivity PPM, Legacy, and more

-

Sources: Panagiotis Kriaris, Capgemini & Mulesoft

Technical Whitepaper
How to Maximize Functional Testing Productivity With Al and a Lean Web Ul Test Strategy

Expanding beyond web Ul testing to increase testing productivity isn’t referring to testing system,
process, or open APls. It's a given that these APIs must have thorough regression tests. As a
“functionality wireframe,” Experience APIs represent the underlying end-to-end business logic of
the application. By shifting the focus in functional testing strategy from the web Ul layer to the
Experience API layer, teams can:

» Increase testing productivity.
» Maintain Agile development velocities.

» Create a more scalable and maintainable test automation strategy.

What Is a Lean Web Ul Test Strategy?

QA teams can adopt a more maintainable and scalable test automation strategy by refocusing a
substantial amount of their testing efforts on the API layers. Web Ul testing is still a crucial part of
quality assurance and vital to ensuring a positive user experience. However, due to web Ul testing
scalability barriers, teams must become more strategic in their testing practice with a lean web Ul
test strategy.

A lean web Ul test strategy urges QA teams to think
critically about what type of test to create to validate
functionality or meet testing requirements. In many cases,
web Ul tests are the appropriate type of test case. For
instance, teams should opt to create a web Ul test over

an API test in the following scenarios:

» User interface validation. If the primary focus is on
validating the user interface, including layout, styling,
and user interactions, creating a web Ul test is
appropriate. This is especially important for applications
where the user experience is critical, such as customer-
facing websites and web applications.

» Navigation testing. Web Ul testing is valuable in
navigation testing, which ensures that the user interface
navigation menus function as expected and that links
and buttons direct users to the intended destination.

» Blackbox testing. In scenarios where the internal implementation details of backend services are
not accessible or relevant to the testing objectives, creating web Ul tests allows testers to interact
with the application as an external user would, without needing knowledge of the underlying APIs.

» Cross-browser and cross-device testing. If testing needs to ensure compatibility across different
browsers, devices, and screen sizes, then web Ul tests are essential for validating the application's
behavior in various environments.

» Input validation and error handing testing. Check that only valid data can be entered into specific
fields and ensure that text fields do not allow inputs to exceed a specific character limit.

Technical Whitepaper
How to Maximize Functional Testing Productivity With Al and a Lean Web Ul Test Strategy

Web Ul testing plays a crucial role in preserving user satisfaction and loyalty by identifying and
rectifying potential issues before they impact end users. Through rigorous testing of the user
interface across various browsers and devices, businesses can ensure consistent performance and
accessibility, thus maximizing their reach and driving traffic and engagement. The problem lies in
overreliance on web Ul testing and its challenges around scalability. Teams that practice a lean web
Ul test strategy practice both APl and web Ul testing.

Increase Your Productivity: Directly Test Experience APIs

Let's examine the benefits of shifting your test strategy to directly test the Experience APIs that
your end users interact with from the browser. API testing has a higher testing velocity than web
Ul testing. It lends itself to be more scalable and maintainable over time.

Here are some benefits of API testing.

» Lowers test maintenance costs due to API tests being more resilient to application changes than
web Ul tests.

» Provides faster feedback for development.

» Accelerates test failure diagnostics and remediation processes.
» Facilitates high levels of test automation.

» Scales easily across teams and physical machines.

While web Ul tests often break due to application changes and require dedicated engineering time
for test maintenance during each sprint, API tests are more resilient to change because APIs change
less often. By shifting your testing approach to directly test your applications’ Experience APIs
versus indirectly testing them with web Ul testing, QA teams can amplify efforts by creating more
test cases to cover new features and functionality.

Since API testing can begin before the user interface finishes, application teams can start testing much
earlier in their development cycles, giving them more time to create tests, and increase test coverage.

API test cases are also much faster to execute. By adopting a lean web Ul and API first testing
approach, QA teams can accelerate testing cycles, enabling faster feedback to development. As

a result, they stay on track better with delivery schedules, increase the quality of the resulting
software, and reduce risks associated with low test coverage or lack of negative testing performed
through Ul testing only.

