
Modernizing Critical
Embedded Software

W H I T E P A P E R

Modernizing Critical Embedded Software
Whitepaper

2

Executive Summary
Embedded software is a competitive differentiator, yet most programs still rely
on legacy, hardware-bound workflows that were never designed for today’s
scale. This paper explains how the enterprise world already has a head start
on the problem; why embedded teams must modernize now, before AI-driven
code volumes escalate; and how new regulatory mandates turn compliance into
schedule killers. It also shows how to do it without compromising real-time,
safety-critical demands.

You’ll learn about:

•	 The enterprise blueprint, adapted for embedded. Cloud-native DevOps,
containerized builds, and AI assistance have already helped productivity in
enterprise software. We go through which elements translate to embedded
environments already, and which ones must be customized.

•	 Embedded-specific hurdles. Custom silicon, hardware-in-the-loop, real-time
performance, safety standards, and C/C++ constraints that block adoption
from happening.

•	 The testing and compliance burden. Why code growth, GenAI churn, and
multiple standards (MISRA, ISO 26262, DO-178C, etc.) make continuous,
automated validation non-negotiable.

•	 A five-step modernization roadmap.

•	 Assess toolchain

•	 Containerize builds

•	 Automate compliance-grade testing

•	 Pilot cloud CI/CD on simulation hardware

•	 Scale with AI-driven prioritization

•	 The hidden value of platforms. A brief look at how having an integrated
platform bridges embedded and functional domains, continuous compliance,
and readies teams for DevOps speed.

Written for CIOs, CPOs, chief software officers, and functional-safety owners
who are aware of the pain but don’t yet have a solution, this guide delivers
a concise business case and practical path forward. And it gives you the
confidence that you can modernize your embedded development process
without sacrificing the quality your projects demand.

Modernizing Critical Embedded Software
Whitepaper

3

Enterprise DevOps has sprinted ahead. Embedded teams are falling
behind.
Cloud computing ushered in a new era of productivity for enterprise software development, catalyzing the
software industrial revolution. Innovations in both deployment infrastructure and software-development
methods have facilitated rapid advancements on a large scale, while simultaneously reducing nominal costs.

Recent breakthroughs in artificial intelligence are changing
the game once again, with the promise of additional, and
potentially transformational, productivity boosts.1

Embedded systems, meanwhile, have traditionally been
curated as custom solutions, intimately tailoring software to
specific hardware architectures. They're also characterized by
features such as real-time responsiveness and functional safety
requirements not required elsewhere.

Embedded software development has not enjoyed the same
pace of innovation and productivity improvements, and

generally fallen short of the best practices observed in enterprise software environments.

Given the increasing importance of software as a differentiator across multiple industry sectors,
it's time to adapt embedded software development to a modern, industrialized scale.

This white paper examines what will be needed for this transformation. It outlines the necessary adaptations
to the unique characteristics of embedded systems, while also leveraging advancements seen in enterprise
software—including a shift to DevOps and the integration of artificial intelligence. There's also an emphasis
on the burden of testing these systems, and how embracing modern practices can help there, too.

1 PwC: 2024 Cloud and AI Business Survey

Why now?

•	 Market pressure

•	 Regulatory updates

•	 Spike in AI and complexity

It's time to adapt
embedded software
development to a
modern, industrialized
scale.

https://www.pwc.com/us/en/tech-effect/cloud/cloud-ai-business-survey.html

Modernizing Critical Embedded Software
Whitepaper

4

Several Factors Have Led to Modern Software Development
Many factors have added to the explosion of productivity in modern software. While the list below is
not exhaustive, these are some of the key enablers, and provide a roadmap for the steps required to
transform development of embedded systems, too.

•	 Decoupling Hardware and Software on the Way to the Cloud

Enterprise software was once closely coupled to underlying silicon. In the 1980s and 1990s,
computer systems from Sun, HP, IBM, NeXT and others operated their own proprietary operating
systems on custom hardware.

Over time, there was a consolidation towards a common silicon architecture (Intel's x86) and
a common operating environment: Linux. This reduced dependencies, consolidated tools, and
provided a common environment with a broad community of developers.

Companies like VMware offered virtualization solutions that let you consolidate different systems
onto a single, virtualized platform, reducing costs and improving server efficiency. Software then
became further abstracted from silicon through containerization, such as Docker or Kubernetes,
helping migration to cloud-native infrastructure with a focus on automation and orchestration.