As API testing can test applications with and without user interfaces, supports complex
architectures and use cases, and allows testing to begin earlier, teams benefit from easy scalability
across the applications they’re testing. While it can be a cultural change, enabling more QA activities
at the API layer allows you to scale test automation more easily while minimizing the typical test
maintenance burdens of web Ul testing.

Technical Whitepaper
How to Maximize Functional Testing Productivity With Al and a Lean Web Ul Test Strategy

Using Al Test Generation to Directly Test Your Experience APIs

With many QA teams having invested heavily in automated web Ul testing, the challenge becomes
how to get QA teams to adopt API testing for the Experience APIs under their applications’ user
interface to reap the benefits that API testing offers.

QA teams often struggle with how to effectively test APIs end-to-end because it requires an
understanding of the underlying business logic from the frontend of the application. This can be
daunting because it’s viewed as more technical with an assumption that one must have developer-
level knowledge to be successful in testing APIs. While a QA team may recognize the benefits of
API testing, API testing often remains a challenge.

This is where Al-powered API test generation
comes into play. Solutions like Parasoft SOAtest
enable QA teams to leverage their existing web
Ul test suite, regardless of the test framework,
to automatically generate a complimentary suite
of API scenario tests with its Al-enhanced Smart
API Test Generator.

Teams can more easily transition their functional
testing practice so that the underlying business
logic of the application is validated with API
testing and refocuses web Ul testing on
validating the interactions and presentation of
the user interface. Over time, as old web Ul test
cases break, QA teams can determine if the test
cases are necessary and should be maintained
or if the business logic is sufficiently tested with
API testing.

Eventually, the size of the web Ul test suite will reduce along with the QA team'’s test maintenance
burden. The QA team will prioritize API testing to validate the underlying business logic, while the
web Ul test suite will strategically focus on validating the user interface elements.

By leveraging Al to create complementary API tests to go along with your web Ul testing practice,
teams can benefit from the higher ROI that API testing offers and adopt a strategy that scales across
their applications, reduces test maintenance burdens, and increases their test velocity for faster
software validation and deliveries.

Double Your Test Suite: Leverage Existing Test Cases

QA teams can use Parasoft SOAtest’s Smart API Test Generator, an Al-driven solution, to record API
traffic with a proxy while performing actions on a Ul. By executing existing web Ul tests with the
Smart API Test Generator's traffic recorder capturing the underlying API calls, teams can potentially
double their test suite by codelessly generating a complementary suite of API scenario tests.

Technical Whitepaper
How to Maximize Functional Testing Productivity With Al and a Lean Web Ul Test Strategy

This technology is purpose-built for modern frontends that heavily rely on REST or GraphQL to
enrich the Ul/UX of their application. While this technical whitepaper focuses on leveraging existing
automated Ul tests, a Chrome extension is also available to record manual test sessions.

Parasoft offers two ways for application teams to leverage existing web Ul test suites to generate
complementary API scenario tests that directly test their Experience APIs.

1. Integrate the Parasoft Recorder REST APl into the existing Ul test framework.

2. Use Parasoft Selenic to automate the injection of the Parasoft Recorder REST API into existing
Selenium-based tests during their execution.

How to Integrate Parasoft’s Recorder REST API Into Your Ul Test
Automation Framework

The Parasoft Recorder REST API has a straightforward set of resources that your test framework can
call to set up the proxy and recording session. Here's a visual breakdown of the REST API:

v8 f“;f'“"e: Test Suite The REST API will return a proxy port that you must leverage with
=] Environments
v & Test Suite: 3 your Ul test framework so that all the HTTP traffic flowing through
~ (& Test Suite: /v1/sessions . . .
& Test 1: /vi/sessions - GET the browser or mobile device on test playback is captured by the
{2 Test 2: v1/sessions - POST
w (2 Test Suite: /v1/sessions/[id} prOXY'
& Test 1: fvifsessions/{id) - PUT
S st X For a runnable example of a web Ul test that integrates the Parasoft
Al sl Recorder REST API, see the following GitHub repo. This project
v & gst Suite: fv1/soavirt/status - T =
I :2“_:*:‘;’?“"‘*’““"5' POST leverages Selenium in Java but setting up a proxy with the Ul is a
v = lest Suite: /vl /status
2 Test 1: j1/status - GET common feature in most Ul test frameworks. This repository can be

a useful reference for doing a similar integration regardless of the
framework or language used for test automation. For example, both
Cypress and Playwright have similar proxy control capabilities:

» https://docs.cypress.io/guides/references/proxy-configuration

» https://playwright.dev/docs/network#http-proxy

> [settings

v [src/test/java/com/parasoft

The Ul test in our example is testing a web application called Parasoft
Demo App, which is a logistics application that Parasoft often uses
- when demonstrating Ul and API testing concepts. The Parasoft Demo

EﬁndTDEndTest_Wnhkmrdeqa App is open sourced and can be deployed locally to give the test

a spin for yourself. We've even published a docker image to make

I ~ [@ demo/pda

> B page

> [recorder
[.gitignore dep|0y|ng it easy.
g ::;:E 3 The GitHub repo has two versions of the same test class, an “original”
.m
0 | test without integrating the Recorder REST API, and another that
pom.xm

does, so you can compare the differences between them.

https://github.com/whaaker/PDA-Selenium-RecorderAPI-Example
https://docs.cypress.io/guides/references/proxy-configuration
https://playwright.dev/docs/network#http-proxy
https://github.com/parasoft/parasoft-demo-app
https://hub.docker.com/r/parasoft/demo-app
https://github.com/whaaker/PDA-Selenium-RecorderAPI-Example

Technical Whitepaper
How to Maximize Functional Testing Productivity With Al and a Lean Web Ul Test Strategy

Before running EndToEndTest_WithRecorder.java, you must have:

» Parasoft Recorder installed.

» Parasoft SOAtest installed with a valid SOAtest Desktop license that includes the “Advanced Test
Generation Desktop” license feature enabled.

This example leverages JUnit's @Before and @After annotations to run some code before and after
each test. These beforeTest() and afterTest() methods are where we will call the Parasoft Recorder
REST API to set up the test for recording API traffic. The code being called from these methods
includes setting up the Selenium WebDriver with a proxy connection from the Parasoft Recorder
and is contained in the ParasoftRecorder.java class.

The following method describes example logic for starting a new recording session.

public ChromeOptions startRecording(ChromeOptions opts) {
// Start Recording Session
Boolean sessionsEmpty = isSessionsEmpty();
if (sessionsEmpty) {
Boolean sessionStarted = startNewSession();
if (!sessionStarted) {
log.error("could not start recording session");
}
} else {

log.error("sessions were not empty, recording did not start");

return setupChromeOptions(opts);

10

https://github.com/whaaker/PDA-Selenium-RecorderAPI-Example/blob/main/src/test/java/com/parasoft/demo/pda/EndToEndTest_WithRecorder.java

Technical Whitepaper
How to Maximize Functional Testing Productivity With Al and a Lean Web Ul Test Strategy

There are some noteworthy private method calls being made in the logic for starting a recording:

» isSessionsEmpty() - calls the Recorder REST API to see if there are any currently active sessions.

» startNewSession() - calls the Recorder REST API to start a new recording session.

» setupChromeOptions(opts) - demonstrates how to configure a proxy in Chrome with Selenium.

private ChromeOptions setupChromeOpticns(ChromeOptions cpts) {

// Setup Chrome Driver

if (this.recordingProxyPort.isEmpty(} || this.recordingSessionId.isEmpty()) {
log.error("recording session has a problem, id or proxy port is empty - returning normal ChromeDriver");

} else {
// initialize the proxy with the proxy port returned by the Paraseft Recorder API
Proxy proxy = new Proxy();
proxy.setHttpProxy(RECORDER_HOST + ":" + recordingProxyPort); // proxy http connections
proxy.setSslProxy (RECORDER_HOST + ":" + recordingProxyPort); // proxy https connections
proxy.sethoProxy("<-loopback>"); // override proxying localhost connections

// tell Selenium to set the UI to use the Proxy

opts.setProxy(proxy);

return opts;