Currently, microservice architectures let developers concentrate on software features rather than
infrastructure, promoting faster development cycles. They're also scalable, adaptable, resilient,
and easier to maintain. Using containerized architectures only helps, enhancing these systems'
portability and consistency.

•	 DevOps and Build Automation

Cloud technology enables rapid, large-scale creation of software in environments often referred
to as the “Software Factory” in the Aerospace and Defense (A&D) sector. Moving from monolithic
IDEs to containerized tools, managed via scripts and build systems, has established a production
line approach, synonymous with DevOps or CI/CD pipelines.

Following cloud-native practices lets build-infrastructure leverage the cloud. This shifts code
editing and compilation from developers' desktops to automated processes within the Software
Factory, and taps into seemingly unlimited computing resources.

These factories, with their standardized tools and scalable infrastructure, have greatly improved
productivity. Continuous, production-ready builds now take hours or minutes instead of weeks or
months. At the same time, it supports ongoing regression testing across multiple configurations
and versions.

•	 Development Collaboration

Separating hardware from software and using cloud resources has greatly helped software teams
expand. Development resources are now shared across sites and borders, with containerized
systems allowing independent function development.

Integration and testing occur in a unified environment with common tools, workflows, and
reporting. This scalable setup lets teams scale efficiently without the need to be co-located.

Modernizing Critical Embedded Software
Whitepaper

5

•	 Development, Customized “My Way”

Standardizing development pipelines and
tools ensures uniformity while allowing
developers to work in ways that suit their
preferences, boosting productivity. Modern
tools, often lighter than legacy ones, can be
optimized with plug-ins or custom scripts
via CLIs. Open frameworks like Microsoft’s
VS Code have fostered a vast ecosystem of
productivity tools, enabling developers to
code efficiently.

•	 Open Source and Rich Frameworks

The trend towards increasing abstraction is
not confined to the separation of software
from hardware. Programming languages have
also advanced to higher levels of abstraction,
offering sophisticated environments with
comprehensive libraries and services that
enhance developer productivity.

As these evolving software resources are
shared and reused, they provide a more
advanced baseline for development and
innovation. Numerous languages and
frameworks are available to developers
as open-source platforms, fostering
collaboration across projects while minimizing
acquisition costs.

•	 Complex Build Systems

Build systems, often managed by experts, are
rarely considered in the development process
once set up.

However, as cloud systems grow in
complexity, so do their build systems. Modern
environments like Bazel efficiently track
code changes and automate recompilation
and relinking. This leads to faster, scalable
iterative builds, reducing full build cycles and
optimizing resource usage.

•	 Coding and GenAI

Generative AI is transforming software
development by automating code writing,
bug detection, and improvement suggestions.
This boosts productivity, letting developers
focus on creative design and innovation.

While simple tools like auto-complete are
minimally intrusive to existing workflows,
advanced AI methods like "Vibe Coding" can
burden developers with excessive code they
need to understand or reverse-engineer,
which is time consuming.

Modernizing Critical Embedded Software
Whitepaper

6

When It's All Put Together

Taken together, these factors form a proven playbook: decouple software from hardware,
automate everything that can be automated, and equip globally distributed teams with lightweight,
customizable toolchains. Then use AI to handle what slips through the cracks. The result in the
enterprise world is a development cycle measured in hours rather than months.

For leaders responsible for safety-critical, resource-constrained embedded projects, the
obvious question now is how much of that playbook can we safely import. And where will the
embedded-specific barriers appear? The next section unpacks those modernization challenges and
pinpoints the adaptations required to capture cloud-scale speed without compromising real-time
performance—or compliance.

The Barriers to Modernizing Embedded Software
Enterprise computing platforms like personal computers, servers, and cloud infrastructure are
optimized for general-purpose tasks. They provide maximum computational power within cost
and power limits.

Conversely, embedded systems have unique constraints, leading to specialized development
processes that haven't adapted to modern methods due to some of the following barriers.

•	 Custom Hardware

Embedded systems are deployed in a range of devices across varying applications, often custom-
designed for a specific, such as a medical device.

They use a wide range of processor architectures, as well as custom hardware interfaces for
interacting with sensors or other systems around them. They require software tools tailored to
these environments, such as special compilers, debuggers or other development tools.

•	 Hardware-in-the-Loop

Even with high levels of abstraction from underlying hardware, embedded software needs to be
tested on either development or deployment systems. This requires tools and workflows that
allows for cross-development; development or testing on one machine, while executing and
debugging code on the custom hardware platform.