Then to stop recording, we have the following method:

public void stopRecordingAndCreateTST(String testName) {
Boolean sessionStopped = stopSession();
if (sessionStopped) {
Boolean trafficSent = sendTrafficToSOAtest(testName);
if (trafficsent) {
Boolean sessionEnded = endRecordingSession();
if (!sessionEnded) {
log.error("session stopped and traffic sent, but session could not be ended");
:
} else {
log.error("session stopped but traffic was not sent”);
}
} else {

log.error("session could not be stopped, traffic was not sent");

11

https://github.com/whaaker/PDA-Selenium-RecorderAPI-Example/blob/main/src/test/java/com/parasoft/recorder/ParasoftRecorder.java#L134
https://github.com/whaaker/PDA-Selenium-RecorderAPI-Example/blob/main/src/test/java/com/parasoft/recorder/ParasoftRecorder.java#L192
https://github.com/whaaker/PDA-Selenium-RecorderAPI-Example/blob/main/src/test/java/com/parasoft/recorder/ParasoftRecorder.java#L115

Technical Whitepaper
How to Maximize Functional Testing Productivity With Al and a Lean Web Ul Test Strategy

There are some noteworthy private methods being called here as well:

» stopSession() - calls the Recorder REST API to stop the session.

» sendTrafficToSOAtest(testName) - transmits its recorded traffic to SOAtest so its Al can
generate an API test.

» endRecordingSession() - calls the Recorder REST API to terminate the recording session.

After running EndToEndTest_WithRecorder.java, you will see the following test automatically
created in your SOAtest workspace!

~ (i com.parasoft.demo.pda EndToEndTest_testFullFlowCampingSkin_RecorderAPList
v (& Scenario: Test Suite
» [Environments
» ! Test 1: POST 34.210.862/v1/login
+ ! Test 2: GET 34.210.8.62/proxy/v1/orders/unreviewedNumber
1! Test 3: GET 34.210.8.62/proxy/v1/cartitems
» & Test 4: GET 34.210.8.62/prowy/v1/assets/categories
2 Test 5: GET 34.210.8.62/proxy/v1/cartitems 2
& Test 6: GET 34.210.8.62/proxy/v1/assets/cateqgories/1
i Test 7: GET 34.210.8.62/proxy/v1/locations/regions
[E] Test 8 GET 34.210.8.62/proxy/v1/orders/unreviewedNumber 2
= Test 9: GET 34.210.8.62/proxy/v1/assets/items
» [Test 10: GET 34.210.8.62/prowy/v1/cartitems/1
» B Test 11: POST 34.210.8.62/proxy/v1/cartitems
[E' Test 12: GET 34.210.8.62/proxy/v1/cartitems/3
[Test 13: POST 34.210.8.62/proxy/v1/cartitems 2
2 Test 14: GET 34.210.8.62/proxy/v1/cartitems 3
est 15: GET 34.210.8.62/proxy/v1/cartitems 4
est 16: GET 34.210.8.62/proxy/v1/cartltems 5
> est 17: GET 34.210.8.62/proxy/v1/cartitems &
» & Test 18: GET 34.210.8.62/proxy/v1/orders/unreviewedNumber 3
B Test 19: GET 34.210.8.62/proxy/v1/cartitems 7
» & Test 20: GET 34.210.8.62/proey/v1 /locations/regions 2
[Test 21: GET 34.210.8.62/proxy/v1/locations/location
[E! Test 22: GET 34.210.8.62/proxy/v1/cartltems 8
[Test 23: POST 34.210.8.62/proxy/v1/orders
1 Test 24: POST 34.210.8.62/v1/login 2
» [Test 25: GET 34.210.8.62/prowy/v1/orders
& Test 26: GET 34.210.8.62/proxy/v1/orders/23-456-001
[Test 27 PUT 34.210.8.62/proxy/v1/orders/23-456-001
» G Test 28 PUT 34.210.8.62/proxy/vi/forders/23-456-001 2
5! Test 29: GET 34.210.8.62/proxy/v1/orders 2
[Test 30: POST 34.210.8.62/v1/login 3
» [Test 31: GET 34.210.8.62/proxy/v1/cartitems 9
[Test 32: GET 34.210.8.62/proxy/v1/orders/unreviewedNumber 4
» & Test 33: GET 34.210.8.62/proxy/v1/assets/categories 2
! Test 34: GET 34.210.8.62/proxy/v1/cartitems 10
! Test 35: GET 34.210.8.62/proxy/v1/orders/unreviewedNumber 5
& Test 36: GET 34.210.8.62/proxy/v1/orders 3
B Test 37: GET 34.210.8.62/proxy/v1/orders/23-456-001 2
2 Test 28: PUT 34.210.8.62/proxy/v1/orders/23-456-001 3
» B Test 39: GET 34.210.8.62/proxy/v1/orders/unreviewedNumber &