Modernizing Critical Embedded Software
Whitepaper

7

•	 Constrained Environments

Embedded systems are often deployed
in environments in which there are limits
on available resources, such as space,
weight, power or available memory. The
art of embedded development is achieving
maximum and predictable performance
within these constraints.

•	 Real-Time Performance

Interacting with real-world environments
often puts timing constraints on systems
and their needs for responsiveness. These
can include real-time behavior (a guaranteed
timing response to external events),
worst-case timing limits, or determinism
(predictable and consistent timing behavior).

•	 Functional Safety

Many systems operate in environments
where their failure could pose a risk to
their surroundings or operators. Functional
safety software is created to ensure that
safety-critical systems and applications work
correctly, even when malfunctions occur.
These systems are frequently regulated and
must be developed according to industry-
specific software development standards.

•	 Development Languages

Custom hardware or system constraints often
necessitate software languages optimized
for hardware. Thus, C and C++ are common
choices for embedded development, whereas
higher-level languages may be unsuitable
due to non-deterministic runtime behavior
in areas such as memory management or
complex I/O libraries.

The Balancing Act

Collectively, these constraints explain why
embedded teams can't simply lift from the cloud
playbook. Every optimization must respect
custom silicon, scarce resources, hard real-time
deadlines, rigorous safety standards, and the
low-level languages that hold it all together.

Modernization, therefore, isn’t a matter of
swapping tools—it’s a balancing act that must
preserve compliance while taking advantage of
the automation, scale, and collaboration gains
already proven in enterprise software. The
remainder of this paper shows how to strike that
balance, beginning with the heaviest brake on
embedded development.

The Truth About Testing—It’s Seen as a Burden
Testing is a critical step in the software development process, yet is often seen as a burden. It is a
gating item for release of software products, though given the choice many developers would prefer
to avoid it and focus instead on coding.

Developers often perceive testing as a distraction from the creative aspect of coding, yet it remains
indispensable for ensuring the reliability and functionality of the final product.

Given the reluctance for testing, the process becomes a bottleneck in the software development
lifecycle. The challenge lies in balancing thorough validation with tight deadlines, limited resources,
and the increasing complexity of modern software systems.

Streamlining and automating testing procedures, and embedding them seamlessly into development
workflows, is essential for alleviating this burden. These are also the steps for maintaining quality,
performance and standards conformance.

Modernizing Critical Embedded Software
Whitepaper

8

Growing Software Content and Complexity

As developers adopt frameworks for baselines
on advanced software, or employ higher-level
languages for increased productivity, the
amount of code to be tested continues to grow.

Adding GenAI to the mix compounds this
growth. Research indicates that while using
GenAI for code generation does not necessarily
expand the code base, it appears to increase a
software repository’s churn as generated code
is analyzed and re-factored.2

These contributors to software growth also
highlight that developers need to review and
test code that they did not write. This further
increases software complexity and reinforces
the need for testing.

The adoption of these new technologies may
make testing more challenging, making it more
imperative to streamline our approach to it.

Conformance to Standards

Adherence to software coding standards,
such as MISRA, brings numerous benefits
to the development of safety-critical and
reliable systems.

These standards establish a uniform coding
framework that minimizes ambiguities and
enforces best practices, significantly reducing
the likelihood of programming errors. They
improve code maintainability and readability,
making it easier for teams to collaborate,
troubleshoot, and adapt to evolving
requirements.

Furthermore, compliance with such standards
makes system behavior more predictable,
a vital aspect in safety-critical environments,
and facilitates certification processes by
aligning development efforts with industry
regulations. By embedding these guidelines
into workflows, organizations can build robust,
high-quality software with reduced risks and
streamlined validation efforts.

2 https://arc.dev/talent-blog/impact-of-ai-on-code

Continuous Compliance

Adhering to software functional safety standards
is another foundational best practice in
developing reliable and safety-critical systems.
For effective and continuous conformance,
teams should integrate standards compliance
into their workflows from the outset, ensuring
that requirements like ISO 26262, IEC 61508,
or DO-178C are systematically addressed.

This involves leveraging tools for static analysis,
code coverage, and requirements mapping,
so teams can validate each stage of development
against applicable regulations.

Collaboration between developers, testers, and
quality assurance teams is essential to maintain
adherence without creating unnecessary
bottlenecks. Regular audits and reviews should
be scheduled to verify compliance while using
automated tools to streamline documentation
and verification processes.