Even a relatively simple Ul playback in a responsive web application can lead to many calls to
Experience APIs, as shown here with the Parasoft Demo App. Capturing the calls and creating the
API test scenario is only part of what this recording workflow does. SOAtest’s Al also analyzes all the
recorded request/response messages and configures the needed parameterizations for dynamic data
that make this long sequence of API calls replay ready!

Notice test step 23 is a POST request that happens right before logging in as a different user in the
end-to-end flow.

v & Test 23: POST 34.210.8.62/proxy/v1/orders
1" Response Traffic->Smart - JSON Data Bank
& Traffic Object->Traffic Viewer

> & Test 24: POST 34.210.8.62/v1/login 2

12

https://github.com/whaaker/PDA-Selenium-RecorderAPI-Example/blob/main/src/test/java/com/parasoft/recorder/ParasoftRecorder.java#L265
https://github.com/whaaker/PDA-Selenium-RecorderAPI-Example/blob/main/src/test/java/com/parasoft/recorder/ParasoftRecorder.java#L317
https://github.com/whaaker/PDA-Selenium-RecorderAPI-Example/blob/main/src/test/java/com/parasoft/recorder/ParasoftRecorder.java#L380
https://github.com/whaaker/PDA-Selenium-RecorderAPI-Example/blob/main/src/test/java/com/parasoft/demo/pda/EndToEndTest_WithRecorder.java

Technical Whitepaper

How to Maximize Functional Testing Productivity With Al and a Lean Web Ul Test Strategy

SOAtest’s Al figured out that there is data in the response of this API call that is necessary in
subsequent test steps. In this case, the Al automatically configured an extraction to grab a new

order number.

¥ Smart - JSON Data Bank

* Name

Mame: Smart - JSON Data Bank

~ Tool Settings

| Tree | Literal | Element |

{
"status” : 1,
"message" : "success”,
"data" : {
"id® @ 2,
"orderNumber” : "23-456-002",
"requestedBy" : "purchaser”,
"status™ : "SUBMITTED",
"reviewedByAPV" : false,
"reviewedByPRCH" : true,
"respondedBy" : null,
"orderItems” : [
{
il 3,
"name" : "Blue Sleeping Bag",
"description" : "This sleeping bag has a temperat
“image" : "/outdoor/images/sleepingbag-blue-detai
"itemId" : 1,
"quantity" : 1

1" s,

“name" : "Pink Sleeping Bag",

"description” : "This sleeping bag has a temperat
"image” : "/outdoor/images/sleepingbag-pink-detai
"itemId" : 3,

"quantity" : 1

}
L,

"region" : "LOCATION_3",

"location™ : "12.21° E, 58.42° N",

"orderImage" : "/outdoor/images/generic-map-3.png"”,
"receiverId" : "123",

"eventId" : "456",

"eventNumber™ : "789",

"submissionDate™ : "2024-10-89721:23:27.728+00:00",
"approverReplyDate™” : null,

"comments” : null

Selected Element
forderNumber[1]

Data Source Column
Test 23: orderNumber

iy

Remove Modify

This is important for the entire end-to-end test scenario to work because there are API calls that
require the order number as a request parameter, like test steps 26-28:

> & Test 26: GET 34.210.8.62/proxy/v1/orders/23-456-001
> & Test 27: PUT 34.210.8.62/proxy/v1/orders/23-456-001
> & Test 28: PUT 34.210.8.62/proxy/v1/orders/23-456-001 2

13

Technical Whitepaper
How to Maximize Functional Testing Productivity With Al and a Lean Web Ul Test Strategy

SOAtest’s Al made sure not to hardcode the order number from the traffic recording and instead
correctly configures the request parameters for these API clients to use the extracted order number
from test step 23.

(2! Test 27: PUT 34.210.8.62/proxy/v1/orders/23-456-001 X
~ Name

Name: PUT 34.210.8.62/proxy/v1/orders/23-456-001

iz Resource | 5* Payload| < HTTP Options | 4 Misc

Service Definition: None v

Method: Fixed v | PUT v

URL: Fixed ~ | ${BASEURL}/proxy/v1/orders/${Test 23: orderNumber}
Resolved URL: F 34.210.8.62:4040/proxy/v1/orders/${Test 23: orderNumber} I
Path Queryz

Path Parameter

proxy

vl

orders

${Test 23: orderNumber}

Feel free to review the rest of the example code to see how the full integration with the Recorder
REST API works. In the next section of this whitepaper, you will see how Parasoft Selenic eliminates
the need for any modifications to your Java-based Selenium projects to accomplish the same
workflow in those environments.

Custom-Built Workflows

Selenic is designed to seamlessly plug in to custom-built Java Selenium frameworks that use JUnit,
TestNG, and Cucumber with its agent-based approach. In addition to Selenic’s Al features to self-
heal tests and assist with test creation, users don’t have to manually integrate the Parasoft Recorder
REST API into their test framework to benefit from SOAtest Smart APl Test Generator. Selenic takes
care of this for them.

In this section, we'll run the unaltered EndToEndTest.java test class and achieve the same result in
SOAtest Desktop without needing to change any code.

14

https://github.com/whaaker/PDA-Selenium-RecorderAPI-Example
https://github.com/whaaker/PDA-Selenium-RecorderAPI-Example/blob/main/src/test/java/com/parasoft/demo/pda/EndToEndTest.java

Technical Whitepaper

How to Maximize Functional Testing Productivity With Al and a Lean Web Ul Test Strategy

Selenic has IDE plugins for both Eclipse and IntelliJ. If you want to replay your suite of Selenium tests
from the IDE and get the resulting APl scenario tests in your SOAtest workspace, the IDE plugins are
a great way to do it. Try it with the Selenic 30-day free trial.

v §# > PDA-Selenium-RecorderAPl-Example [PDA-Selenium-RecorderAPl-Example ma

v M - sreftest/java
~ i > com.parasoftdemo.pda
[> EndToEndTest_WithRecorderjava

» i JRE System Library [Jav

14} > EndToEndTest jav-

» # com.parasoft.demo.pc

» i com.parasoftrecorder

B src/test/resources

> ® Maven Dependencies
> & bin

= spring-petclinic-selenic-tests
spring-petclinic-selenium-

> ot

E lib

& > 51

> target

& pomxml

[README.md

as

® O

Mew

Open

Open With

Open Type Hierarchy
Show In

Show in Local Terminal

Copy

4 Copy Qualified Name

Paste
Delete

Build Path
Source
Refactor

Import.
Export..

Source

References
Declarations

Refresh
Assign Working Sets...

Create Selenium Test from Recording

Run with Selenic

Run As
Debug As
Profile As

Restore from Local History...

Web Services
Team
Compare With
Replace With
GitHub
Configure
Validate

Properties

!
»

F4
Alt+Shift+W >
»

Ctri+C

Cirl+V
Delete

>
Alt+Shift+5 >
Alt+Shift+T >

F5

>

Vv v v v v

Alt+Enter

Ju 1 JUnit Test

Selenic Configurations...

¢ Recommendations x
€ JSON report file g

1o obtain rec

2commendations

d by the

15

https://www.parasoft.com/products/parasoft-selenic/selenic-free-trial/

Technical Whitepaper
How to Maximize Functional Testing Productivity With Al and a Lean Web Ul Test Strategy

Selenic’s IDE integration wraps the JUnit or TestNG test runner with some additional configuration
settings. Parasoft can provide the Recorder proxy port and connection information to the SOAtest
instance that will receive the recorded HTTP traffic and create API tests from it.