Additionally, fostering a culture of
accountability and education around these
standards ensures all team members understand
their importance, reducing errors and simplifying
certification efforts.

https://arc.dev/talent-blog/impact-of-ai-on-code

Modernizing Critical Embedded Software
Whitepaper

9

Giving Developers Access to Modern Software Development
Methodologies
In the ever-evolving landscape of software development, modern methodologies such as DevOps
and continuous deployment are reshaping how teams build, test, and release applications. You will
do best with a comprehensive suite of tools and technologies that equip developers to meet the
demands of modern development practices.

By addressing challenges in both embedded and functional software, providing robust tool
integrations, and enhancing developer productivity, your team can focus on innovation and reduce
risk while maintaining high standards of quality, performance and conformance to standards.

The Value of Platforms That Span Embedded and Functional

The most viable companies can provide tailored solutions that cater to
the diverse needs of embedded and functional software development.
In the realm of embedded systems, where safety-critical and real-time
performance are paramount, it's best to use tools that ensure rigorous
testing and compliance with industry standards such as MISRA,
ISO 26262, and DO-178C.

These solutions help developers achieve high levels of reliability by
embedding testing and validation workflows seamlessly into their
development processes.

For functional software applications, you'll need advanced test
automation capabilities that accelerate development cycles and improve
software quality. Look for platforms that support API testing, service
virtualization, and test data management—components that help your
team identify defects early in the lifecycle and reduce costly rework.

By addressing the unique requirements of both embedded and
enterprise-level applications, you can bridge the gap between artisanal
approaches and production-scale methodologies.

Enabling the Developer-in-the-Loop

As software systems grow increasingly intricate, developers must remain actively engaged in
reviewing and managing build pipelines. This involvement is crucial to ensure that insights generated
by automated tools, such as static analysis, are appropriately triaged and acted upon.

With the rising volume of code content and the complexity of interdependent systems, the sheer
number of warnings, errors, and recommendations produced during builds can quickly overwhelm
developers.

Without their oversight, critical issues may be overlooked, potentially compromising software
reliability and security. Developers bring the keen analytical skills and domain-specific understanding
needed to discern which actions should be prioritized, ensuring the pipeline delivers meaningful
results while maintaining efficiency.

Modernizing Critical Embedded Software
Whitepaper

10

Artificial intelligence offers a transformative way to address the burdens associated with managing
increasingly complex codebases and build pipelines.

By leveraging historical data and predictive algorithms, AI can intelligently streamline the process,
identifying risk-prone areas and automating the prioritization of tasks. Rather than sifting through
an avalanche of redundant or inconsequential recommendations, developers can focus on actionable
insights that drive measurable improvements.

AI-powered tools enhance collaboration between developers and automated systems, enabling build
pipelines to scale effectively while preserving the critical human element that ensures the results are
aligned with organizational goals and standards. These advances are already built into Parasoft’s tool
workflows, and is a continued area of focus for ongoing investment.

Where Companies Like Parasoft Fit In

Parasoft, a leader in automated testing and software quality solutions, approaches modern software
development methodologies to help developers in several key ways.

•	 Streamlined workflows. By embedding
testing tools at every stage of development,
Parasoft removes bottlenecks and ensures
that developers can focus on innovation
without compromising quality.

•	 Compliance simplified. Automatic validation
against industry standards and regulations
reduces the manual burden on teams while
improving the predictability and safety of
software systems.

•	 Support for continuous deployment.
Parasoft’s integration into DevOps pipelines
enables rapid iteration and deployment,
ensuring that teams can deliver value to users
without delays.

•	 Enhanced collaboration. Shared insights,
reports, and dashboards foster a culture of
accountability and teamwork, ensuring that
quality is a shared responsibility across
the organization.

Tool Integrations for Enhanced Developer Productivity

Parasoft’s ecosystem of tools integrates seamlessly into modern development environments, enabling
developers to leverage their existing workflows while enhancing efficiency.

Key integrations include:

•	 DevOps pipelines. Parasoft’s solutions
integrate into CI/CD pipelines, ensuring
continuous testing and validation throughout
the development lifecycle. This alignment
with DevOps practices allows teams to detect
and address issues early, fostering faster
delivery of high-quality software.

•	 Code analysis and coverage. Parasoft
integrates tools for static and dynamic code
analysis into popular IDEs as well as more
modular editors such as VS Code, enabling

developers to identify potential errors,
enforce coding standards, and achieve
comprehensive test coverage without
leaving their development environment.

•	 Requirements traceability. By connecting
test cases to specific requirements, Parasoft
ensures complete traceability, making it easier
to validate functionality against specifications
and comply with regulatory standards.