@] selenic Configurations o x
Create, ge, and run config ~
‘Se»
Run JUnit with Selenic agent vy

BEoRX BY~ Name: EndToEndTest (Create API Test)

El Test | Selenic o0 A B RE| % D dencies| & Source| B8 Environment| = Common

v Je JUnit
Ju All Tests (BASELINE)
Ju All Tests (BASELINE) (Thanos)

’ Generate recommendations
Recommendations Options

Jo All Tests (UPDATED) S e fochcss

To All Tests (UPDATED) (Thanos) - All locators

Ju All Tests (UPDATED SELF-HEALING) | Perform self-healing
Ju All Tests (UPDATED SELF-HEALING) (Thanos) Seif-healing Options
Ju BillPayTest Locators

Ju BillPayTest (1)

Ju EndToEndTest

Jo EndToEndTest_WithRecorder

3 EndToEndTest (Create API Test)|

Ju FullFlowTest

Ju FullFlowTest_DirectlyWithSOAtestWebProxy
Ju NavigateTest

B Take screenshots on failures
) Open HTML report after execution

Ju PetTest Report when execution time exceeds threshold
Ju RegisterOwnerAndPetTest Execution Time Threshold Options

Ju VetsTest X 20

Ju VisitTest

|:> B Create APl tests with Parasoft SOAtest

API Test Creation Options
Proxy port 40090
50Atest host: localhost
S0Atest port: _9030

(") Secure connection (HTTPS)
Username:

Password:

Test Connection

Filter matched 19 of 44 items Show Command Line

Close

If you want to execute Selenium tests from a command line, Selenic instruments the JVM for easy
integration with your Maven or Gradle builds that run your tests.

Benefits of a Lean Web Ul and Shift to API Test Strategy

QA teams who have heavily invested in web Ul testing don’t need to start over to shift their testing
focus to the API layers. Instead, leverage Al-enhanced SOAtest to generate API scenario tests that
complement your web Ul test cases.

By shifting focus to the API layers, teams can begin validating most of the core functionality before
web Ul test automation can be stabilized. This will result in decreased feedback time to development
while increasing feedback frequency.

16

https://docs.parasoft.com/display/SEL20241/Command+Line

Technical Whitepaper
How to Maximize Functional Testing Productivity With Al and a Lean Web Ul Test Strategy

Fully testing for functional misbehavior via API testing enables a lean web Ul test strategy where
web Ul test problems aren't exacerbated with application defects that could have been caught with
API testing. Teams can also target Ul tests for specific purposes or reasons, such as cross-browser
validation, user acceptance testing, web accessibility testing, or testing frontend logic that isn’t built
through APls.

Conclusion

Ul testing has clear benefits. However, overinvesting in Ul testing can lead to high maintenance
burdens on testing teams if the applications under test are dynamic and consistently experiencing
change. By diversifying the types of tests that make up the functional test strategy and shifting
testing to the API layers, teams can benefit from a more scalable, maintainable, and effective testing
practice. Easily make this shift to the API layers and start reaping the benefits by applying Parasoft
SOAtest’s Al-enhanced Smart API Test Generator to your test strategy.

TAKE THE NEXT STEP

Request a demo to see how your team can increase the scalability and velocity of your functional
test strategy with Al-powered Parasoft SOAtest.

Parasoft helps organizations continuously deliver high-quality software with its Al-powered
software testing platform and automated test solutions. Supporting the embedded, enterprise, and
loT markets, Parasoft’s proven technologies reduce the time, effort, and cost of delivering secure,
reliable, and compliant software by integrating everything from deep code analysis and unit testing
to web Ul and API testing, plus service virtualization and complete code coverage, into the delivery
pipeline. Bringing all this together, Parasoft’s award-winning reporting and analytics dashboard
provides a centralized view of quality, enabling organizations to deliver with confidence and succeed
in today’s most strategic ecosystems and development initiatives—security, safety-critical, Agile,
DevOps, and continuous testing.

17

https://www.parasoft.com/products/parasoft-soatest/soatest-request-a-demo/
https://www.parasoft.com/