Modernizing Critical Embedded Software
Whitepaper

11

•	 Testing collaboration tools. Parasoft
facilitates collaboration among developers,
testers, and quality assurance teams
by providing shared dashboards and
detailed reporting. These tools streamline
communication and ensure alignment across
teams.

•	 AI-Powered insights. Parasoft leverages
artificial intelligence to optimize testing
efforts. By analyzing historical data
and test results, its tools can identify
risk areas, prioritize test execution, and
reduce redundant efforts, boosting overall
productivity.

Embedded Meets Enterprise: The Best of Both Worlds
Parasoft’s ability to address both embedded and enterprise applications provides organizations with
a unified approach to software quality.

By combining the meticulous attention to detail required for embedded systems with the scalability
and agility of enterprise solutions, Parasoft equips teams to thrive in diverse development
environments. Whether the goal is to build safety-critical systems or rapidly iterate on mission-
critical enterprise applications, Parasoft’s tools offer the flexibility and support needed to succeed.

Old Meets New

As software development methodologies continue to evolve, the need for adaptable, efficient, and
robust tools has never been greater. Parasoft’s comprehensive suite of solutions enables teams to
embrace modern practices such as DevOps while addressing the complexities of embedded and
functional software development.

Through seamless tool integrations, AI-powered insights, and a commitment to quality,
Parasoft not only enhances developer productivity but also ensures that organizations
can deliver reliable and innovative software in today’s fast-paced environment.

Because Parasoft has followed a developer-focused philosophy that has helped
support embedded developers for over 35 years—which included traditional IDE-
based workflows—it was quick to recognize the required shift to DevOps. This
led to it investing and expanding its product portfolio to satisfy the needs of
both approaches. This provides developers with choices over the migration from
traditional to modern workflows.

With a portfolio that spans embedded and functional software, you can bridge best-practices from
each domain to the other. We believe this will become increasingly important as applications and
devices become ever more connected and dependent on each other.

In the case of automotive software, for example, the increasing software content in vehicles requires
a shift to software defined vehicle architectures where embedded software deployed in vehicles is
managed and updated by cloud-based services such as over-the-air (OTA) updates.

Examples such as these abound across every industry, and mark another evolution of the complexity
of the ever-changing software landscape.

We believe this will
become increasingly
important as applications
and devices become ever
more connected and
dependent on each other.

Modernizing Critical Embedded Software
Whitepaper

12

How to Move Forward

Your roadmap will look different from every other team’s. See what industry-specific options you
have for your embedded workflow—industries like aerospace, automotive, medical, and more—at
parasoft.com/industries/embedded.

Modernizing embedded workflows is no longer optional. It's now a competitive imperative, and
therefore a compliance imperative.

Enterprise Software
Embedded A&D

2005
Server virtualization

mainstream (VMware ESX)

2005-2020
Custom IDEs, bench

testing, paper compliance

*All years shown are representative, not exact.

NOW
Modernization inflection point

2011
First public cloud

CI servers (AWS, Travis CI)

2013
Docker brings

container portability

2016
Kubernetes +

microservices explosion

2018
Enterprise DevSecOps pipelines
hit majority adoption (Gartner)

2023
GenAI coding assistants

enter IDEs; AI test-gen in CI

2021
First isolated attempts at

containerized cross-compilers

2023
DoD Digital Engineering Instruction

5000.97 issues modernization mandate

2024
Early DevSecOps pilots (Air Force

Platform One, Army Software Factory)

TAKE THE NEXT STEP
Contact us to speak directly with a solutions architect.

For any product or example of AI discussed here, our experts can provide a free, custom demo
tailored to your hardware, safety standards, and workflow.

About Parasoft

Parasoft helps organizations continuously deliver high-quality software with its AI-powered
software testing platform and automated test solutions. Supporting the embedded, enterprise, and
IoT markets, Parasoft's proven technologies reduce the time, effort, and cost of delivering secure,
reliable, and compliant software by integrating everything from deep code analysis and unit testing
to web UI and API testing, plus service virtualization and complete code coverage, into the delivery
pipeline. Bringing all this together, Parasoft’s award-winning reporting and analytics dashboard
provides a centralized view of quality, enabling organizations to deliver with confidence and succeed
in today’s most strategic ecosystems and development initiatives—security, safety-critical, Agile,
DevOps, and continuous testing.

http://parasoft.com/industries/embedded
https://www.parasoft.com/contact/
https://www.parasoft.com/

